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Abstract

Robots with the capability to dexterously manipulate objects have the potential to revolu-
tionise automation. Interestingly, human beings have the ability to perform complex object
manipulations. They perfect their skills to manipulate objects through repeated trials. There
is extensive human motor control literature which provides evidence that the repetition of
a task creates forward-models of that task in the brain. These forward-models are used to
predict future states of the task, anticipate necessary control actions and adapt impedance
quickly to match task requirements. Evidence from motor control and some promising
results in the robot research on manipulation clearly shows the need for forward-models for
manipulation.

This study was started with the premise that a robot needs forward-models to perform
dexterous manipulation. Initially planning a sequence of actions using a forward-model
was identified as the most crucial problem in manipulation. Push manipulation planning
using forward-models was the first step in this direction. However, unlike most methods
in the robotic push manipulation literature, the approach was to incorporate the uncertainty
of the forward-model in formulating the plan for push planning. Incorporating uncertainty
helps the robot to perform risk-aware actions and stay close to the known areas of the state
space while manipulating the object. The forward-models of object dynamics were learned
offline, and robot pushes were fixed-duration position-controlled actions. The experiments
in simulation and real robots were successful and helped in creating several other insights
for better manipulation. Two of these insights were the need to have the capability to learn
the feed-forward model online and the importance of having a state-dependent stiffness
controller.

The first part of the thesis presents a planner that makes use of an uncertain, learned,
forward (dynamical) model to plan push manipulation. The forward-model of the system
is learned by poking the object in random directions. The learned model is then utilised by
a model predictive path integral controller to push the box to the required goal pose. By
using path-integral control, the proposed planner can find efficient paths by sampling. The
planner is agnostic to the forward-model used and produces successful results using a physics
simulator, an Ensemble of Mixture Density Networks (Ensemble-MDN) or a Gaussian
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Process (GP). Both ensemble-MDN and a GP can encode uncertainty not only in the push
outcome but in the model itself. The work compares planning using each of these learned
models to planning with a physics simulator. Two versions of the planner are implemented.
The first version makes uncertainty averse push actions by minimising uncertainty cost and
goal costs together. Using multiple costs makes it difficult for the optimiser to find optimal
push actions. Hence the second version solves the problem in two stages. The first stage
creates an uncertainty averse path, and the second stage finds push actions to follow the path
found.

The second part of the thesis describes a framework which can learn forward-models
online and can perform state-dependent stiffness adaptation using these forward-models. The
idea of the framework is again motivated by the human control literature. During the initial
trials of a novel manipulation task, humans tend to keep their arms stiff to reduce the effects
of any unforeseen disturbances on the ability to perform the task accurately. After a few
repetitions, humans adapt the stiffness of their arms without any significant reduction in task
performance. Research in human motor control strongly indicates that humans learn and
continuously revise internal models of manipulation tasks to support such adaptive behaviour.
Drawing inspiration from these findings, the proposed framework supports online learning of
a time-independent forward-model of a manipulation task from a small number of examples.
The proposed framework consists of two parts. The first part can create forward-models
of a task through online learning. Later, the measured inaccuracies in the predictions of
this model are used to dynamically update the forward-model and modify the impedance
parameters of a feedback controller during task execution. Furthermore, the framework
includes a hybrid force-motion controller that enables the robot to be compliant in particular
directions (if required) while adapting the impedance in other directions. These capabilities
are illustrated and evaluated on continuous contact tasks such as polishing a board, pulling a
non-linear spring and stirring porridge.
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Chapter 1

Introduction

Manipulation, beyond the topic of grasping, is one of the most difficult and open areas of
robotics research. Manipulation can be defined as the intentional modification of an object’s
configuration using specific action sequences. Some manipulation actions, for example
grasping, have been widely studied in robotics. Beyond grasping, operations such as pushing,
flipping, sliding, polishing and stirring still pose unsolved problems. The main challenge is
the inability of existing control strategies to effectively facilitate dexterity to robot arms. The
lack of human-like dexterity still confines robots to particular tasks. This is evident from the
automotive industry where each task (e.g. painting, welding) requires a different robot. This
thesis focuses on the dexterity aspect in robot arms that enables them to plan and anticipate
compliant contact actions in uncertain environments.

Dexterity of human hands in manipulating objects play a pivotal role in our daily lives.
Humans skillfully control force and position of their hands or tools to manipulate objects
even in uncertain environments. They can learn and adapt skills online and be compliant
to disturbing forces. However, the industry has generally favoured the use of stiff position-
controlled robots over force-controlled robots. The affinity for stiff robots is mostly due to
three reasons: (1) for fast, precise and repeatable motion in structured environments (2) most
applications that require robot manipulators are deterministic and have access to an accurate
description of the task and environment (3) lack of need for collaborative work with humans.
Since frequent human interactions with these robots are minimal, it is possible to confine
them to their work cells by building cages.

Industrial manipulators in structured environments function effortlessly using extensive
knowledge of its working environment and assuming all the scenario that it may encounter is
within its knowledge domain. The extensive domain knowledge helps to pre-program each
robot’s behaviour. Further, they can keep repeating this behaviour till a task or environment
change occurs. However, it becomes difficult to program the robot when used in unknown or
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partially known environments. Hence, it becomes essential to account for the environmental
uncertainties during planning. For example, precise spatial knowledge of the tools, work-
piece and environment helps a robot in an automotive industry to assemble cars. A slight
inaccuracy in the position of the tools or the environment results in erroneous task execution.
Subsequently the robot has to undergo re-calibration to continue the task.

Currently, there is an increase in demand for robots to work along with humans in un-
structured environments without enclosures (e.g. furniture assembly works). The recent
development of direct-torque control robots is a promising step towards making these collab-
orative work environments possible. However, analytically modelling the complex non-linear
interaction of the robot with humans or its environment is cumbersome or impractical. Ef-
fective use of robots in unstructured environments require solving several challenges which
hinder the use of existing frameworks. In particular, there are three difficulties: (i) planning
manipulations require a model which can predict the effect of actions (ii) even with such a
model there is uncertainty -both aleatoric1 and epistemic2 - in the outcome and hence this
should be captured to allow optimal planning/control and finally (iii) there is a requirement
to have some form of compliance behaviour to deal with changing external forces that act
on the robot and for the manipulated object. However, there are other challenges to solve
these problems such as (i) physics models are inaccurate and do not capture uncertainty (ii)
planning methods proposed in the literature typically do not have the capability to account
for the uncertainty in the model and (iii) when interacting with the environment, simple
approaches to compliance give poor positional control and no explicit force control.

In this thesis we develop the control and planning framework that addresses all three
problems. The core contributions show :

1. Using forward-models and their predictive uncertainty to plan push manipulations.
In particular, how to learn and plan with kinematic models of manipulation effects
that contain both aleatoric and epistemic uncertainty. We combine learned-forward
models with stochastic planners to achieve uncertainty averse push manipulation. Our
approach is significantly different from the existing literature (Section 2.2). Chapter 3
provides further particulars about the contribution and was published in Arruda et al.
[9].

2. Extending this approach to predict the effects on felt forces in continuous interaction
tasks by learning simple forward-models online. Prediction of forces in such tasks can
help in anticipatory control of the interacting robot manipulator. The incorrectness

1random variability present in the system
2uncertainty that comes due to insufficient data/sensing capabilities
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of the force prediction is used to improve the impedance control by making it a task-
space, time-independent, state-dependent stiffness controller. This is unique to our
framework and a departure from the existing methods (Section 2.3). The specifics of
the framework proposed is covered in Chapter 4 and was published in Mathew et al.
[107].

3. Later we describe on how to plan and control online, using this new control framework
in a variety of continuous interaction tasks defined in static and dynamic environments.
Details of this contribution are discussed in Chapter 5. Earlier version of the experi-
ments are covered in Mathew et al. [108] and further improved in our work in Mathew
et al. [107].

1.1 Approach

This section gives an outline of the different proposed approaches in this thesis. We start with
giving an outline (Section 1.1.1) on how to plan push actions to move an object avoiding
highly uncertain regions. Chapter 3 details this approach which forms our first contribution.
The planning approach described in this chapter generates sequential and discrete push actions
to move an object to the specified target pose. After the success with push planning which
involved discrete interactions with the object, we moved to tasks that involved continuous
interaction with the environment. A framework to solve such continuous interaction tasks
using variable impedance constitutes our second and third contributions. Section 1.1.2
provides an outline of our proposed variable impedance approach.

1.1.1 Uncertainty averse push planning

Consider an example similar to that discussed in Doshi-Velez [41]. Imagine that you are in a
new city with an incomplete map of the place and you only know a few routes in the city.
Suppose, you want to travel from place A to B within the city and the only route you know
is via place C. Although it is an indirect and long route, it helps you avoid getting lost. If
you are to take an unknown route, using the incomplete map, the certainty of you reaching
the goal decreases. Hence it is better to account your uncertainty about various parts of the
city while route planning. This accounting will help you to avoid high risk areas and move
through the known parts of the city. Such route planning allows to trade-off risk for time to
reach the destination. Similarly, it would be better to stick to the known parts of the city in
order to avoid the risk of getting lost while travelling to a new destination. But sticking to
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known regions within the city should not result in taking excess time to reach the destination.
That means, there is an optimal trade-off between risk and time taken to reach the destination.
So the question is how to come up with a optimal route or a trajectory3 that stays within your
known regions of the map.

A simple way to find a safe path is by using trajectory samples; that is by picking the best
path out of a set of possible trajectories from start to finish. In this case, the best trajectory is
the one that takes the minimum time to reach the destination while still being in the certain
regions. However, searching for a single best trajectory is exhaustive. A better and intuitive
way is to start with a potential trajectory from start to finish and then incrementally modifying
it in such way to perfectly balance the trade-off. For such incremental updates on the starting
trajectory, we will require a cost function. A cost-function is a mathematical equation which
can quantify the merit of a trajectory. These merits serve as marks and enables ranking of
trajectories thereby helping to select the best one. Further, we will require a forward-model
if we want to find a sequence of inputs (e.g. efforts by leg muscles in our example) that
will generate the chosen trajectory. A forward-model is the model of the system (here our
motor control system) which can generate a trajectory using a sequence of inputs. We need to
follow slightly modified set of steps to find out the sequence of inputs that results in the best
trajectory. Now, we can start with a set of random inputs. We can feed these inputs to the
forward-model to generate the resulting trajectory. The trajectory generated can be quantified
for its merit using the cost-function. If we pick a set of random inputs and simulate each
of them using the forward-model, we can get a set of trajectories and their corresponding
merits. These trajectory merit values enables us to find the gradient of the cost-function.
This gradient can be used to update the input sequence to generate trajectory that has least
cost. (details in Chapter 3). There are different types of forward-models. Some of them can
only simulate the input sequence in a deterministic fashion. However, there will be many
cases where the system model may be unsure about a simulated outcome under an input.
Such cases can only be provided with a forward-model which can also quantify its predictive
uncertainty.

The forward-model used for our first contribution (Chapter 3) is learned from data and
can estimate uncertainties of its predictions. The data is collected by observing the behaviour
of the system under different actions. Since the data collected is not exhaustive, the trained
forward-model is inexperienced of the complete state-space. Hence, the predictions made
in less experienced areas will be uncertain or error prone. We find each action taken by
the system (e.g. robot) using its forward-model predictions and therefore the predictive
uncertainty contributes significantly towards the effectiveness of the action. For example,

3A time indexed sequence of poses followed by the system -here human
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taking a particular action in some areas of the state space can transition the system to more
uncertain regions. Occurrence of such events will result in choosing actions which are more
or less random (since the choice of action depends on the prediction). Incorrect choice of
actions in uncertain areas of the state space may have unwanted consequences. Hence, it will
be highly beneficial to incorporate predictive uncertainty into planning. Chapter 3 describes a
technique to incorporate the predictive uncertainty to trajectory planning. The approach uses
the path integral based approach (Section 3.2.2) developed by Kappen [72] in the stochastic
optimal control (Section 2.5.3) framework. We propose two algorithms in Chapter 3 to solve
the problem of finding optimal actions to follow a less risky trajectory. First algorithm finds
optimal actions at each state of the robot using a cost function which is a linear combination
of task cost and uncertainty cost. While on a trajectory, the system passes through different
task states. Task cost is a mathematical equation which penalises each system state for some
task specific goals. Uncertainty cost is a mathematical equation which penalises uncertainty
associated with each system state. The second algorithm finds optimal actions in two steps
by decoupling task cost and uncertainty cost. Initially the uncertainty cost alone is used to
find a less risky trajectory and subsequently the task cost alone is used to find optimal actions
to follow this trajectory.

1.1.2 State dependent impedance control

Consider the task of stirring porridge with a spatula. As the task advances, the porridge
starts to thicken, increasing the force felt at the palm. Correspondingly, to keep stirring,
we often increase our arm stiffness. Similar such examples are inserting a bulb to a holder,
turning of key in a lock or inserting a plug. We vary the stiffness of the arm to manipulate
the bulb or the key to achieve the task goal. Performing these tasks with a constant stiffness
increases their level of difficulty. Also, the choice of stiffness applied at each state of the
task has a tremendous influence on the overall performance. Several such examples from
our daily lives show that varying stiffness is an important aspect of human dexterity. Studies
in psycho-physics (Franklin et al. [52], Burdet et al. [21]) strongly suggest that we learn to
vary stiffness while training on a novel manipulation task. However, what seems easy and
intuitive for humans in interactive tasks is difficult for robots. It is well understood that to
achieve human-like performance, the robots needs to acquire the ability to vary their stiffness
while performing a task.

Varying stiffness in robots is achieved by implementing controllers in the impedance 4

framework. Control of impedance of a mechanism regulates the motion due to the force felt as

4Mechanical impedance is defined as the ratio between force and motion.
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a result of environment interactions (Hogan [62]). Increase in impedance of the manipulator
allows in better rejection of perturbing forces, but makes it stiff. Correspondingly, decrease in
manipulator impedance parameters makes it compliant to external forces. For a manipulator
having task-redundant degrees of freedom, some of these external forces can be compensated
by moving the arm in its null-space. For other forces which cannot be compensated by such
null-space adjustments are taken care by trading off the arm’s motion accuracy.

Some tasks that require control of force and motion along the same direction involve
application of varying forces by adjusting its impedance parameters. However, adjustment of
impedance parameters are not arbitrary and totally depends on the current task configuration,
reaction force felt and intended state of the task. In this thesis, the impedance control is
developed and deployed in the task-space of the robot. Task-space controllers (Cartesian-
space controllers - Section 2.5.1) are intuitive and have task-specific parameters. This allows
the controller to be independent of the type of robot manipulator used. These controllers are
typically designed as a mass-spring-damper system. The goal of the controller is to make the
robot behave like a spring attached between the end-effector and the target way-point. The
spring behaviour of the end-effector is defined through three parameters; (1) inertia tensor5

(2) stiffness matrix6 and (3) damping matrix 7. Variable impedance behaviour is achieved
by modifying the inertia, damping and stiffness parameters. However, modification of these
parameters is not trivial and is dependent on task and robot state. Shaping inertia of the robot
to behave like a mass-spring-damper system is generally tricky (Wimbock et al. [166]) and
requires accurate measurement of the external forces acting on the robot. Measurement of
forces at every acting point is impractical and hence it is difficult to modulate the inertia
tensor as it leads to unreliable impedance behaviour. For this reason, the desired impedance
behaviour is often limited to designing stiffness and damping parameters of the controller,
while keeping the end-effector inertia unchanged. This modified problem is called as the
compliance control problem (Wimbock et al. [166]).

1.2 Thesis structure

This thesis is organised as follows. Chapter 2 illustrates essential background knowledge
required to follow the thesis along with an extensive survey on planning of push manipulation

5The inertia (moment of inertia) is the tensor parameter which determines the torque required for a specified
angular acceleration about an axis. This parameter is also called as angular mass or rotational inertia and is
similar to how mass determines the required force for a specified acceleration. (Marion [102]) In the case of a
robot manipulator, it is the effective inertia of the entire arm reflected at its end point.

6Stiffness can be defined as the parameter which determines the deviation of the robot end-effector from a
waypoint under an external force.

7Damping can be defined as the parameter which determines oscillatory response of the robot end-effector
due to its acceleration.
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(Section 2.2), learning forward-models (Section 2.1) and variable impedance controllers
(Section 2.3). Details of the two planners proposed in Contribution 1 are described in Chapter
3 along with experiments designed to validate them. Chapter 4 provides details on the
learning framework developed for anticipatory control and variable impedance control for
continuous interactions tasks by learning its forward-models (Contributions 2 and 3). The
experiments conducted to validate variable stiffness framework are detailed in Chapter 5
(Contribution 4). Finally, Chapter 6 gives the conclusion of this research, the limitations
of the proposed approaches and promising research directions to fix them. Appendix A
provides a brief derivation of the task space controller formulation and Appendix B gives brief
information about the hardware used in our experiments and the software stack developed as
a part of this research. Finally, Appendix C discusses the alternate attempted approaches in
the past years for solving the problems listed in this thesis.

1.3 Publications

1. Arruda, Ermano, Michael J. Mathew, Marek Kopicki, Michael Mistry, Morteza Azad,
and Jeremy L. Wyatt. "Uncertainty averse pushing with model predictive path integral
control." In 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), pp. 497-502. IEEE, 2017.

2. Michael J. Mathew, Saif Sidhik, Mohan Sridharan, Akinobu Hayashi, Morteza Azad,
and Jeremy L. Wyatt. "Online Learning of Feed-Forward Models for Task-Space
Variable Impedance Control" In 2019 IEEE-RAS 19th International Conference on
Humanoid Robotics (Humanoids), pp. 597-602. IEEE, 2019. An earlier version of this
work appeared in Mathew et al. [108].

The first publication is concerned with the initial contribution of this thesis which is an
equally contributed work between myself and Arruda E. This work involved formulation of a
forward-model and using it for push planning. The work in with this thesis is a stochastic
planner which uses the forward-model proposed by Arruda E to generate optimal push actions
to move an object towards a given goal pose. Chapter 3 covers more details of the planner
proposed in this publication. The second publication involves second and third contributions
of this thesis. This publication covers a state dependent variable impedance controller
framework motivated by human motor control studies. Further details of the framework can
read in Chapter 4. The framework is thoroughly tested on different experiments which are
described in detail in Chapter 5.



Chapter 2

Related work and background

This chapter reviews the relevant literature and technical preliminaries required to understand
the two frameworks introduced in Chapter 3 and Chapter 4. The framework described in
Chapter 3 illustrates an approach to use the uncertainty in forward-models for planning push
manipulation. Section 2.1 presents literature on usage of forward-models in robotics followed
by Section 2.2 reviews different strategies used for push manipulation.

The push manipulation experiments described in Chapter 3 deals with discrete contact
tasks. The success of our approach motivated the development of a framework for continuous
interaction tasks. The framework developed can learn the forward-model of a continuous
interaction task online and make use of its predictive uncertainty to modulate robot impedance
parameters. Review on related approaches which learn variable impedance are described in
Section 2.3 and on different control strategies are in Section 2.4. Finally, Section 2.5 gives
essential background knowledge required to follow different methods and techniques used in
this thesis.

2.1 Learning of forward-models from data

Robots are meant to interact with the environment through discrete (tasks like assembly)
or continuous contacts (tasks like polishing, deburring etc). Such interactions require the
knowledge of environment behaviour to select or modify appropriate action. However, it
is impossible to model all properties and dynamics of an environment. One way to tackle
this problem is by enabling the robot to learn from its own experience; that is, the robot
observes (measures) the changes to the environment through its interactions and models them
by using suitable machine learning techniques (supervised or reinforcement learning etc).
Access to such a model (called a forward-model) helps the robot to simulate the effects of
its interaction in advance. In other words, a forward-model enables a robot to predict the
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next potential state based on its current state and action. This ability to learn forward-models
enables robots to be more intelligent, adaptable and autonomous (Dearden et al. [33]). The
work in Beetz et al. [12] shows the importance of learning models from observation to meet
the demands of novel situations which cannot be met by stereotypical solutions.

Studies in psychophysics like Miall and Wolpert [114], Wolpert et al. [168], Haruno
et al. [61], Flanagan et al. [50] and Mehta and Schaal [113] provides firm evidence for the
existence of forward-models in human motor control. It has been hypothesised that forward
and inverse models exist in the human brain (Wolpert et al. [169]) and was confirmed by the
motor simulation created by Dindo et al. [39] using a Bayesian framework. A computational
framework which uses this idea is the hierarchical attentive multiple models for modelling
motor execution and recognition (Demiris and Khadhouri [36]). This idea was later used
in robot experiments for imitation learning by (Demiris and Meltzoff [37]). Interesting
experiments on human visuomotor control by Mehta and Schaal [113] suggests that forward-
model based control is often easier to learn. This ease arises since the forward-models can be
acquired through supervised or self-supervised learning.

Using forward-models are popular in several domains of robotics. There are several
works in the literature which uses forward-models for online sensor calibration (Maye et al.
[109]), learning occupancy grid maps (Thrun [158]) and prediction of intent in human-robot
collaborative works (Demiris [35]). The work in Dearden et al. [33] proposes a Bayesian
framework to learn the forward-model of a single DoF robot action. The work in Stulp and
Beetz [152] uses action models which predict the effects of an action and show how such
forward-models lead to more efficient, robust and effective behaviour.

In robot manipulation, Tian et al. [159] (though limited to a single finger) uses a forward-
model created from high bandwidth tactile sensors to augment their measurements for better
manipulation. The work in Boots et al. [16] shows an improvement to manipulation abilities
when the system can anticipate future observation from a learnt model. Shon et al. [146] uses
a Bayesian framework to create forward-models from the demonstrated samples to generate
skills for a robot on real-time basis. Works like Stüber et al. [151] extensively describes
forward-models used in push manipulation. Interested readers are further directed to the
work by Nguyen-Tuong and Peters [121] on learning models for control in robots.

In general, forward-models are used to predict the behaviour of the robot (Kronander
and Billard [81], Huang et al. [65]) and/or the objects (Fan et al. [46]) being effected while
performing the task. The main challenge in the development of such a forward-model is
the selection of relevant state features of the task. Effective learning and performance of a
forward-model massively depends on the choice of the feature vector. Forward-models are of
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three types (i) analytic model - derived using principles of physics (ii) learned model - from
data (iii) hybrid model - combination of learned and analytic models

One approach for using predictive models is to build a analytic model informed by the
knowledge of mechanics to make predictions about robot and object motions (Fan et al.
[46], Liu [99]). They assume that Newtonian mechanics govern the dynamics of the object
and estimate parameters like the mass, inertia, Coriolis component and gravity effects using
regression techniques (Mason [106, 105], Lynch [100]). However, most methods make
unrealistic assumptions such as quasi-static mechanics, zero slippage and point contacts
to make the derivation tractable (Chatterjee [27]). Hence analytic method suffers from the
problem of inaccurate prediction. Furthermore, to make predictions, these approaches require
an explicit representation of its intrinsic parameters, such as friction, mass, mass distribution,
and coefficients of restitution, which are not trivial to estimate (Kopicki et al. [79]).

The second approach is to use techniques of machine learning to build a forward-model.
These techniques learn an action-effect correlation either using data obtained from expert
demonstrations (Kronander and Billard [81], Huang et al. [65]) or from self experience using
trials (Levine and Koltun [92], Kupcsik et al. [86]). These methods do not require explicit
mathematical representations of the task, robot, or the objects involved. However, the choices
regarding the model representation, learning algorithm and state representation are challenges
that need to be tackled.

The third approach which use a combination of both first and second approaches can
also be seen in the literature. These forward-models tend to learn the difference between
analytical models and the true dynamics of the object. The assumption is that learning these
errors will improve the analytical models (Gandhi et al. [53]). The main advantage of these
forward-models is low requirement of data since only the difference in dynamics are to be
learned.

In contrast to the above works, our work (Chapter 4) can learn dynamics of robot-
environment interaction as a forward-model without assuming any prior knowledge. The
model is learned online makes no assumptions on the structure of the probability distribution.
This makes the method more generalisable and adaptable to new environments.

2.2 Planning push manipulation

Pushing is considered one the most primitive kind of manipulation action and is frequently
encountered in robotics (Zito et al. [175]). Object motions occurring due to pushes are hard
to predict and difficult to control. Manipulation using push actions is a well studied problem
and was initially attempted (Lynch [100], Mason [106, 105], Peshkin and Sanderson [128])
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using analytical methods using principles of classical mechanics. The analytical approach
models the push effects by using extensive knowledge of the manipulated object properties
(e.g. friction, mass, inertia, and centre of mass), robot (e.g. dynamics, kinematics), and
environments in contact. However, it is quite difficult to estimate or measure these parameters.
Despite these challenges, analytic models have also been extensively employed for push
planning (Cosgun et al. [30], Dogar and Srinivasa [40], Mason [103], Stilman and Kuffner
[150], Zito et al. [174]).

The difficulty of inaccuracy motivates to learn the forward-models from data or use a
hybrid approach (Belter et al. [14], Zhou et al. [173]). Some of the data-intensive approaches
are Agrawal et al. [4], Finn et al. [49], Pinto and Gupta [129] and data efficient approaches
are Kopicki et al. [79], and Kopicki et al. [78]. However, these approaches fail to predict
both uncertainties in dynamics and meta-uncertainty in the object dynamics model, which
is useful for robot planning Deisenroth and Rasmussen [34]. The approach developed by
Bauza and Rodriguez [11] can predict meta-uncertainty due to a lack of data but seldom
use it in planning. A push planning approach put forward in Agrawal et al. [4] uses a
Siamese architecture to learn a forward and an inverse model for pushing simultaneously.
However, the push actions were described in discrete action space and could not use predictive
uncertainty. Finn et al. [49] attempted the push manipulation in a model predictive control
schema (similar to us) employing a forward-model learned using auto-encoders yet was not
capable of including predictive uncertainty. This work can only perform single push actions
which are based on an image input.

A planning framework which relied on analytic models was proposed by Mason [104]
which used a known 3D object. A similar idea was utilised for planning push paths for
planar objects by Mayeda and Wakatsuki [110]. While this work proposed some strategies
to cope up with uncertainties regarding parameters (e.g. friction, mass, centre of mass), yet
was not capable of accounting object rotation. Work by Akella and Mason [7] proposes a
push planner which is capable of guaranteeing a set of push sequence to take a planar object
from a given configuration to any target configuration. The push sequence generated relies
on analytic models and can only be executed in an open-loop fashion execution, and there
was no mechanism to modify a plan or account feedback. Narasimhan [120] proposed a
planner with a set of local task-level feedback controllers to create robust non-holonomic
plans for pushing in a 2D world which had a globally convergent behaviour. The local
task-level feedback controllers were automatically created and updated from handcrafted
difficult to tune simulation models. The scaling of the proposed method to larger dimensions
is non-trivial.
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Other works (Lynch and Mason [101] and Agarwal et al. [3]) in 2D world planned stable
push actions (i.e. push directions that cause the object to remain fixed to the manipulator)
on planar objects. The work was based on analytic models and assumed point contact or
line contact with the environment and the robot. Similar to this work, a path planning
task was attempted by Nieuwenhuisen et al. [122] using only 2D disc-shaped objects in
simulation. The work generated an obstacle free push path by taking in a partial section
of a viable path and assumed extensive knowledge of the world. The work was extended
in De Berg and Gerrits [32] which proposed an approach with a theoretical guarantee to
produce the shortest path under the assumption that the robot is in touch with the object at
all times. While most of the previous works assumed 2D worlds or planar objects, work in
Miyazawa et al. [117] proposed a rapidly-exploring random trees (RRT) based algorithm
to plan push actions. The algorithm was able to perform sliding operation on a 3D cuboid
with three degrees of freedom under no obstacles in simulation. The algorithm results in a
significant variation in computation times since the number of contact locations scales with
the size of the object. The work in Cappelleri et al. [26] created an analytic framework for
planning push actions under quasi-static assumption and open loop using RRTs. Lee et al.
[90] formulated the pushing problem in a 2D simulated world as a hierarchical planning
problem. The planning problem was solved in three stages of object contacts, object poses
and robot contacts. Another attempt to solve the planning problem in pushing as an open-loop
is found in King [76]. This work attempts to solve the push planning under uncertainty
in unstructured environments by using an instance of probabilistic planning and gathering
information by simulating the world with physics engines. The work in Zhou et al. [172]
proposes a polynomial force-motion model for planar sliding. The work was able to generate
stable push actions by collecting force-motion data. Later push actions are derived as a
solution to an optimisation problem with polygonal approximation to the friction cone and
other physics-based constraints (e.g. constraints on mass, density, friction coefficient).

The work described in Chapter 3, an ensemble of Mixture Density Networks (E-MDNs)
(Arruda et al. [9]) learnt using adversarial training proposed by Lakshminarayanan et al.
[88] can represent meta-uncertainty due to a lack of data. The forward-model comprises
of a neural network which learns the parameters of a mixture density to represent the
mapping of the current object state, robot action to possible next states. The mixture density
represents the effects of the robot’s push action. These E-MDNs scale well with training
data unlike methods like Gaussian Processes (GP) (Williams et al. [165]) and can represent
meta-uncertainty, compared to methods like Gaussian Mixture Regression (Da Silva et al.
[31]). Similar to our work, a learned model is employed by Zito et al. [174] and use RRTs to
plan push actions; but the push actions generated are not uncertainty averse.
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2.3 Learning variable impedance controller

Task specification of a robot can be represented as a kinematic trajectory1. Simple trajec-
tories can be modelled using curve fitting techniques (e.g. splines, Bézier curves etc) and
complicated ones can be recorded from a human expert ("Learning from demonstration"
techniques). However, the approach of using kinematic trajectory fails for tasks which involve
interactions or application of specific forces with the environment. Such interactions result
in stochastic disturbances and hence is challenging to control. A solution is to use controllers
in the impedance paradigm. For robotic systems which suffer from noise, disturbances or
sensorimotor delays can be controlled using impedance modulation (Mitrovic et al. [116]).
But this will also require the knowledge of right impedance parameters.

One approach to derive impedance parameters is to record multiple demonstrations from a
human expert and vary the stiffness as a function of the variability in the collected trajectories
(Calinon et al. [22], Kormushev et al. [80], Paraschos et al. [127]). The main disadvantage
of these methods is that the kinematic variations are related to the stiffness profile, which
may not be the case always as shown by Li et al. [93]. These approaches assume that the
teacher conveys the right stiffness information. Instead of deriving impedance parameters
from kinematic data, another related way is to supply them through expert demonstration
via a haptic interface (Medina et al. [112]). Haptic device allows recording of interaction
forces used by the expert to do the task. However, the haptic device used in such approaches
are specifically designed, expensive and often inaccessible to others (Kronander and Billard
[81]).

A related approach to derive time-varying stiffness profile from demonstration is by
using the Linear Quadratic Regulator (LQR) control strategy (Medina et al. [111]). Initially,
the kinematic demonstrations are used to compute the inverse covariance matrices. These
covariance matrices represents trajectory variability and are penalised by the optimiser
to compute optimal stiffness values. A related approach uses the minimum intervention
principle based controller implemented via the LQR (Calinon et al. [24]) to derive impedance
parameters from demonstrations. Alternately, demonstrations are used as priors (Lee et al.
[89]) or as post-estimation projection onto admissible stiffness matrices (Rozo et al. [135]).
All these works derive time dependent impedance matrices as opposed to our state dependent
impedance parameters. Another core difference is that the impedance adaptation proposed in
this thesis is independent of the kinematic demonstrations given and in this regard is similar
to the approach of Kronander and Billard [81].

1A time stamped sequence of end-effector or joint positions
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Optimal control (Mitrovic et al. [116], Braun et al. [17], Garabini et al. [55]) and the
closely related reinforcement learning (Stulp et al. [153], Buchli et al. [19], Calinon et al.
[23]) are used to learn variable impedance control policies and produced impressive results.
However, they all rely on handcrafted task-specific cost function thereby demanding explicit
task knowledge and robot dynamics (Schaal et al. [140]). These requirements further make
the transfer of a learned policy to a new system difficult as they are generally defined in the
joint space of the robots. Moreover, such a transfer also demands cost function redesign
and retraining of the system. This relearning will be particularly damaging since dangerous
contact forces can arise in interaction tasks (Burdet and Nuttin [20]).

Other learning attempts (Asada [10]) included supervised learning, which used neural
networks to provide non-linear compliance by learning a mapping from end-effector force to
velocity. However, such approaches demanded the existence of large noise-free training data
sets and produced deterministic outputs. Similar learning based approaches were followed
in (Kalakrishnan et al. [71, 69], Braun et al. [18], Kupcsik et al. [84], van Hoof et al. [162])
presented stiffness profiles as a time series or as a task-specific blind policy.

Another interesting approach which does not demand the implementation of a handcrafted
cost function is via inverse reinforcement learning originally proposed by Abbeel and Ng [2].
This approach was used for transferring impedance modulation in some manipulation tasks
(Howard et al. [63]). However, most tasks pursued using this approach required explosive
movements (e.g. throwing a ball) and did not involve close interactions with the environment
(Haddadin et al. [59], Stulp et al. [153]). In contrast, our approach is defined in the task space
of the robot and does not demand any robot-specific knowledge. The framework proposed is
able to deal with continuous interaction tasks. A related work is presented in the fifth chapter
of Kupcsik et al. [84] which put forward an offline trained state dependent stiffness controller.
But this approach was utilised only in peg-insertion tasks and controlled single axis stiffness.
Our work proposes a minimal tuning, multi axis online training framework which is used in
a wide variety of tasks.

In essence, the method proposed in this thesis has similar behaviour to adaptive control
methods. In adaptive control, methods achieve high performance by changing control
parameters and without excessive dependency on system models. The modification of control
parameters uses high-gain learning rates which often results in system instabilities (Yucelen
and Haddad [171], Dydek et al. [43]). In our method, we start with a system model learned
from a few demonstrations to predict interaction forces. However, these predictions have high
deviations from the actual values experienced. To compensate for the error in predictions,
we adapt the control parameters (similar to adaptive control methods) as per the error. In
contrast, our approach has an online learning module which modifies the interaction model
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of the task. The improvement of the model results in better predictions and subsequently
reduces the need for high-gain control parameter adaptation. The learned task model can
be used to initialise the forward-model in our framework in other similar tasks. Our results
show that such initialisation helps in faster learning of the models.

There have been several works in motor control literature which strongly provides
evidence (Osu and Gomi [126], Gomi and Osu [57]) for the existence of varying impedance
behaviour in human beings. The impedance modulation in human beings is achieved by
co-contraction of muscles (Rosenbaum [134]). Studies by Burdet et al. [21] suggest that
motivation for modulation of stiffness by humans is to deal with unstable dynamics. Other
studies by Selen et al. [143] suggest it could be due to the presence of sensorimotor noise.
Existence of task-based impedance adaptation in humans is supported by evidence from
Franklin et al. [52], Takahashi et al. [155], Wang et al. [163]. Ideas of these studies are
utilised in the controller suggested by Yang et al. [170] and further extended by Ganesh et al.
[54]. The controller provided a constant feed-forward force for predictable perturbations and
increasing stiffness in directions of unpredictable perturbations. Further, studies performed by
Ajoudani et al. [6] report human assisted stiffness modulation via tele-operation outperforms
constant or low stiffness behaviour of the slave robot for a given task.

Therefore, instead of learning to vary impedance parameters directly, the proposed
framework varies them by learning a forward-model of the task (Chapter 4). It is also observed
that the human motor system uses predictive models for anticipating the action effects (such as
reaction forces) and motor actions on sensory data (Flanagan et al. [51], Johansson and Cole
[68], Kawato [74]). These predictions are used for different purposes such as feed-forward
control, motor system coordination, action planning and monitoring.

2.4 Control challenges

Research in robot control was mostly related to high precision movements in free space.
However, such schemes provide accuracy to follow unobstructed trajectories but fail to
facilitate control when contact interactions are required. The main challenge arises due to
the conflicting nature of position and force. The robot achieves position accuracy by being
stiff, but trades it off for being compliant to external forces.

There are several approaches in classical control like hybrid force control (Salisbury
[137]), parallel force control (Chiaverini and Sciavicco [29]) designed from a manipulator
perspective to achieve varying stiffness control and impedance control (Hogan [62]). Limi-
tations of these approaches include access to accurate system dynamics model and precise
feedback sensors.
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Other approaches to design varying stiffness control from the object perspective like
Schneider and Cannon [141], Wimböck et al. [167], Li et al. [94]. Most of these approaches
are specifically designed for grasping and are based on accurate analytic models of the
object. It is challenging to precisely perform a system identification of the object while being
manipulated by a robot. Learning based approaches like Kronander and Billard [81] require
substantial external hardware to collect demo from the humans to encode and replicate the
stiffness variation in tasks.

The approach followed in our work (Chapter 3) is mostly similar to the some RL-
based formulations such as Kalakrishnan et al. [71], Buchli et al. [19], Kalakrishnan et al.
[69], Braun et al. [18], Howard et al. [63], Kupcsik et al. [84] and van Hoof et al. [162].
These works either represent the stiffness profiles as a time series or as a task specific blind
policy. In contrast, our work represents the stiffness adaptation as a state dependent entity
instead of being time dependent. By defining the stiffness controller as a state-dependent
property, we propose that the same module can be re-used in other tasks involving similar
features.

2.5 Preliminaries

We need to understand some preliminaries before getting into the details of the thesis.
Following sections give short tutorials on different techniques and methods used in this thesis.
Introduction to the task space control is given in Section 2.5.1 which is later used in Chapter
4. We use forward-models learned using probabilistic approaches and Section 2.5.2 gives
a brief on the same. The push manipulation research proposed in Chapter 3 uses optimal
control (Section 2.5.3 strategies such as the Path Integral approach (Section 2.5.4).

2.5.1 Task space control

Human motor control and behavioural studies (Saltzman and Kelso [138], Scholz and Schöner
[142], Todorov and Jordan [161], Schaal and Schweighofer [139], Mistry et al. [115]) show
that human manipulation behaviour has features equivalent to that of compliant task space
control in robotics. We tend to control the stiffness in relevant degrees of freedom while
keeping others compliant. This property makes them robust to stochastic disturbances and
can perform safe interactions with the environment. The main motivation for developing task
space control strategies for robot manipulators is to achieve human arm like performance.

The task space control paradigm aims to produce correct motor commands depending on
task goal and robot configuration. The problem of task space control uses the manipulator
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equation (Equation 2.1) which is formulated using the rigid body assumptions (Featherstone
[47]).

M(q)q̈+C(q, q̇)+g(q) = τ −JT
CFext (2.1)

where q is the (generalised) joint angle vector, q̇ is the joint velocity vector, q̈ is the
joint acceleration vector, M(q) is the inertia matrix, C(q, q̇) is the Coriolis vector, g(q) is
the gravity vector, and τ is the joint torque vector. JC is the contact Jacobian and Fext is
the external force in the Cartesian space. Here we are assuming JC = J the end effector
Jacobian. This equation is defined in the joint space of the robot and needs to be translated to
its equivalent in the task space for implementing task space control. After rearrangement of
terms (interested readers can refer to Appendix A), the task space equivalent of Equation 2.1
is given by Equation 2.2.

M(x)ẍ+C(x, ẋ)+g(x) = F−Fext (2.2)

where, x, ẋ, ẍ is end-effector position, velocity and acceleration respectively in the Carte-
sian space, M(x) is the end-effector inertia 2, C(x, ẋ) is the task space equivalent of Coriolis
component, g(x) is equivalent gravity component, F is force required in the task space to
move the robot and Fext is the interaction force felt.

The task space control for free space movement deals with the design of F using either
force based control (Khatib [75], Featherstone and Khatib [48]), acceleration based control
(Hsu et al. [64], Senda [144]) or velocity based control (Nakamura and Hanafusa [118],
Liegeois [96]). The exact control laws of these formulations can be read in Nakanishi et al.
[119].

However, when there is an interaction force Fext acting on the robot, the control laws by
different schemes mentioned above are insufficient. The external force affects the motion of
the arm. For example, consider when robot arm is moving down to a target pose and there
is a non-penetrable surface in its path. The robot on reaching the surface will apply more
force on its tip to move towards the target. Such unsafe behaviours may damage the robot
and should be avoided by adding compliance behaviour to the arm motion.

A way to add compliance behaviour is by compensating Fext either via the modification
of F using impedance control scheme (Hogan [62]) or by adjusting the arm posture in the
null-space of the robot without affecting the current (using the available task irrelevant control
directions) task state. Our work described in Chapter 4 proposes an approach to achieve
compliance for tasks that involve continuous interaction with the environment.

2equivalent inertia of the arm felt at the end-effector
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2.5.2 Probabilistic modelling

Consider a robot in an unknown environment. All capabilities required for the survival of
the robot in such an environment may not be trivial to program manually. If the robot has
to behave intelligently, it should have the ability to sense the environment, make beliefs
about its world propositions and infer decisions based on them. For example, in case of a
manipulator moving an object, this proposition can be about the object’s location, its own
end-effector pose etc. The beliefs can be represented mathematically from data collected by
the robot through its sensors. However, inference from data is intrinsically uncertain. Hence,
we use probabilistic models to represent these beliefs. These representations can include all
forms of uncertainty and noise (Ghahramani [56]). The models can either make assumptions
about its structure (called parametric methods) using domain-specific knowledge or can be
totally data centric (called non-parametric methods) (in these approaches the model structure
is unconstrained and is learned from data). This thesis uses parametric representations and is
illustrated by the following example.

Consider a data set D = [xn,yn] for n = 1 : N where N is the number of data points, xn is
the input vector and yn is output vector. Let us assume that there exist mapping between xn

and yn]. The mapping can be represented mathematically as a function ( f ) as in Equation
2.3.

yn = f (xn|θ) (2.3)

where, θ is the parameters which determine the model and is learned from data D. One
example of f is the multivariate Gaussian distribution.

f (xn|θ) = N (xn|µ,Σ) =
1√
|2πΣ|

exp(
[
− 1

2
(xn −µ)T

Σ
−1(xn −µ)

]
) (2.4)

Here, θ is the mean and covariance of the µ,Σ of the distribution. We use different algorithms
to estimate the parameter θ from data D such that:

θ̂ = argmax
θ

yn − f (D|θ) (2.5)

where, θ̂ is the estimated value of the parameter θ using the algorithms Expectation-
Maximisation(EM) either offline (North and Blake [123]) or online (Cappé [25]). The
learned parameter θ̂ is best parameter which can explain the data. More complicated proba-
bility distributions are modelled by using a mixture of multivariate Gaussian (Equation 2.6)
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as we have used in this thesis.

f (xn|θ) =
K

∑
i=1

ωiNi(xn|µi,Σi) (2.6)

where, K denotes the number of Gaussian kernels in the distribution, ωi is the individual
contribution (weight) of ith kernel, parametarised by mean (µi) and covariance (Σi). For these
mixture distributions, the weights ω is also estimated along with the mean and covariance
using the same EM algorithm. However, when the data D is not completely available
beforehand, the learning of the mixture density can be performed incrementally (Engel
and Heinen [44], Ahmad [5]) as each datum comes in. Chapter 4 uses and describes such
a learning technique (Section 4.2.2) to learn the dynamics of some robot-environment
interaction tasks (Section 5.2).

An alternate representation to learn f (xn|θ) from large data sets is by using Neural
Networks. The network may contain layers of neuron (connected each other) depending on
the complexity of the learning problem. This approach learns a non-linear mapping (Equation
2.7) of the input to the output using back-propagation algorithm (Rumelhart et al. [136]).

yn = f (b+
N

∑
n=1

wT
n xn) (2.7)

where, wn is the weight of the input xn, b is the bias, f is the activation function 3 specified.
Initially, the parameters b and wn are randomly initialised, and produce an arbitrary output

ŷn. The goal of the back-propagation algorithm is to adjust the weights of the connections
in the network in an iterative manner to minimise the difference between the true output yn

and current network output ŷn. The weight adjustments help the internal neuron layers of the
network to capture important features of the data D. The regularities in the data is captured
by the interactions of these neurons (Rumelhart et al. [136]). Typically the neural networks
are used for learning deterministic outputs. Currently, they are increasingly getting used to
learn the parameters of the distribution such as mixture of Gaussian (Equation 2.6). Chapter
3 uses and covers details of such a model to learn dynamics of an object (Section 3.2.1) being
pushed on a table.

2.5.3 Stochastic Optimal Control
Classical optimal control (COC) deals with finding a control law for a deterministic dynamical
system by minimising a cost function. The framework optimises the cost function over a

3The linear or non-linear function which maps the the scalar value (b+∑
N
n=1 wT

n xn) to the feature space.
Types of activation functions can be read in Nwankpa et al. [124]
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fixed or varying time horizon (Kappen [73]). The optimisation is performed chiefly in two
ways. The first way is to use the Hamilton-Bellman-Jacobi (HJB) formulation which solves
the problem using dynamic programming. The second is the Pontryagin’s Minimum Principle
(PMP) which solves the problem using standard techniques of calculus (by formulating it as
ordinary differential equations)(Kirk [77]). Both techniques try to find a globally optimal
solution which minimises the cost. It is to be stated that the lack of consideration of stochastic
disturbance on system dynamics is a notable drawback of this framework.

Stochastic optimal control (SOC) on the other hand deals with uncertainty in system
dynamics due to inaccurate sensor-environment models, inherent noise in the resultant state
or imperfect actions. SOC also creates a similar agent to COC find an optimal control law for
a dynamical system which is subjected to noise. Inclusion of noise in the HJB formulation
is straight-forward compared to the PMP formulation. However, this class of problems are
intractable since the formulation requires discretisation of the state-space. Converting higher
dimensional state-space to their discrete equivalent is impractical. Reinforcement Learning
(RL) paradigm also faces the same problem (Kappen [73]). The solution to stochastic optimal
control can be viewed as a weighted mixture of sub-optimal solutions (Kappen [73]). This
weighting is sensitive to problem-specific features, noise and time horizon (since these
parameters affect the cost function).

Optimal control can be seen as an extension of Dynamic Programming to continuous
sequential decision processes (Bellman [13]), via Differential Dynamic programming. As a
first step, the dynamics of the system to be controlled is defined using the Hamilton-Jacobi-
Bellman partial differential equation (PDE). Later, this formulation is numerically solved
by moving backwards in time, provided that the initial and final system configuarations are
specified (Kappen [72]). For following a trajectory, the control command sequence can be
obtained by optimising the sum of each step costs (called the running cost) along it.

Solving the (in general) non-linear HJB equation to find an optimal sequence of control
commands is non-trivial, unless certain assumptions are made regarding the form of the indi-
vidual step cost and dynamics. For the particular case assuming linear dynamics, quadratic
(state and control) costs and linear dependence on zero-mean, white noise can be solved
using the standard Linear Quadratic Regulator (LQR) method in closed form (Stengel [149]).
A variation to this involving multiplicative noise was solved in (Todorov [160]). Both these
solutions are straightforward for linear systems (Li and Todorov [95]), but non-trivial for
non-linear systems. However, the assumptions made in the problem formulation are quite
restrictive for robotic applications (Kappen [73]).

The class of problems with non-linear dynamics, arbitrary state costs and quadratic
control costs are solvable using sampling-based approaches (Kappen [72]). The formulation
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make use of the exponentiated cost-to-go function. This usage leads to a Partial Differential
Equation (PDE) formulation which can be solved using the Path Integral (PI) based approach.

2.5.4 Path Integral applications for control

Suppose we define a trajectory as being a sequence of states xt , control commands ut at
time step t. Thus, let st,k be a convenient tuple, such that st,k = (xt,k,ut,k). Then, using k as
indices for trajectories, and i as indices for discrete timesteps, the optimal control problem
starts with defining a cost function for a trajectory k starting from timestep i until T , i.e.
τi,k = [si,k,si+1,k,si+2,k, ...,sT,k]:

Si = S(τi,k) = φT (xT )+
T−1

∑
t=i

rt(xt ,ut) (2.8)

where, rt is the immediate cost function and φT is the final cost function.
Our aim is to find a policy 4 which optimises the above cost function. At each state, an

action specified by a policy takes the system to a state in its state-space. An optimal policy
however specifies an action which takes the system from the same state to a state which has
the least value function 5. Mathematically, the value function for a state xi can be defined as:

V (xi) = min
ui:T

EX [Si] (2.9)

At any state xi, the aim is to find a set of control commands (ui, ...uT ) that takes the
system to the goal through intermediate states which possess low value functions. This can
be achieved by minimising expected costs from each state xi. However, direct solving of the
non-linear HJB formulation are non-trivial and in many cases non-tractable. A solution to
this issue was proposed by Kappen [72] using the Feynman-Kac theorem. In this formulation,
the non-linear HJB is converted to a set of linear PDEs which can be solved using forward
sampling of trajectories (Theodorou et al. [157]). The added advantage of this approach is
the ease of using arbitrary state costs which need to be differentiable. Hence, it applies to a
large range of non-linear dynamical systems such as in robotics. Some of the recent works
(Chebotar et al. [28], Williams et al. [165, 164]) uses this path integral based approach to
solve a wide variety robotic control problems.

Our work in Chapter 3 also makes use of the path integral framework. Here we apply
a modified version of the model predictive path integral control algorithm proposed by

4A function which maps from each state to corresponding actions.
5 The value function for a state is defined as the minimum cumulative cost the agent can obtain from a state,

if it proceeds optimally from that state to the goal.(Kirk [77])
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Williams et al. [165] for push planning. We show the ability of the system to plan uncertainty
averse pushes in simulation and to demonstrate general push plans on the real robot.



Chapter 3

Push planning under uncertainty

This chapter describes the initial thesis contribution and is a part of an equally contributed
collaborative research presented in Arruda et al. [9] titled Uncertainty Averse Pushing with
Model Predictive Path Integral Control . In this work, Arruda. E proposed a Ensemble of
Mixture Density Networks (Ensemble-MDNs) (a short description of which is available
in Section 3.2.1 ) to learn the forward-model of the object which was used by the model
agnostic stochastic planner proposed in this Chapter. The thesis contribution described in this
chapter details the development of a stochastic planner which can use any forward-model to
perform push planning. The planner is capable to use forward-models with knowledge of its
predictive uncertainty (such as Ensemble-MDNs) to perform risk-averse action planning.

Firstly, we describe the motivation of the problem through an example (Section 3.1)
followed by details of the proposed solution (Section 3.2). The framework developed is
validated through three hypotheses by conducting three experiments (Section 3.3). Results of
the experiments are details in Section 3.4 followed by a discussion (Section 3.5).

3.1 Motivation and problem statement

Consider a robot pushing an object on a table towards a target pose. For that, we need to
design a planner 1 which can help the robot to find a sequence of push actions to move the
object. Executing the push sequence can make the object achieve several intermediate poses
before reaching the target pose. At each intermediate pose, the planner has to find a push
action which moves it closer to the goal. Each push action involves finding its direction
and location on the object’s surface. Subsequently, the robot applies a certain amount of
force in the push direction at the push location found. The force required to move the same

1An agent or an algorithm which finds the right sequence of actions to push the object towards the target
pose is called a planner.
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object may vary depending on the target pose and surface friction. While executing the push
sequence, there might be cases when a push action is inadequate, and the object does not
move as planned. In such cases, the planner has to adjust the subsequent pushes by taking the
feedback (about the resulted object pose from the previous push action) into consideration.

Figure 3.1: Pushing a box on a table. The start pose of the box is given in black border and
the target pose is given in green border. The boxes with black doted border are intermediate
poses when the box is pushed from the start pose to the goal pose. Left: Pushing a box using
a sequence of push actions. From the given start to goal pose one obvious set of intermediate
states from corresponding push actions is shown [0 → 1 → 2 → 3 → 4] Right: Pushing a
box between same start and goal location avoiding the hole at the centre of the table. Two
possible solutions of the intermediate object poses are [0 → 1a → 2 → 3 → 4 → 5 → 6] or
[0 → 1b → 2 → 3 → 4 → 5 → 6]

Figure 3.1 gives an insight into the problem of finding the push sequence to move the
object. Image on the left side of the figure shows pushing the box from a given start pose to
the goal pose along the shortest path. This task is straightforward since every region on the
table is known2. The figure on the right shows pushing the object to the same target pose by
avoiding an unknown 3 region at the table’s centre. This unknown region could be a hole, as
shown in the figure or a slippery region which needs to be avoided.

The choice of the push action is influenced by object’s behaviour and the target pose.
Actions taken with complete knowledge of the object’s behaviour will be less risky. On the
other hand, actions that take the object to areas of high uncertainty (unknown region) may
result in potential failure of the task. Hence it will be ideal to stay closer to the known regions
(less uncertain areas) while moving towards the goal. For example, the image to the right
of the Figure 3.1, there exist two paths towards the goal. However taking the push action at
pose 0 towards pose 1a will be less riskier than taking a push action which lead the object to
pose 1b. Being in pose 1b has a higher chance of moving towards the unknown region than

2Known region is a space in which we have certain knowledge about the object’s behaviour under an action.
3Unknown region is where the planner is highly uncertain about the behaviour of an object under an action.



3.1 Motivation and problem statement 32

pose 1a. So a good planner should choose the path [0 → 1a → 2 → 3 . . . ] instead of the path
[0 → 1b → 2 → 3 . . . ].

Finding such actions require the planner to know the object’s behaviour (under a push
action) on the surface of the table. This object’s behaviour is given by its forward-model
which can be either analytic or learned from data. The model can be used to forward simulate
the effects of various push actions on the object. The planner uses the knowledge of these
effects to choose the best action.

A forward analytic model typically requires the knowledge of different object properties
like mass, inertia and environment properties like friction. Estimation of these parameters
accurately is cumbersome. Apart from this requirement, analytic models often make unre-
alistic assumptions such as point contacts to be present between the object and the table’s
surface (Arruda et al. [9]). Similar problems also exist when physics engine based models
are used for simulation (Kopicki et al. [79]). A better alternative is to learn a forward-model
from data. Such a model learns a functional representation between an input (current pose, a
push action) and an output (resulting pose). The data is collected by measuring the start and
end pose of the object under random pushes by the robot. Each datum consists of the start
pose, the end pose and the push action applied by the robot. The data collected is used to
train a forward-model which can be used for predicting object’s state under an action.

The state predicted by a object’s forward-model (analytic or learned) simulated under an
action may not be the same as when applied to the real object. This difference between the
prediction and the true value (called as uncertainty in the forward-model) arises due to several
factors such as; (1) approximations and assumptions taken in an analytic model, (2) meta
uncertainty due to limited data in a learned model or (3) inherent uncertainty in object-table
interaction dynamics. The highly uncertain regions on the table’s surface posses high risk.
These risky areas can be avoided if the forward-model provides measure of the uncertainties
associated with its prediction. In short, our planner has to find push actions which avoid
uncertain regions while moving the object towards the target pose. Mathematically, such
‘intentions’ of the planner are defined using a cost function. A cost function provides a
quantified measure on the merit of a push action by mapping values of one or more variables
associated with it to a single scalar value. For example, consider the following equation.

r(xi,ui−1,
∗
σi) = f1(

∗
σi)+ f2(xi −xgoal)+ f3(ui−1) (3.1)

where, f1 is a function of
∗
σi(uncertainty associated with the pose xi) which quantifies the

extent of the uncertainty, f2 is a function of xi (current pose) which quantifies how good this
pose is with respect to the xgoal pose and f3 is a function of ui−1(the last chosen push action
resulted in xi) which quantifies how expensive was the last action.
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All the functions f1, f2 and f3 gives a scalar number as output. The sum of result of f1,
f2 and f3 gives the total goodness of taking the action ui−1. More specific details of the cost
function designed for our push task can be read in the Section 3.2.2.

Often having a forward-model is insufficient to select the right action due to problems like
(1) unforeseen disturbances in the environment, (2) errors in the model due to approximation,
(3) inaccuracies due to insufficient data, and (4) drift in the model output due to change in
environment and object properties due to wear and tear. Thus a push action from a state
(pose) results in stochastic (may even be multi-modal) outcome. Hence it is essential to
develop a framework which can deal with a stochastic outcome.

This chapter explains such a framework which can perform robust planning for robot
push manipulation using a learned forward-model. The forward-model used can predict the
resulting state (from a given state and action) and provide the measure of the associated
uncertainty. We explore the possibility of using learning methods (e.g: Gaussian Process
Regression, and an Ensemble of Mixture Density Networks that give estimates of the
uncertainty in their predictions) and stochastic planners. The stochastic planner (Model
Predictive Path Integral - MPPI) proposed uses these learned models to plan a sequence
of push actions to move the object towards the target pose. Thus, our planner uses non-
differentiable cost functions to complete the pushing tasks robustly with respect to the
predictive uncertainty of the forward-models.

Figure 3.2: Table uncertainty. Left: Stochasticity when a push action is taken Right:
Uncertainty of the table

Using the planner described in Section 3.2, we experimentally evaluate two versions of the
approach for push manipulation. The first version (Section 3.2.2) makes uncertainty-averse
push actions by jointly minimising uncertainty and goal costs, which makes it difficult to
find optimal push actions. The second version (Section 3.2.3) initially creates an uncertainty
averse path between the start and goal pose and then finds push actions to follow this path.
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The method is also validated on a real robot (Baxter) (Section 3.3) to show that learned
models with stochastic planners can outperform traditional methods (Section 3.4).

3.2 Proposed solution

Figure 3.3: Overview of the proposed solution. The model predictive path integral based
planner uses an uncertainty calibrated forward-model. Optimal push action is chosen in and
executed on the robot. After each push action, the pose of the object is fed back to the model.

Given a target pose, our problem is to figure out a way to plan a sequence of risk averse
push actions to move the object. It is essential to know the risk associated with the resulting
object pose trajectory to find such a push sequence. A way to quantify the risk is to sum the
uncertainty associated with constituent poses (individual states) in the trajectory. From the
start pose, the effects of different pushes can be computed by simulating the forward-model.
The planner can avoid high risk states by using the result of these simulations.

However, planning performed using a forward-model with modelling errors or unforeseen
disturbances can produce unintended consequences during execution. Hence open loop
execution of a plan may not generate the intended object trajectory. This problem can
be solved by incorporating feedback into planning. In our control architecture, the push
sequence is computed over a finite horizon by the optimisation of a cost function in an
iterative manner. The sequence of control (push) is calculated by predicting future states
using the forward-model. After calculation, the first command of the computed control
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(push) sequence is executed and feedback of the system is incorporated. The feedback
helps to rectify the possible errors in the predictive states due to inherent non-linearity or
approximations of the forward-model. Subsequently, iterative optimisation is re-started to
find the next set of control commands 4.

Two methods are proposed and tested to solve the problem of finding the push sequence.
The first method will push the object towards the goal in a risk averse fashion; that is, the
trajectory of the object moving and the push required to keep it on the trajectory is generated
simultaneously. This is done by optimising the cost function specified in the Equation 3.11.
This optimisation is similar to finding a solution which can satisfy two constraints (moving
towards the goal and being risk averse) simultaneously. More details of the approach is
described in the Section 3.2.2 and the algorithm used is described in Algorithm 1.

The second method generates a risk averse trajectory upfront and then plan a sequence of
push actions to follow it. The advantage of this approach is that the planner does not need to
optimise the combined cost function specified in Equation 3.11. Instead, the planner can just
optimise the Equation 3.14 initially to generate risk averse trajectory. Now this trajectory
generated can be used by the planner to generate the push sequence by optimising Equation
3.15. The breaking of the search problem into two phases makes the search easier and more
directed since, the generated trajectory acts as a heuristic to the planner for finding the push
actions. The generation of trajectory samples can be around the initial chosen trajectory
(this could be randomly generated as well or given by the programmer) for finding optimal
push actions. The cost function are used in two stages separately. The first phase uses only
uncertainty penalisation while the second phase uses only goal penalisation. Details of this
approach and the algorithm 2 is given in Section 3.2.3.

3.2.1 Forward-models with predictive uncertainty

Capturing of uncertainty in predictions involve learning of probability densities. Single and
multi-modal probability densities for real-valued data can be learned in various ways. Popular
choices are non-parametric models such as Kernel Density Estimators (KDE), Gaussian
Processes (GP) or parametric models such as Gaussian Mixture Models (GMMs). However,
not all of these methods have the capability to capture true uncertainty in predictions.
Gaussian Processes, for example, provide an effective and theoretically clean tool to make
uncertainty aware predictions (Rasmussen and Williams [131]). The problem with Gaussian
processes are their inability to scale to high dimensional spaces or large data sets. Gaussian
Mixture Models though are scalable to large dimensions, they are highly limited in their

4 This way of closed loop planning technique is called Model Predictive Control or Receding Horizon
Control in literature.
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capability to extrapolate uncertainty to regions outside the training data. This shortcoming
of the GMMs can be solved by using ensemble of them together for predictions. Such a
model called Ensemble Mixture Density Networks (E-MDNs) is proposed by Arruda et al.
[9]. E-MDNs is an ensemble of neural networks in which each network learns parameters
of a multi-modal Gaussian mixture probability distribution. The use of neural networks for
implementation helps in using large data sets for training.

Mixture Density Networks (MDNs) first proposed by Bishop [15] showed how they
are effective in modelling arbitrary densities. In such models, the network outputs the
parameters of a Gaussian mixture model (if the choice of the mixture components are
Gaussian) conditioned on a suitable choice of input vector h ∈ Rn, thus modelling arbitrary
multi-modal densities as defined in Equation 3.2.

pθ (xt+1|h;θ) =
K

∑
k=1

πk(h;θ)N (xt+1|µk(h;θ),σ2
k (h;θ)), (3.2)

where πk(h;θ), µk(h;θ) and σk(h;θ) are the network outputs which form the parameters
of the mixture. A soft-max layer is used to represent πk, to guarantee generation of valid
parameters for the mixture by the network (Bishop [15]), such that ∑

K
k=1 πk(h;θ) = 1,

whereas an exponential layer can make sure that σk is positive definite, and finally µk can
be represented as a linear combination of hyperbolic tangent activation functions. Further
considerations on practical implementation of MDNs are covered extensively in Bishop
[15], Graves [58].

The data point for learning a forward-model is defined as h = (xt ,ut), where xt is the state
at time step t and ut is the action taken at that time. The predictive uncertainty of the learned
forward-model can be estimated by forming an ensemble of such models (Lakshminarayanan
et al. [87]). If an ensemble is composed of M members, the final model can be written as:

p(xt+1|xt ,ut) =
1
M

M

∑
m=1

pθm(xt+1|xt ,ut ;θm) (3.3)

The statistics of interest which can be computed from the ensemble are the mean predic-
tion and the variance, which trained accordingly can reflect the predictive uncertainty of the
model (Lakshminarayanan et al. [87]), and are given by:

∗
µ =

1
M

M

∑
m=1

µθm (3.4)

∗
σ

2
=

1
M

M

∑
m=1

(σ2
θm

+µ
2
θm
)−

∗
µ

2
(3.5)
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Figure 3.4: The physics engine Box-2D is used to generate some toy push data sets shown on
the left. Green crosses indicate start locations and red ones indicate end locations. Lesions are
created in data generated (the gaps in the data set) and is used for training the forward-model.
The right indicate the heat map of the predictive uncertainty of the forward-model in different
regions of the data set.



3.2 Proposed solution 38

The advantage of using a deep ensemble rather than a Gaussian process is that it scales to
a much larger number of training examples. Figure 3.4 (left column) shows five data sets
generated in a Box2D environment of size 10m x 10m. To generate this data, a set of random
locations with some excluded areas were chosen and random impulse forces were applied
to the object at random push locations on the surface. The data is collected as a tuple of
the form [current state, action, next state]. This data is used to train an ensemble of MDNs
and are tested with test points generated within the same state-action space. The average
uncertainty at a location is calculated by sampled averages performed in a 10m x 10m grid
(Figure 3.4 -right column). One can observe that the ensemble approximately matches the
collected data space. Blue represents low and red represents high areas of uncertainty. The
parameters of the network used to learn from these different data sets are the same.

3.2.2 Model Predictive Path Integral planner

Figure 3.5: Finding of uncertainty averse trajectory from different trajectory samples. Left:
Consider the black bordered pose as the current state (position 2) of the object. From this
position, a set of random sequence (indicated as thick arrows) is applied on the object. The
result of these pushes can be evaluated by simulating the forward-model. The potential
trajectories generated by the model are then marked for their merit using the cost function.
Based on the cost of the trajectories a push sequence is generated out of which only the first
push action is executed. Right: Subsequently the object reached position 3. From this pose,
the planner continues to generate push sequences by using random pushes and evaluating
the trajectories generated by the forward-model using the cost function. The push sequence
which generated the least cost trajectory (in this case, purple doted line) will have higher
contribution to final control command.

The planner proposed effectively uses the forward-model to find optimal push sequence
to move the object towards the goal. It is better and risk averse to exploit the known regions
of the state-action space (table’s surface) while moving towards the goal instead of exploring
unseen parts.
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We use the path integral based approach to model predictive control (Williams et al.
[165]). The path integral formulation (Section 2.5.4) allows policy updates by computing
cost-to-go expectations using trajectory roll-outs (Theodorou et al. [156]).Thus, instead of
directly solving the non-linear Hamilton-Jacobi-Bellman equation via backward integration,
the path integral formulation is used to update the commands which minimise the cost
function.

The core idea of the approach is shown in Figure 3.5. Initially a random push sequence
is chosen as the potential solution. Additionally another set of random push sequences
are generated to approximate the gradient of the cost function (tutorial given in Section
2.5.4). Each of the push sequence is simulated through the E-MDNs based forward-model to
compute the trajectory which consists of a sequence of states. The states predicted by the
E-MDNs has a mean and covariance (uncertainty) associated with it. Using these values, the
cost of a trajectory (and there by the corresponding push sequence) is computed using the
cost-function. The trajectories which move towards the goal and lie in the known regions of
the state-space receive a lower cost. These trajectory costs are used to compute the gradient
of the cost function. The initial solution is updated in the direction of decreasing gradient.
Thus the new updated solution will move the object towards the goal through the known
regions. The mathematical details of these steps are as follows.

S(τi,k) = φ(xT)+
T−1

∑
j=i

r(xj,uj,
∗

σ j) (3.6)

our cost is a function of the predictive uncertainty
∗

σ j, in addition to the state xj ∈ Rn and
controls uj ∈ Rm. The exponential of the cost-to-go S(τi,k) defined in Equation 3.7 provides
the weight of each samples to compute their importance.

wi,k =
exp(− 1

λ
S(τi,k))

∑
K
l=1 exp(− 1

λ
S(τi,l))

(3.7)

where, λ is equivalent to the temperature parameter for the softmax distribution in
Equation 3.7 and affects the control update given by Equation 3.8.

∆ui =
K

∑
i=0

wi,kδui,k (3.8)

Updates to the control command is thus calculated as a weighted average of sampled
control disturbances δui,k with weights equal to wi,k. The samples of the control disturbances
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are defined as: (Williams et al. [165])

δui,k =
1
√

ρ

ε√
∆t

(3.9)

with ε ∼ N (0,I). The parameter ρ is a scalar constant which controls the extend of the
sampled disturbances δui,k. The optimal action at any state will be

∗
u = argmin

u
(Si) (3.10)

Additionally, the model predictive approach allows us to include feedback from the
system. Starting at step i, a look-ahead window of T time steps is used at each state. Once
the optimal control actions for these T is computed, the first command gets executed. The
new achieved state after the push is fed back into the optimiser. This process is repeated till
task convergence. The immediate cost function used in our formulation is

r(xi,ui,
∗
σi) = γ ∗

∗
σi +(xi −xgoal)

T Q(xi −xgoal)+ui
T Rui (3.11)

and the final cost is given by

φ(xT) = (xT −xgoal)
T Q(xT −xgoal) (3.12)

In sample based approaches the temperature parameter λ determines the exploration of
the samples. Higher value of λ allows the system to explore more and lower λ allows to
refine the current solution. The choice to increase λ or decrease λ depends on the gradient
of the cost function. If the cost function is getting reduced, that means the optimiser has
a valid gradient and is potentially approaching a solution (local optima) and in this case
it would be beneficial to decrease λ and reduce the exploration. Positive gradient of the
cost function means that the existing set of samples are unable to find a proper gradient
direction to minimise the cost. In this case, it is advisable to increase the number of samples
by increasing the λ parameter. This update is given by Equation 3.13.

λp = (1+δ )λp−1 (3.13)

where, p is the iteration index and δ is a scalar in the range [0,1]. The original algorithm
proposed by Williams et al. [165] is modified to incorporate the update of the temperature
parameter by computing the change of the cost function. The several steps of the approach is
summarised in the Algorithm 1.
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Algorithm 1 : The modified MPPI algorithm, initial version proposed by Williams et al.
[165]. The modifications are on (1) how the temperature parameter λ is updated to control
exploration and, (2) uncertainty penalisation in the cost function.

Given:
K: Number of samples;
T: Number of timesteps;
P: Number of maximum iterations;
(u1,u2, ...,uT ): Initial action sequence;
∆t, time step, x0: Initial system state;
φ ,r,λ : Cost parameters;
uinit : Value used to initialise new controls;

while task not completed do
for p = 1 to P do

for k = 1 to K do
x = x0

for i = 1 to T −1 do
xt+1 = f (xi,ui +δui,k)

S(τi+1,k) = S(τi,k)+ r(xi,ui,
∗
σi)

end for
S(τT,k) = φ(xT)

end for
for i = 1 to T do

ui = ui +∆ui (with ∆ui given by Equation 3.8)
end for
compute_change_in_cost (∆S(τT,k))
if ∆S(τT,k) < 0 then

decrease_exploration_parameter(λ , given by Equation 3.13)
else

increase_exploration_parameter(λ , given by Equation 3.13)
end if
break loop if ∆S(τT,k) no change for some iterations together

end for
send_control_command(u0)
for i = 1 to T −1 do

ui = ui+1

end for
uT−1 = uinit

Update current state
Check task completion

end while
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3.2.3 Finding an uncertainty averse trajectory

Figure 3.6: Finding of uncertainty averse trajectory from different trajectory samples. Left:
Samples of trajectories generated. The trajectories in the known region will get least cost. In
the given figure, the green trajectory will have the least cost, the red trajectory will have the
highest cost and the yellow trajectory will have intermediate cost. Right: Next step solution.
When the initial solution is updated, the most and least contribution will be by the green and
red trajectories respectively. This causes the final trajectory to shift towards the location of
the green trajectory.

The performance of the Algorithm 1 depends on the accuracy of the cost function used.
The challenge of the cost function defined in equation 3.6 is to optimise the trade-off

between goal penalisation coefficient-Q and uncertainty penalisation coefficient-γ to help
the system perform uncertainty averse push planning. Instead, we can break this problem
into two optimisation problems. Firstly, learned forward-model can be used to find a lower
uncertainty path and secondly the model predictive controller (Section 3.2.2) can be used
to follow the trajectory generated. This way of decoupling the uncertainty cost and final
goal cost shows significant improvement in the performance of the system. To solve the first
challenge, we propose a path integral based approach to find a low-cost trajectory in the state-
action space. The formulation derives inspiration from the STOMP planner by Kalakrishnan
et al. [70] (though our formulation uses a different cost function and improvement equations).
Apart from finding a low-cost trajectory, state-action space constraints are forcefully imposed
on the optimisation problem to find paths within the workspace of the system.

The idea of finding an uncertain averse trajectory is shown in Figure 3.6. Imagine a
flexible line (this line can be created for example by using a linear interpolation) connected
between the start position and goal position of the object. This initial line can be thought as
a seed solution of the path integral optimiser. Around this line, a finite number of similar
trajectories are generated by adding bounded noise to the line. Each of the trajectories are
penalised based on the uncertainty of the location they pass through. If few states in the
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trajectory lie in a region of high uncertainty, the cost associated with these states will be high.
Since the total cost of a trajectory is the sum of the cost of individual states, trajectories that
pass through high uncertainty region will have higher cost.

Algorithm 2 : This algorithm optimises a trajectory with respect to model predictive un-
certainty. The output of the algorithm is a trajectory with low uncertainty cost which can
be tracked by a push controller, in this work we use the Model Predictive Path Integral
Controller for following the pushing trajectory.

Given:
K: Number of samples;
T: Number of time steps; Number of time steps;
f (x,u): Learned forward dynamics to compute uncertainty σ ;
ε: Threshold of cost change;
X: (x0,x2, ...,xT−1);

while cost ≤ ε do
for k = 0 to K do

for i = 1 to T −1 do
δXk,i ∼ T (0,I)
Xk,i: Xi +δXk,i

Enforce_state_constraints(Xk,i)

Sk,i:
∗
σi

end for
end for
for i = 1 to T −1 do

xi = xi +gain∗∑
K
k=1

exp(− 1
λ

S(Xi,k))δxi,k)

∑
K
l=1 exp(− 1

λ
S(Xi,l))

Enforce_state_constraints(xi)
end for
cost = ∑

T
i=0

∗
σi

end while

After the cost of each trajectory is completed, we update our initial trajectory along the
direction of low cost trajectories. The new trajectory can be thought as a weighted sum
of all the random trajectories where the weights are determined by the inverse of the cost
associated with them. The low cost trajectories will have their weights high and hence will
contribute more to the final trajectory. The problem of finding a low uncertainty trajectory
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can be formulated as:

Minimise: J =
T

∑
i=0

∗
σi

Subject to: xmin ≤ x ≤ xmax

(3.14)

Equation 3.14 combines the uncertainty of constituent states of the trajectory. Minimising
J will penalise all those trajectories lying in unknown regions. Each of the states are
incrementally updated in the direction of decreasing J. However, the constraint in the
equation make sure that such incremental updates on the trajectory still keep them within the
spatial limits of the state-space. The trajectory found can be given to the algorithm 1 to find
the right push actions. But, this time the MPPI algorithm uses Equation 3.15 with γ = 0 as
the running cost.

r(xi,ui,
∗
σi) = (xi −xgoalt)

T Q(xi −xgoalt)+ui
T Rui, (3.15)

This Equation is a modification to Equation 3.11 with xgoal term modified to xgoalt . The
immediate goals xgoalt will be provided by the trajectory generated by algorithm 2 for each
time step t. The algorithm 2 which is used to identify trajectories using Equation 3.14. The
details regarding the experiment setup is described in the next section.

3.3 Hypotheses and experiments

In order to validate Algorithms 1 and 2, we conducted three experiments using the following
hypotheses.

H1: Penalisation of the forward-model uncertainty helps to avoid high risk regions.

H2: The planners produce better push sequence when a forward-model learned using real
data is employed.

H3: Algorithm 2 helps in faster task execution compared to using Algorithm 1 alone.

H1 tests the basic working of the approach. For Algorithm 1, H1 means: (a) with the
right combination between goal and uncertainty costs, it can generate a successful push
sequence to move the object towards the goal, while avoiding uncertain regions, (b) absence
of the uncertainty cost can make it generate a push sequence thereby taking the object to
high risk areas. Correspondingly, evaluation of H1 for Algorithm 2 can validate its ability to
generate a less uncertain trajectory compared to the starting trajectory. Though our approach
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is agnostic to the forward-model H2 used, the same Algorithm can generate different push
sequences for the same task setting depending on the model used. Finally, evaluation of
H3 would compare both algorithms each other for performance. We hypothesise that the
decoupling of the cost leads to two easier optimisation problems and solving them is better
than trying to solve the cost directly.

For all experiments, the E-MDNs was turned into a single Gaussian component (i.e.
K = 1). The first experiment uses the cost function in Equation 3.11 to be optimised by
Algorithm 1. The experiment shows that the right trade-off between uncertainty cost and
goal cost can help the optimiser to find pushes to move an object towards the target pose
while avoiding high risk regions. Figure 3.8 right and Figure 3.9 left shows the result of
this experiment. They indicate that the trajectories generated when either penalised or not
penalised for model uncertainty are distinct.

Evaluation of H1 and H3 is performed in a simulation environment. The simulation
environment uses the Box-2D physics engine helps to generate large quantities of data
quickly. This data is used to train the E-MDN and can easily check the merit of the approach.
The simulation environment consists of a box and a point mass which can push the box
in different directions. Before the start of a push, the box is kept a random location in the
simulation environment. The box has a mass of 200 grams with its centre of mass coinciding
with its geometric centre. Further, the box gets pushed by using a randomly sampled push
action with a constant magnitude of 1 Newton. Application of each push action to the box
lasts for 1 second. The integration step size of the simulation environment is 0.01 seconds.
Hence, each push action lasts 1 second and contain 100 integration steps. We record a data
vector consisting of the [start pose, push action, end pose ] at the end of each push. Then
again, we reset the box to a different location, and repeat the process till 2500 data points are
collected. Next, we artificially create a void in this dataset by removing some data points.
The data point removed areas act as regions of high uncertainty. These lesioned data set is
used to train the E-MDN, and Figure 3.4 illustrates the result. The trained models are used as
forward-models for push planning using the two algorithms proposed. For the experiment,
two poses in the simulation space are chosen as start and goal pose, respectively. The push
planning algorithm has to find optimal push actions to move the box from the start pose to
the goal pose. The result of this experiment validates H1.

Testing H2 uses a real robot. For the robot experiment, Baxter (Ret [132]) - a dual-arm
robot was used. The experiment setup is as shown in Figure 3.7. The left hand of the robot
contains a rod, and the right hand contains a poking peg. The robot’s arms are controlled in
position control mode. We use a box which weighs 250gm for the experiment. The robot
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collects the data to build the forward-model by pushing the box in random directions. The
3D pose of the box is tracked with the help of fiducial markers(Olson [125]).

Figure 3.7: Push manipulation experiment setup for evaluating H2. Left: Push manipulation
setup. The Baxter robot is setup with a self reset mechanism in the left hand to collect data
from random pushes to build the forward-model. The learned forward-model is used by
the planner to plan a sequence of pushes using the right hand of the robot. Right: Push
manipulation setup with labelled parts.

At each step, we record the pose of the box, and subsequently a random push action is
chosen. We uniformly sample the push directions from the range [0-1] while keeping the
magnitude fixed similar to the simulation setup. There is a conversion of the sampled value
to a point on the box’s lateral surface. From the chosen point on the box surface, a push
action is defined perpendicular to the surface at that point. After we define the push, there is a
need to align the robot’s poking peg to the pushing side of the box. The next step is to define
a goal position for the peg. A line connecting the initial peg position and the goal position is
perpendicular to the box side. An inverse-kinematics solver converts the peg’s goal position
to a joint state goal position. The robot moves to the target pose, thereby pushing the object.
We record the final pose of the box after the push execution. Similar to the simulation setup,
we collect the datum as [start pose, action value, end pose]. Here the action value is between
[0-1]. From the resulting pose, another randomly sampled push action moves the box further.
The robot resets the box to once it leaves the camera’s field of vision. For this, the robot uses
a set of predefined motions with the rigid rod attached to its right hand. Executing these
predefined actions move the box back to the centre of the camera’s view frame. The link here
5 shows the real experiment video footage along with the data collection procedure. After

5https://youtu.be/LjYruxwxkPM
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collecting data, two types of forward-model are trained. The first uses the Gaussian Process
(GP), and the second uses the E-MDNs. After learning the model, algorithm 1 generates a
sequence of optimal push actions to move the box to a given target pose. The performance
of the forward-model is compared against using a physics-engine based model. The next
section shows the results of these experiments.

Evaluation of H3 involves testing performance of Algorithm 2 over Algorithm 1. For
this, we need to find the total time taken by each of them in moving an object from start
to finish. We will use average time taken per push for a entire push sequence to measure
algorithm performance. During the experiment, Algorithm 2 initially finds a trajectory with
minimum uncertainty cost. Later, Algorithm 1 generates push actions required to follow this
less uncertain trajectory. However, Algorithm 1 uses a modified cost function which does not
penalise uncertainty when finding push actions (since the trajectory to be followed is already
optimised for low uncertainty). The results for this experiment are shown in Figure 3.9 right.

3.4 Results

Figure 3.8a is to validate the entire approach for the ideal case. This figure shows that
when there is no uncertainty in the state space, the box should take the shortest route to the
goal. Figures 3.8b and 3.9a show the experiment’s outcome after evaluating H1. Using the
parameters specified in the figure details, we can observe that uncertainty aversion has an
impact on the push sequence, thus on the object trajectory. We can see that the push trajectory
of the box gets lost in the high risk region without uncertainty aversion (Figure 3.8b) while
the trajectory with uncertainty aversion reaches the target (Figure 3.9a).

Similarly, result of the experiment conducted to evaluate H3 to measure Algorithm 2
performance over Algorithm 1 shows the effect of initially finding a less uncertain trajectory
(Figure 3.9b). For the given start pose and goal pose, an initial uncertainty averse trajectory
was generated (doted curve in the right image). It can be seen that, the initial trajectory
generated finds a better path than trying to find both trajectory and push sequence together.
The push sequence generated to follow the risk averse trajectory can push the object to the
goal pose. Measuring computational time of each algorithm shows that Algorithm 2 took an
average of 4.34 seconds to converge per push compared to 9.78 seconds of Algorithm 1.

To learn the accurate dynamics, the subsequent experiment used a forward-model trained
on real data from the robot. In order to account the inaccuracy, the forward-models chosen
were Gaussian Processes (GP) and E-MDNs due to their ability to represent uncertainty. The
GPs based forward-model took several steps to reach the target pose (Figure 3.10). The result
shows the planner generating several incorrect pushes compared to Figures 3.11 and 3.12.
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(a) (b)

Figure 3.8: The result after evaluating H1. The goal pose of the box is [x = 6.5, y = 0.5,θ = 0].
The colour bar on the side denote the level of normalised uncertainty of the heatmap. The
least uncertain regions are denoted by blue, while the most uncertain regions take red colour.
a: Image shows when the complete data is available, the forward-model is certain about
whole of the state space. When the MPPI algorithm is asked to plan a sequence of push
actions to take the box to the goal pose, and when they are applied on the box, the centre
of mass of the box generates the blue trajectory which is the optimal path to the goal. b:
When there is lesion in the data, the forward-model is uncertain about certain regions of
the state-space. When the box is pushed to the uncertain region, the uncertainty in the
forward-model causes near random pushes on the box and gets stuck in the region.γ = 115,
R = I*0.17, h = 2.0, ρ = 1.0, N = 3, ∆t = 0.05, K = 20.

This was mainly due to the inability of the method to scale with the size of the data set. Using
of partial number of data points to train the model resulted in an incomplete forward-model.

Next, the same data was used to train an E-MDN model. Algorithm 1 was used to find a
push sequence to move the object to the goal. The planner was able to take the box to the
goal in least number of steps (Figure 3.11).

The planner took more number of steps to reach the goal pose when the physics engine
was used (Box-2D) as the forward-model (Figure 3.12). This is due to the inaccurate
approximation of object dynamics on the table surface. We can observe that the GP also
took more number of steps compared to the E-MDNs. One reason for this is the ability
to E-MDNs to predict the resulting box orientation more accurately than that of the GP.
Incorrect predictions of orientation can cause several incorrect pushes thereby taking more
number of steps. However, it can be seen that GP was also able to capture better dynamics
and reach the target in less number of steps. Thus, this experiment proves H2 and concludes
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(a) (b)

Figure 3.9: The result after evaluating H3. The goal pose of the box is (x=6.5, y=0.5,θ = 0).
The blue regions denote the least uncertain regions (normalised uncertainty of the heatmap)
while the red denotes the most uncertain regions. a: Performance of Algorithm 1. Penalising
uncertainty, the box is deflected towards regions with lower uncertainty. The uncertainty
penalty only acts for the first 150 pushes and then made zero (γ = 0). For this experiment
gamma was γ = 115, R= I0.17, h= 2.0, ρ = 2.0, N = 3, ∆t = 0.05, K = 20. b: Performance
of Algorithm 2. The red dotted trajectory is the way-points generated by just penalising
uncertainty in the first stage of the algorithm. These way-points are given to the MPPI
algorithm with the modified cost function to generate a set of pushes. It can be seen that
the initial trajectory generated is better than the one produced by Algorithm 1. For this
experiment gamma was γ = 115, R = I*0.17, h = 2.0, ρ = 1.0, N = 3, ∆t = 0.05, K = 20.

Figure 3.10: Pushing using Algorithm 1 with Gaussian Process Regression as the forward-
model for the evaluation of H2. The task is to push the box to same target location from two
different start poses. Left: Start pose 1 Right: Start pose 2
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Figure 3.11: Pushing result of the Algorithm 1 using Mixture Density Networks as the
forward-model for evaluating H2. The task is to push the box to same target location from
two different start poses. Left: Start pose 1 Right: Start pose 2

Figure 3.12: The baseline case of using Algorithm 1 with physics engine as the forward-
model for the evaluation of H2. The task is to push the box to same target location from two
different start poses. Left: Start pose 1 Right: Start pose 2

that real data-based models work better than physics engine models for performing push
manipulation.

3.5 Discussion

Planning robot actions to push manipulate objects require reliable learned models. This
chapter proposes two approaches which combine the idea of forward-models with a model
predictive controller. The approaches can plan and execute push sequences to move an object
towards a goal. The planner is agnostic to the type of forward-model used. Experiments use
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different forward-models such as learned models and physics engine based. The approach
generates push sequences which move the object towards the goal through the known parts
of the state space. The known and unknown regions of the state-space can be differentiated
using the predictive uncertainty of the learned model (E-MDNs, GP).

Initially, the algorithm was tested on a toy data set generated using the Box-2D physics
engine. Generating any amount of data from physics engine takes only a fraction of time
compared to real data and hence can be used for quick testing of the algorithms. The
collected data was lesioned artificially to remove some data points. These lesions acted as
regions of high risk. Subsequently, the forward-model trained with this data produced high
uncertainty in the lesioned area compared to other regions. This trained model was used
by both algorithms to find push commands. The training of the models required a lot of
parameter tuning. There were many instances of model convergence to local minima leading
to improper representation of the data. In our model, the neural network outputs parameters
of Gaussian distribution. We observed that it is better to start by learning parameters of
a single kernel and subsequently increase the number of kernels as required by the model
complexity. It is important to find a good seed for the random number generator which is
used to initialise the neural network model. The early convergence or local convergence of
the optimiser can happen depending on this initialisation. Later these models used in the
model predictive control framework involved another set of hyper-parameter tuning. These
parameters relate to the number of sample trajectories required to estimate the push, the
number of look ahead steps required in each trajectory, the exploratory noise parameter,
decay of the noise parameter and weighting of individual terms of the cost function. The
parameter we chose are depicted in earlier sections. Selection of these parameters are more
of an art than science. The need for us to introduce a decay parameter for the exploration
was to force the optimiser converge to a good enough solution. Without use of the decay
parameter results in slow convergence and thereby taking longer time in reaching the goal
pose.

All the forward-models were successful in completing the task though each of them
used different number of pushes. It can be seen that the physics engine based experiment
took the most number of steps. This is because the physics engine failed to capture the
correct dynamics of the object. The inaccuracy in the object’s dynamics leads the planner
to take more number of incorrect pushes. In Algorithm 1, the MPPI uses the cost function
containing a direct penalisation for the model uncertainty. This caused the algorithm to take
more number of iterations to optimise (since the optimiser had to satisfy two constraints
simultaneously). The optimiser had to find push actions that move the object towards the
goal through less risky regions. Instead of solving two costs like in the MPPI planner, the
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second algorithm decouples the costs into two. Initially, algorithm 2 is used to generate an
uncertainty averse trajectory. In the subsequent stage, the MPPI planner with modified cost
function (Equation 3.15) finds the pushes required to follow the trajectory generated. This
approach made the MPPI algorithm to run faster in less number of iterations. The real robot
experiments produced best results when E-MDNs were used as the forward-model. The
learned model trained on real data took least number of pushes to complete the task owing to
the accuracy of the forward-model.

Algorithm 1 finds an optimal push by balance between the uncertainty penalisation and
goal penalisation. The challenge is to come with right penalisation coefficients and the tuning
may take some time. Algorithm 2 does not require this careful balance of these coefficients.
However, this results in the challenge of knowing when to stop the algorithm to decide how
much uncertainty will not hurt. It should be also noted that the forward-models used were
not tested on data sets having multiple lesions. Though the E-MDNs proposed can be used to
represent such situations, it would be a worthwhile experience to try out their performance.
Another issue to be noted is that, both the planners assumed lack of obstacles in the state
space. If this assumption is relaxed, there is a chance of algorithms getting stuck in an
obstacle unless obstacle specific term is inserted to the cost function to avoid them.



Chapter 4

State dependent stiffness control

This chapter describes a part of the second thesis contribution, which was presented in
Mathew et al. [108] and Mathew et al. [107]. Here, we aim to develop a framework which
performs anticipatory control and variable impedance in continuous interaction robot tasks.
This contribution consists of two parts. The first part (presented in this chapter) details the
proposed architecture and the second part in Chapter 5 describes the experiments conducted
to study and validate the framework.

The chapter is structured as follows. We start with our motivation and problem statement
(Section 4.1) followed by the details of the proposed framework (Section 4.2). The chapter
ends with the discussion (Section 4.3) describing an overview of the approach.

4.1 Motivation and problem statement

Manipulation tasks such as polishing, assembling complicated parts with tight tolerance,
deburring, dexterous in-hand manipulations involve complex contact interactions with the
environment. These tasks require following desired trajectories while maintaining necessary
contact forces. For example, polishing a table surface will require the application of a
downward force to keep the scrubber on it. Opposing forces also get applied against the
surface friction to enable smooth motion (while following the specified trajectory). Hence,
reasonable strategies are required to control motion and force when there is contact between
robot parts and the surface of objects. Control of such tasks requires the knowledge of the
dynamics of the robot and environment under interaction.

Traditional robots working in closed cages have the liberty to be arbitrarily stiff since they
work in a structured environment (i.e. specially designed environments) where the changes
of unpredictability are almost nil. Pre-programing each interaction with the environment
using traditional techniques become cumbersome as robots are getting used in unstructured
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environments and possibly collaborate with humans. The challenge arises due to the difficulty
in obtaining accurate values of inertia, frictional and damping parameters of the interacting
environment. Plans to use robots in less structured environments demand a radical shift from
traditional control strategies. However, most of these strategies are insufficient to facilitate a
certain level of compliance (without compromising task accuracy), which is required to deal
with the unstructured environments.

Planning of trajectories in free space is well studied and can be achieved using rigid
body dynamics. In principle, a motion planner can plan and execute an entire interaction
task accurately, if the complete interaction model of the robot and environment is available.
However, it is tough to obtain the dynamic model of the environment, though the robot
model is accessible with sufficient accuracy. Modelling error results in planning error and
subsequently causes deviation from the desired trajectory due to incorrect estimation of
contact forces. Accumulation of such errors leads to reaching of joint limits, application
of torques above safety limit at the end effector, high impact forces at interaction points,
thereby resulting in the damage of the robot. Also, the contact interactions are highly non-
linear, making the generated plans unusable. Performing contact manipulations demands
reasoning about the forces and torques required to achieve the task goals. Mostly, measuring
contact forces can describe environment properties. However, safe collection of the required
environment information (Duan et al. [42]) necessitates a compliant behaviour of the robot.

Usually, force measurement is achieved using a force-torque sensor mounted between
the wrist and the end-effector. Traditionally, controlling force in known environments are
performed using impedance control and hybrid force-position control schemes. The right set
of impedance parameters of the end-effector helps in controlling the force of resistance due
to external motions imposed by the environment. However, when the environment varies
dynamically (e.g. a surface to be polished with several abrupt notches), it becomes difficult to
model the environment beforehand and hence tracking becomes a challenge. Human beings
perform such complex tasks with ease. This dexterity is primarily due to the ability of the
human brain to predict environment interactions and vary the impedance of the interactions.
Similarly, prediction of environment dynamics (interaction forces) resulting in better control.
Now we start with formally stating the problem.

Consider two tasks: polishing a table, and stirring a porridge. Polishing the table involves
following a particular trajectory on the surface of the table while applying a downward force.
However, frictional forces oppose the motion on the table surface. For the task control, the
robot will have to maintain a specific set force on the surface while following the desired
trajectory. Similarly, stirring the porridge involves following a particular trajectory in a
dynamically changing environment. The porridge - a non-Newtonian fluid - when stirred by
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the robot will experience an increasing opposing force as the task progresses, owing to the
property of such fluid to change its viscosity on stirring. In both cases, depending on the task
requirement, the robot will have to track the desired trajectory without getting hindered by
the external forces.

There is a difference between them: The first task, defined in a static environment, has
a need to control force and motion independently. That would mean that the controller has
to move on the surface, compensating the frictional force while applying the required force
on the table surface. In the second task, the porridge thickens which leads to an increase of
the opposing forces along the stirring direction. The environment is dynamic, and the robot
has to control force and motion in the same direction. The interesting problem is whether
we can design a single framework to solve both the tasks. Since estimation of environment
parameters is difficult, we can think of directly learning the interaction dynamics from data.

4.2 Proposed solution

Humans can outperform robots in their dexterity even with their neural pathway delays ( 80ms
Mitrovic et al. [116]). They can account for the delays by learning and thus creating internal
models of the tasks. These internal models help them to anticipate interaction dynamics and
thereby equip their hands to act better while task execution. Traditional control schemes
mostly work on negative feedback architectures and hence, the control action happens only
once the end-effector has felt the force. It would be better to act or anticipate control and
act before sensing the force. This way of control is possible if the framework can anticipate
forces of the next state from the current step.

Research indicates that humans performing tasks like porridge stirring or board polishing,
which involve continuous interaction with objects or the environment, typically use higher
(arm) stiffness when they perform the task for the first time. The higher stiffness in the initial
trials help to improve task accuracy and counter any unforeseen disturbances. With sufficient
experience, humans learn internal models of the task’s dynamics and use these models to
predict the task state, i.e., the configuration of the object(s) and hand in the task context. The
task state dictates the variation in stiffness, and the choice of these parameters significantly
influences performance (Kawato [74]). Studies in psychophysics also indicate that learning
to vary stiffness is crucial in manipulation tasks (Franklin et al. [52], Burdet et al. [21]).
Humans with an excellent learned model can adapt stiffness to the task, typically performing
the task with much less stiffness than before.

Task-space controllers (Cartesian-space controllers) are intuitive and have task-specific
parameters. Hence, usage of the framework becomes independent of the type of robot
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manipulator, and the reuse of the learned model is possible in other robots. The framework
also should be able to predict the forces due to the dynamics of interactions. For predicting
the forces, the robot has to learn the forward-model of the interactions. A forward-model
estimates the forces the robot might experience in the next instance and hence, an appropriate
feed-forward value can be used to compensate for the forces. For example, in the porridge
stirring task, the prediction of forces will allow the robot to stir the liquid along the desired
trajectory without being hindered by the changes in external force.

The motivation for the proposed framework (Section 4.2.2) is backed by evidence from
human motor control literature described in Section 4.2.1. Details on how variable impedance
(Section 4.2.3) is defined as a function of the forward-model and the specification of compliant
directions is presented in Section 4.2.4.

4.2.1 Evidence from human motor control studies

The biological motor systems exhibit impressive performance although they are affected by
significant noise, sensory delays and other stochasticity (Faisal et al. [45]). Human beings
have the capability to adapt impedance parameters of the overall biomechanical system during
task execution to account for these stochastic disturbances (Buchli et al. [19]). This ability
results in versatility and robustness of human motor control system. A similar behaviour in
robot manipulators enable them to work safely in human environments. But adopting these
techniques for the control of high degree of freedom manipulators is non-trivial. Classical
robot control schemes are based on high gain negative error feedback control while biological
systems use low gain compliant control with task dependent variable impedance (Selen et al.
[143]). Approaches for adaptive impedance control were attempted through time varying
proportional and derivative gains, also known as gain scheduling (Lin and Lin [98]). However,
it is hard to find appropriate gain schedule for a given task due to inaccuracies in model
estimation and sensor measurements (Hogan [62], Siciliano et al. [147]).

It is observed that the human motor system uses predictive models of the effects that
motor actions have on sensory data (Flanagan et al. [51], Johansson and Cole [68]). These
predictions are used for different purposes such as feed-forward control, motor system
coordination, action planning and monitoring. Inspired by human control literature such
as Kawato [74], Shadmehr and Krakauer [145], equipping a robot manipulator with the
ability to learn a predictive forward-model of the task environment will enable the robot to
predict the forces it may experience in the next state, and apply appropriate control signals to
counter these forces. The predictions provided by such a forward-model can then be used
as a feed-forward term in the control command. Incorporating a feed-forward term along
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with the feedback term in the controller has shown to reduce the number of training samples
required for learning a variable impedance policy (Alberto et al. [8]).

4.2.2 Framework

Figure 4.1: Framework

The overall block diagram of the framework is as shown in Figure 4.1. For tasks which
involve control of force and motion along same directions, the robot must learn to adjust the
stiffness to apply varying forces. The force required at each instant is dictated by the task
configuration.

The impedance control is developed and deployed in the task-space of the robot. Task-
space controllers are typically designed as a mass-spring-damper system. The goal of the
controller is to make the robot behave like a spring attached between the end-effector tip and
the motion waypoint 1. Shaping inertia of the robot to behave like a mass-spring-damper
system is generally tricky (Wimbock et al. [166]) and requires accurate measurement of
the external forces acting on the robot. Since measuring forces on every acting point is
impractical, it is difficult to modulate the inertia tensor without leading to incorrect impedance
behaviour. For this reason, in practice, the desired impedance behaviour is limited to

1A waypoint is an intermediate point on a trajectory or a point at which the motion profile changes.
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designing stiffness and damping parameters of the controller while keeping the natural inertia
unchanged, resulting in the compliance control problem (Wimbock et al. [166]). However,
arbitrarily varying stiffness and damping parameters may result in unstable behaviour of the
robot (Kronander and Billard [81]). In all our experiments, we use empirically found bounds
for stiffness and damping parameters (upper bound: 1000 N/m, lower bound:100 N/m).

Equipping a robot manipulator with the ability to learn a predictive forward-model of
the task environment will enable the robot to predict the forces it may experience in the next
state and apply appropriate control signals to counter these forces. The predictions provided
by such a forward-model can then be used as a feed-forward term in the controller command.
The corresponding controller equation can be written as:

ut = Kp
t ∆xt +Kd

t ∆ẋt +kt (4.1)

where ut is the control command to the robot at time t, Kp
t and Kp

t represent the (positive
definite) stiffness and damping matrices of the feedback controller respectively; kt is the feed-
forward term provided by the forward-model; ∆x and ∆ẋ are the errors in the end-effector
position and velocity.

During the training phase, the forward-model gets initialised by executing the provided
demonstration in high stiffness. This forward-model is further improved online in subsequent
trials by the robot. At each state (x), the system is trained in a supervised manner to predict
the next state force given the current state.

During task execution, the predictions from the forward-model are used as a feed-forward
term (kt) in the controller, while the error in the prediction controls the feedback gains (Kp

t
and Kp

t ). Revision of the feedback control gains happens in proportion to the prediction error.
As the model is updated online, the error in predictions is expected to reduce over time, and
the feedback gains can be adjusted appropriately.

Figure 4.1 is a graphical representation of the proposed framework. The feed-forward
component of the controller uses the prediction from the forward-model. This, together with
the feedback component, provides the motion control command to the robot. The difference
between the measured and predicted state, i.e., the error signal, is used to update the model
and to decide the subsequent feedback gains for the motion controller. The force control
is performed in the directions orthogonal to motion when required. This way of separating
force and motion in the task-space can be used to separate the directions to be stiff and
compliant.

If the robot has a forward-model to tell what forces it may experience in the next instance,
an appropriate feed-forward value can be used to compensate for the forces. This will allow
the robot to execute a task without being hindered by the changes in external force.
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The proposed framework uses a Gaussian Mixture Model (GMM) to represent the
forward-model. The GMM is fit over points of the form Xt = [St−1, ft ], where St can be
any combination of features that can uniquely represent the state of the robot for the task
at an instant, and ft is the force felt at the end-effector at time t. The state vector St can
contain information in terms of end-effector position (xt−1), velocity (ẋt−1), forces ( ft−1), etc.
The model is fit using the Expectation-Maximisation (EM) algorithm, where the following
likelihood function is maximised:

L(θ) = p(X|θ) =
T

∏
n=1

p(Xn|θ) =
T

∏
n=1

[
M

∑
j=1

p(Xn| j)p( j)

]
where θ = (µ j,σ j, p j) for j = 1...M are the parameters of the M components of the

mixture model. X = (X1,X2, ...,XT ) represents the points to be fit by the GMM, with
Xt = [St−1, ft ].

Note that each point contains the information about the previous end-effector state, along
with the current force. Hence, when the model is used for prediction during task execution,
the force for the next time instant can be predicted using the current state of the robot. The
force at next instant ( ft+1|St) is computed from the learned model using Gaussian Mixture
Regression (GMR) (Sung [154]).

A variant of GMM called Incremental GMM (IGMM) (Song and Wang [148], Ahmad
[5], Engel and Heinen [44]) is available which can incrementally learn a mixture model for
the joint density of the incoming data. IGMM incrementally updates the density estimate
taking only the newly arrived data and the previously estimated density. It is also able to
create a new mixture component if the incoming datum is below the acceptable likelihood
for the current model.

The proposed framework makes use of IGMM to learn and improve the forward-model
online during task execution. Due to the fast incremental learning, the approach can quickly
adapt to different tasks when initialised with a model learned for a similar task. This is
empirically validated using the board polishing task (by a robot) described in Section 5.3.

4.2.3 Varying feedback gains

Consider a robot pulling a spring in different directions, it is easy to see that the robot can
perform the task successfully with very high stiffness (Kp

max), but this would require the robot
to become less compliant throughout the task, hence spending more energy. If the robot had
to perform the same pulling action, but this time in free-space (without the spring), it would
require a much lower stiffness value Kp

f ree) for accurate trajectory tracking. If the learned
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forward-model is accurate, then the feed-forward term should cancel out the external forces
in the task, essentially making it motion in free-space. Hence, the more accurate the learned
model becomes, the lower the feedback gains can be (closer to Kp

f ree), similar to human
behaviour for a new manipulation task.

The feedback gains at each instant (Kp
t ) in the controller (Equation 4.1) can therefore be

varied according to

Kp
t = Kp

f ree +F(epred,t−1)× (Kp
max −Kp

f ree) (4.2)

where epred,t is the error in prediction of the forward-model at time t, and F(x) is a function
that maps x → [0,1], such as the logistic function. This way of modulating the feedback
term ensures that if the model is predicting accurately, the robot will be more compliant,
while wrong predictions ensure that the robot becomes stiff for following the trajectory more
accurately. Since the forward-model is updated online, the error in predictions is expected to
reduce over time, and the feedback gains should become lower.

The damping term is updated using the constraint of the damping factor for an critically-
damped system (Ijspeert et al. [67]), given by the following equation:

Kd
t =

√
Kp

t

4
(4.3)

This equation makes a fixed ratio dependence between the stiffness and damping parameter
thereby making the learning problem smaller. From some of our past experiments (Appendix
C), we understood that the learning of stiffness and damping as independent parameters is
hard due to the large search space. Instead, we can use the knowledge from classical control
theory to make the parameters dependant.

4.2.4 Specifying the directions of compliance

Not all manipulation tasks can be achieved using the above formulation. Some tasks require
the robot to become compliant when it experiences unexpected force. Consider a task where
the robot has to polish a planar surface. Here, the task requires the robot to follow the
trajectory defined in the plane of the surface while maintaining the target contact force in the
orthogonal direction. Suppose the surface is raised suddenly during the task; then the model
used in the above formulation will predict incorrect forces leading the robot to increase its
stiffness. This would result in the robot trying to push the surface down, damaging itself
and/or the surface, which is not the desired behaviour.
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On the other hand, if the robot experiences unexpected forces along the directions (X,Y)
of the task plane (e.g. frictional forces), the robot has to become stiffer to follow the trajectory
more accurately and incrementally learn the forward model. Therefore, unexpected forces
along different directions demand different behaviour from the robot – some directions
require the robot to become stiff in the presence of unexpected forces, while others require
compliance.

The most intuitive and straightforward way of separating the ‘compliant’ and ‘stiff’
directions is using a hybrid force-motion control framework. This controller works by
defining artificial constraints to the robot’s degree of freedom. The task expressed in terms of
these constraints which specify desired values (to be imposed by the control law) of velocities
in the k directions feasible for motion, and forces in the remaining (6− k) directions feasible
for contact reaction.

By using direct force control along the directions to be compliant, and motion control for
the directions to be stiff, the robot can maintain the required force in the normal direction
while following the trajectory on the surface. These directions can be defined manually for
each task. The final control equation thus becomes:

ut = Kp
t ∆xt +Kd

t ∆ẋt + kt +u f orce_control (4.4)

where u f orce_control specifies the command part produced by the direct force controller so
as to maintain the desired force along the specified direction(s).

4.3 Discussion

In humans, the impedance regulation relies on muscle activation and neural feedback. This
impedance regulation helps in learning the forward-model of a task. Probably they use
a combination of these internal models and impedance adaptation to perform intricate
manipulation tasks. This chapter proposes a novel framework for learning forward-model
of interaction tasks and also use the error in model predictions to change the impedance
parameters of the task. Motor control literature provides strong evidence in support of the
proposed framework. The proposed framework does not possess any tunable parameters. To
validate this framework, we will need to formulate hypotheses and conduct experiments.

For the forward-model proposed in Chapter 3, the input to the neural network was the
current state and action, and the output was the parameters of a Gaussian mixture model.
This formulation is equivalent to having a joint distribution of the input and output vector as
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a Gaussian mixture model (GMM) and then later performing a condition operation on this
GMM (using the input vector) to generate another GMM about the output vector. We can see
that the forward-model used in this work is different from the one used in Chapter 3. The
major reason for not using the same method is the requirement of online-learning and the
bitter experience of hyperparameter tuning. Compared to the forward-model in Chapter 3, the
number of kernels in the proposed method are not fixed and are generated based on a novelty
criterion proposed in Engel and Heinen [44]. Fundamentally a new kernel gets generated if
the existing GMM cannot explain the new incoming datum. Existing GMM cannot explain
the incoming datum if its likelihood is not within a manually defined threshold. That is, a
high threshold will lead to more kernel generation, and a low threshold leads to having less
number of kernels. The number of kernels has an impact on the learned model. More the
kernels finer will be the model. However, this comes with a computational cost. The number
of operations required for the inversion of the covariance matrices is cubic, and this grows as
the number of components increase. Hence, the threshold of the novelty criterion should be
defined carefully.

The next crucial point is the noise of the force-torque sensors. These sensors are quite
noisy, and hence their readings can cause trouble to the learner. Since the novelty criterion
determines the number of kernels, noise in the sensor readings can misrepresent as false
data points and cause the generation of unwanted kernels. Though there is an automatic
procedure to delete unwanted kernels, our experiments suggest using raw data results in
unwanted kernel generation and subsequent wastage of time for a prediction. A simple way
to avoid the noise is to use a low pass filter. In our framework, we use a third-order low pass
filter implemented as a zero-phase Butterworth filter.

Further, we propose a constraint between the proportional and derivative gains through
equation 4.3. This constraint means that the derivative gains are dependant on the proportional
gains. Ideally it is good to vary proportional and derivative gains independently. However,
independent modification of both gains requires precise knowledge of the dynamics of the
system (robot and interaction dynamics). We have noticed that independent variation of
the gains leads to unstable robot behaviour. The ideal values of the gains are dependant on
system dynamics.Since we do not have a precise model and we learn the dynamics online, it
is better to vary the gains dependently to avoid unstable behaviour. Keeping this constraint
allows the adapter values to be critically damped and hence avoid oscillation of the system.
However, this also results in a temporal lag in the performance of the system. This is the
reason for the temporal lag observed in the experimental results presented in the next chapter.

To establish the capability of the framework, we choose both static and dynamic envi-
ronments to perform different tasks. We conduct a non-linear spring pulling (Section 5.2)
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experiment to verify the framework behaviour in dynamic environments. This capability is
further examined by using a rapidly varying porridge stirring experiment (Section 5.4). Next,
we explore the generalisability of the framework to novel environments. To test it, we use a
board polishing task (Section 5.3) defined in a static environment.



Chapter 5

Experiments using the framework

In this chapter we conduct different experiments to validate the framework proposed in
Chapter 4. This framework can learn the forward-model of a task to enable the robot in
executing it at a lower stiffness without affecting the overall task performance. The model
learned is capable of predicting the next state force, thereby helping the controller module
to apply control in an anticipatory fashion. At each controller step, the prediction of the
forward-model gets compared with the feedback force sensor measurement. Depending
on the error in the prediction, the controller decides whether to change the impedance
parameters. This behaviour is similar to human motor control (Kawato [74], Flanagan et al.
[51], Rosenbaum [134]), where the hand is stiffened to improve task accuracy when the
predictions get inaccurate.

We start by stating the hypotheses (Section 5.1) used to validate the framework followed
by details of three experiments. Next, we specify the network architecture of computers used
in the experiments and the reason for adopting it. The first experiment is described in Section
5.2 followed by second experiment (Section 5.3) and third experiment (Section 5.4).

5.1 Hypotheses and experiments

We conducted three main experiments to evaluate the following hypotheses about the capa-
bility of our framework.

H1: Using feed-forward-model along with stiffness adaption improves trajectory tracking
performance.

H2: Adding efferent copy as input to the forward-model creates a better model of task
dynamics, resulting in improved trajectory tracking.
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H3: Online learning of the forward-model supports adaptation to new and changing envi-
ronments.

H1 tests the effectiveness of using the forward-model and subsequently adapting stiffness
based on the accuracy of the model; H2 compares the choices of the feature vector (4.2.2);
and H3 assesses if the framework can adapt to new environments. Root Mean Square(RMS)
measure is used to quantify the error in achieving the desired motion profile, along with
suitable plots which provide a qualitative indication of performance. We do not provide
an experimental comparison since our approach is significantly different from popular
approaches for such manipulation tasks (e.g.,based on deep learning). The obvious advantages
of our approach are discussed in the ‘Result’ section of each experiments. For testing H1
and H2, the experiments are compared in four different stages. Performing the task in the:

1 absence of a forward-model under high constant stiffness.

2 absence of a forward-model under low constant stiffness.

3 presence of a forward-model under low constant stiffness.

4 presence of the forward-model with varying stiffness.

The framework consists of a state-dependent stiffness controller. Different types of
feature vectors are chosen to represent the state. The choice of features was motivated by
various computational motor control literature such as Shadmehr and Krakauer [145]. In
our experiments, the forward-model is learned online as described in Section 4.2.2, with
the feature vector p = [St−1, ft ]]. For testing H1 and H3, the state vector was chosen to
be St = [ẋt , ft ] whereas in order to test H2, the forward-model uses the computed force
vector in the task space (ut) in addition with the existing feature vector; St = [ẋt , ft ,ut ]. The
forward-model IGMM learns the parameters which models the probability distribution of the
feature vectors. Later this learned model can be used to condition on St to predict ft+1 using
Gaussian Mixture Regression (GMR).

To test the hypotheses, four sets of experiments were designed using a 7-DoF Sawyer
robot 1. The tasks are executed by making use of a Cartesian space hybrid force-position
controller. The directions in which force and motion is controlled are task specific. Hence, the
directions are to be mentioned in advance as a hyper-parameter. The framework predictions
are only used in the directions of motion control. Note that, we empirically found the bounds
within which the stiffness and damping parameters are stable for the Sawyer robot. Since
varying these parameters beyond a certain range may result in unstable behaviour of the
robot (Kronander and Billard [81]).

1Experiment Video: https://youtu.be/vjJwexVziS0

https://youtu.be/vjJwexVziS0
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5.2 Pulling linear and non-linear springs

Figure 5.1: Spring pulling task setup. The springs are attached to the end-effector of the
Sawyer robot and the other end is fastened to the table. Left: Linear spring (constant spring
constant); Right: Non-linear spring (non-linear spring constant)

The primary goal of the task is to evaluate H1 by moving the robot end-effector along a
specified trajectory. The robot is attached with a spring (either linear or non-linear) at the
end-effector with the other end fastened to a rigid environment.

The task setup is as shown in Figure 5.1. The non-linear spring used consists of a
combination of three linear springs of different (B.1) spring constants connected at an angle.
This spring arrangement produces a non-linear restoring force when it is pulled linearly.
However, the robot controller do not know the parameters (e.g. stiffness, damping) of the
spring attached to its tip. The other end of the spring is attached rigidly to the environment.
When the robot tries to move towards the target position the spring starts extending, thereby
pulling the manipulator in the direction opposite to spring extension. For safety purposes,
the restoration forces produced by the springs on extension lie within the task space force
limits ( 50N) of the manipulator.

The first task involved pulling the springs to a particular height and then moving along
a desired trajectory. This experiment was conducted first with a linear spring (as proof-
of-concept; Figure 5.1 left) and then with a non-linear spring (Figure 5.1 right), which is
significantly more challenging due to its non-linear force response to extension. When the
end-effector moves, it now experiences different changes in force in different directions. The
baselines for comparison used constant low impedance and constant high impedance. The low
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impedance parameters were chosen to be enough to move the end-effector along the desired
trajectory in the absence of springs (Kp

f ree), and the high impedance parameters (Kp
max) were

chosen to be sufficient for pulling the spring in the absence of the forward-model.

Observations

The existence of the spring is unknown to the robot controller. When the end-effector moves,
the spring starts pulling in direction towards the other end of the spring. The end effector
experiences force changes depending on the spring extension. Compared to the linear spring
setup, the robot experiences different forces in different directions for the non-linear task
setup. The constant low stiffness makes the robot highly compliant and hence results in the
inability to overcome the restoration force of the spring leading to failure of achieving the
target height. Repeating the task at higher stiffness 2 showed that the robot is capable of
moving to the target height with the specified spring load.

After creation of the baseline, the task was repeated for following the trajectory using the
control Equation 4.1, using the feed-forward term from the forward-model and impedance
adaptation as described in Section 4.2.2. The task involved pulling the spring along the
desired trajectory multiple times, without any previous training. Here, the framework starts to
learn the forward-model of the task from first lap of the trajectory and then improves online
in the subsequent rounds. The online learning helps the agent to learn a joint distribution of
the robot’s task-space force and velocity collected using the the end-effector sensors. The
forward-model learned anticipates forces at each state thereby helping the robot to move
closer to the target height. Yet, in some of the states the anticipatory control falls short of the
target waypoint due to the inaccuracy in force prediction. This error is dealt with by adapting
the stiffness with respect to the force prediction inaccuracy and further improves the tracking
performance.

Results

X (m) Y (m) Z (m)

no models 0.017±0.009 0.015±0.009 0.038±0.010
high stiffness 0.012±0.011 0.009±0.007 0.023±0.011
with learning 0.010±0.010 0.006±0.00 0.004±0.00

Table 5.1: Experiment : Non-linear spring pulling. Trajectory tracking root mean square
errors along the three axes along with its standard deviation.

2High stiffness parameters in the controller makes the manipulator stiff and robust to external forces
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The results for the non-linear spring task are shown in Figures 5.2 and 5.3 (results of linear
spring task are not included for brevity and due to result redundancy). Figure 5.3 shows the
accuracy of the forward-model as it executes the task. The prediction improves significantly
as the model gets additional experience compared to the first task trial. The experiment above

Figure 5.2: Experiment : Non-linear spring pulling. Three axis position tracking of the
non-linear spring pulling experiment. The task requires the robot to maintain a target height
and draw a circle. The position tracking errors are quantified in Table 5.1. The interesting
plot is on the Z axis. We can see that our controller is able to maintain the target height far
better than the high stiffness controller. This is because of the feed-forward term which act
like a bias correcting term like the integral action of a PID controller.

shows existence of a forward-model under low stiffness helps the robot to be compliant
with less trade-off to task accuracy. Subsequently adapting the stiffness of the manipulator at
each state of the robot further improves the model and task accuracy.

Figure 5.2 shows that the accuracy of position tracking is better when the forward-model
is used. The performance further improves significantly by varying the impedance parameters
following the model accuracy. It can be concluded that using just the feed-forward term
is not enough to perform the task accurately unless the learned model is perfect. Hence,
the proposed framework improves the model online and adapts the impedance parameters
depending on the model accuracy. We conducted multiple trials with the forward-model
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being learned in the first trial and then improved in subsequent trials. The results are shown
in Figures 5.2 and 5.3. Figure 5.3 shows that the prediction accuracy of the forward-model
improves significantly over the trials.Figure 5.2 shows that the accuracy of position tracking
and Table 5.1 quantifies the performance. Accuracy is better with the forward-model than

Figure 5.3: Experiment : Non-linear spring pulling. Force prediction of the three axis in the
non-linear spring pulling experiment. The predicted values leads the true values and hence
can act as feed-forward term to perform anticipatory control

when it is not used. Performance improves further when the impedance parameters are
updated online; just using the feed-forward term is not enough to perform tasks that involve
unexpected forces acting on the system (unless the model is perfect). The proposed framework
improves the model online and adapts impedance parameters to the accuracy of the model.

5.3 Polishing different boards

To further test H1, and evaluate H2 and H3, we explored the board polishing task; the robot
had to wipe a surface of unknown friction coefficient. The task setup is shown in Figure
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5.4. The robot wipes the surface by moving the rigidly attached sponge attached to its
end-effector on the board surface. Two types of boards are used in the experiment. The first
board is a white board used in lectures and the second is a wooden board. The white board
relatively has lesser friction compared to the wooden board. The boards are attached to the
table using clamps to arrest any possible motion when they are rubbed hard by the robot. In
order to wipe the board the robot should apply a downward force and move on the surface.
The motion on the surface of the board is pre-defined using a trajectory defined along the
surface (the X-Y plane). For our experiments we chose a constant downward force of 10N.
A hybrid force-motion controller is used since we can clearly segregate force and motion
direction. The vertical downward force is controlled by the force controller and hence it
provides compliance along the surface normal of the board (the z-axis).

Figure 5.4: Board-Polishing Task Setup. Left: Surface 1 (low friction); Right: Surface 2
(higher friction)

While moving, the robot experiences frictional forces hampering its smooth motion,
which it has to learn to predict. The initial model is learned by making the robot wipe
the surface following a trajectory (an epicycle) that is considerably different from the one
it has to follow (a sine wave) during task execution. This experiment involves control of
motion and force in orthogonal directions which are specified as a hyper-parameter to the
hybrid-force-motion controller.

The ability of the hybrid force-motion controller to provide compliance along the surface
normal is examined with the board polishing task. Specifically, we ran trials in which the
board was moved up and/or tilted during task execution. These trials qualitatively showed
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that the robot was able to provide compliance along the surface normal. However, we do not
include any quantitative results of these trials.

Observations

Initially, the robot polishes a table surface using the specified sinusoidal trajectory with high
and low stiffness while applying 10N downward force to create baseline cases. The high
and low stiffness values show the best and worst results which form the baseline trajectory
tracking accuracy boundaries. To evaluate H1, the framework had to learn the forward-model
of the task. A set of data (end-effector force, position and velocity) collected by repeating
the task in high stiffness is used to learn a preliminary model online. Subsequently, the
end-effector stiffness of the arm is reduced and the forward-model starts to predict next state
force based on current velocity and force. The predicted force is used as a feed-forward
term to compensate the frictional forces experienced during the task. The tracking accuracy
improves substantially compared to performing the task at a lower stiffness. As the task is
repeated, the new data collected is used to further improve the forward-model. The Gaussian
Mixture parameters are updated when the likelihood of the new measured forces cannot be
explained by existing forward-model distribution.

To evaluate H2, we conducted trials of board polishing task with the efferent copy in
the feature vector of the forward-model. The addition of efferent copy (task space force)
adds three additional dimensions to forward-model’s input feature vector. This increases
the time complexity due to the higher dimensional covariance matrix inversion that needs
to be perform for regression. Results indicate that there is no significant improvement in
performance for the additional time complexity of computation. We believe this is because the
forward-model is able to obtain enough information for force prediction from the current end-
effector velocity and force, making the information encoded in the efferent copy redundant.
This observed performance, and the fact that addition of new dimensions to the state-space
makes the learning more computationally demanding, led us to not use the efferent copy in
the framework for subsequent experiments.

To evaluate H3, we focused on the ability of the robot to generalise and adapt to similar
task environments. Such ability of the framework helps to perform the task without much
human intervention. Our results with the board polishing task indicate that the framework
generalises across different trajectories since the model was learned using a trajectory
different from that used during task execution. This is a key advantage of learning the
forward models in task-space instead of joint-space. Further, adaptability to new forces was
tested by performing the same (board polishing) task using a surface with notably different



5.3 Polishing different boards 72

friction coefficient. While performing the task, we observed that the framework was able to
adapt the already learned model to the new surface quickly.

Results

Figure 5.5 shows that in the absence of the forward-model, the robot is unable to follow the
desired trajectory since it does not know the interaction forces. The use of the feed-forward
model improves tracking performance, with a further improvement when online impedance
adaptation is used. The performance of the framework is comparable with that of a high
stiffness controller while requiring much lower impedance parameters (Figure 5.8). The
average RMS error in trajectory tracking are summarised in Table 5.2. These results support
the validity of H1.

Figure 5.5: Experiment : Board polishing. Surface 1 position tracking. Red: Target;
Pink: Using constant stiffness Kp

f ree; Black: Using constant stiffness Kp
max; Blue: Adapting

impedance without efferent copy; Green: With efferent copy in feature vector

Figure 5.5 also further shows the performance of the framework when the efferent copy
of control is used. The green curve, produced when the framework uses efferent copy in
its feature component, is slightly better performance than the blue curve produced when no
efferent copy is added. However, this improved performance comes at higher computational
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cost compared to the forward-model which do not use the efferent copy. The reason could be
the particular nature of this task where the feed-forward can be predicted accurately with
robot state vectors alone.

X (m) Y (m)

With no models 0.091±0.042 0.054±0.010
Using high stiffness 0.027±0.011 0.007±0.014
With efferent 0.036±0.024 0.008±0.011
With learning 0.038±0.023 0.008±0.014

Table 5.2: Experiment : Board polishing. Trajectory tracking errors along different axes
in case of the surface type 1 of board Polishing experiment. A visual representation of the
errors can be seen in Figure 5.5.

Figure 5.6: Experiment : Board polishing. Surface 2 position tracking. Red: Target; Pink:
Using constant stiffness Kp

max; Green: Using Surface 1 model without adaptation; Blue:
Using online adaptation of previous model

Figures 5.6, 5.9, and 5.10 show that when the learned model was used for this surface
without online improvement, the robot failed to follow the trajectory accurately. However, if
the learned model is revised during task execution, it quickly achieves performance similar
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to that with the first surface. The RMS errors in trajectory tracking are summarised in
Table 5.3. This capability of the framework to generalise to different surfaces and trajectories
is the critical advantage of using a task-space, time-independent variable impedance control
framework.

X (m) Y (m)

high stiffness 0.027±0.014 0.007±0.012
reused model 0.084±0.039 0.023±0.022
with learning 0.035±0.022 0.006±0.001

Table 5.3: Experiment : Board polishing. Trajectory tracking errors along different axes
in case of the surface type 2 of board Polishing experiment. A visual representation of the
errors can be seen in Figure 5.6. The performance of the low stiffness controller with learned
forward-model has an tracking accuracy similar to that of the high stiffness controller. It
also shows that with an accurate forward-model the robot is able to achieve reasonable task
performance at lower stiffness.

Figure 5.7: Experiment : Board polishing. Forces predicted by the forward-model for surface
1. It can be seen that the force prediction leads actual force measurement. The X axis consists
of 3000 steps since the controller runs at higher frequency to the waypoint specification. The
trajectory specified on the board surface is a sinusoidal wave. The error in force prediction is
quite less and hence the stiffness adaptation in Figure 5.8 is more or less stationary.
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Figure 5.8: Experiment : Board polishing. Stiffness based on the forward-model uncertainty
for surface 1. The pre-training of the model using the epicyclic trajectory described helps to
learn a good forward-model. The surface is more or less uniform and the feature vector do
not have the position component, the learned model is sufficient for other trajectories. The
average value of stiffness along X axis is 275.54N/m and along Y axis is 225.82N/m.

Figure 5.9: Experiment : Board polishing. Forces predicted by the forward-model for surface
2. This surface is rougher than the first surface. Here also, we can see that the prediction is
leading the true values and thus helps in anticipatory control.
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Figure 5.10: Experiment : Board polishing. Stiffness based on the forward-model uncertainty
for surface 2. The stiffness adpatation of the new surface is comparable to the first surface. T

5.4 Porridge stirring

Figure 5.11: Porridge experiment setup. The porridge environment is emulated on the Moog
Haptic Master. Sawyer’s end-effector is initially aligned with the tip of the haptic device and
connected using a wooden plank. The maximum drag force generated by the haptic device is
withing the limits ( 50N) of Sawyer.



5.4 Porridge stirring 77

We consider an experiment to test the adaptability of the framework to environments that
change during task performance with the porridge stirring task. The viscosity of porridge
changes as it is stirred. For the experiment on a real robot, the changes in viscosity are
emulated on a MOOG HapticMaster (Haptics [60]). The primary reasons for using this
device is due to the difficulty in setting up an actual porridge stirring environment (e.g. safety
issues within the lab) and since it gives options for accurate measurement of the environment
properties (e.g. force felt, damping factor). These accurate measurements will help to validate
the framework precisely.

For our experiment, the viscosity (damping factor) of the environment is increased
continuously (in X-Z plane) until it reaches a maximum predefined value. The end-effector of
the Sawyer is attached to the end-effector of the HapticMaster – see Figure 5.11. The Sawyer
has to move its end-effector along a predefined motion trajectory (in the Y-Z plane) while
learning to adapt to the increasing viscous resistance from the environment. As the robot
turns the crank, the damping of the haptic master is programmed to increase exponentially
with the velocity of stirring and time.

Observations

The robot is connected to the HapticMaster and the behaviour of the environment is unknown
to the controller. The robot is required to follow a circular trajectory in Y-Z plane. The
changing damping behaviour of the haptic device results in non-linear reaction forces on
robots end-effector. When the damping varies as a function of time alone, the environment
becomes intensely sluggish irrespective of the robot’s motion. Moving in such an environment
is quite tricky as the environment dampens even before the system is able to collect data.
Hence, we varied the damping as a function of robot’s time and stirring velocity. Here the
damping of the environment increases whenever the magnitude of the velocity crosses a
threshold. Similar to the previous experiments the baselines are established by performing
the task at high and low stiffness. The tracking accuracy of the robot is depicted in the
Table 5.4 and in Figure 5.13. The responses of the high stiffness trajectory tracking clearly
shows the need of some additional compensation such as a feed-forward term in the control
commands.

The compensation to the environment reaction forces is given by the feed-forward term.
The system gets better with learning the forward-model of the task. The system is able to
adapt to the incrementally changing environment and hence provides good evidence for H3.
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Results

X (m) Z (m)

no models 0.031±0.015 0.035±0.018
high stiffness 0.012±0.009 0.014±0.012
forward-model 0.037±0.017 0.026±0.010
forward-model with 0.014±0.008 0.009±0.007
stiffness adaption

Table 5.4: Experiment :Porridge stirring. Root mean square trajectory tracking errors along
with the standard deviation of the porridge stirring experiment.

Figure 5.12: Experiment: Porridge stirring. Position tracking along the X axis.

The robot almost did not move in the low stiffness case due to heavy damping of the
environment. The results of the previous experiments show that the high stiffness response
is good in terms of the tracking accuracy. However, in this experiment, the high stiffness
wasn’t able to produce good results. Figure 5.13 indicates that using constant impedance
parameters is not enough for tracking the desired trajectory (shown in red) accurately, even
with the maximum allowed stiffness Kp

max (black). The reason is insufficient force applied by
the robot and lack of the feed-forward term to compensate the forces.
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Figure 5.13: Experiment: Porridge stirring. Position tracking along Z axis.

Figure 5.14: Experiment: Porridge stirring. Force prediction the porridge stirring experiment.
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Figure 5.15: Experiment: Porridge stirring. Stiffness adaptation of the porridge stirring
experiment.

Similarly, using the feed-forward term predicted by the forward-model alone without
impedance adaptation is insufficient for such dynamically changing environments (shown in
green), owing to the dynamics of the environment that are unknown to the robot. However,
when coupled with the online impedance adaptation, the robot is able to follow the trajectory
more accurately (shown in pink). The trajectory tracking errors during task execution (see
Table 5.4) further establish the effectiveness of the framework. Next, Figure 5.14 indicates
that the force predictions (by the forward-model) are much more accurate towards the end
of the task when the environment finally becomes static as the change in damping saturates.
The model has (by then) learned to accurately predict the effects of that damping factor on
force. As a result, the impedance parameters take smaller values, as shown in Figure 5.15.
Note that the stiffness values are still lower than the high stiffness value (Kp

max).
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5.5 Discussion

Variable impedance is vital for reliable and safe contact manipulation task. Learning
impedance parameters directly is difficult and would require large training data. Using
motivations from human motor control, we presented a framework that can learn forward-
model of a task online, which can predict interaction forces in a state-dependent fashion. The
accuracy in prediction is used to vary the impedance and improve the model online during
task execution. The framework tests three hypotheses using three sets of tasks: spring-pulling,
board-polishing and porridge stirring. The linear spring pulling assessed viability of the
framework. Studies like Fan et al. [46], Liu [99] also use predictive models created using
knowledge of mechanics to make predictions about robot and object motions. However,
unlike our method, they make unrealistic assumptions such as point contacts, polygonal
approximations to the friction cone and lack of slip during motion. Success of the framework
in the linear spring pulling motivated us to apply the same framework to more challenging
non-linear spring pulling task. However it is observed that, just employing forward-model
wasn’t sufficient to get satisfactory results. This provided insights to use a state-dependent
stiffness controller whenever the forward-model had to face inexperienced forces. Though
the technique proposed in Kronander and Billard [81] is able to learn a state dependent
stiffness controller, it relies heavily on learning from demonstration through a specially
designed expensive hardware.

Another challenge to be addressed was the choice of feature vectors required to represent
the task state. The board polishing task tested different types of parameterisation as explained
in Sections 4.2.2 and 5.3. The use of robot end-effector velocity instead of position as a
feature in the state vector helped to generalise across different trajectories and surfaces.
Using position vector as a component of the feature vector will cause the learned model to
be spatially dependent. This will mean that even if the surface is similar, the robot will have
to experience every part of it to learn a state dependent stiffness controller. Approaches such
as Buchli et al. [19] and Deniša et al. [38] lacks this generalisability due to their explicit time
dependence for representing force and impedance parameters. The ability to generalise also
shows the effectiveness of learning forward-models in task space rather than in joint space
such as in Kronander [82], Kalakrishnan et al. [71, 69]. Other variable impedance works
such as Schneider and Cannon [141], Wimböck et al. [167], Li et al. [94] requires accurate
mathematical representations of the task, robot and the objects involved. The proposed
framework do not require such analytic models for control.

The porridge stirring task involved a dynamically changing environment and was the most
difficult of all three experiments. Such an environment whose viscosity changes depending
on robot motion is unique compared to other popular tasks in the literature. This task
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provides a good example of a controlled environment to emulate and implement dynamically
changing environments. The learning process becomes more challenging since the force
experienced is a function of the end-effector velocity rather than its position. The successful
stiffness adaptation with improved task performance provides strong evidence about the
capability of the framework. Some approaches like Kronander [82], Huang et al. [65] try
to learn an action-effect correlation, usually from demonstrations provided by an expert or
from experience derived from several trials (Levine and Koltun [91], Kupcsik et al. [85]).
However, it is difficult to teach continuous interaction tasks to robots without additional
hardware. The experiments conducted indicate the ability of the framework to learn and use
time-independent variable impedance controller. The controller is defined in the task-space
and works across diverse tasks without any modifications.

The controller defined also assumes the existence of a constraint between the proportional
and derivative gains given by equation 4.3. Though this condition was required for the safe
interaction of the robot in the tasks, it resulted in producing a temporal lag in the controller
response. This lag can be seen in the trajectory tracking plots of all the three tasks. Apart from
the lags in the response, the key insight derived from the experiments is that forward-models
are not alone sufficient to perform the task better. The forward-model should be used in
conjunction with the feedback to have the best performance. But in this way one can argue
that the proposed approach is exactly similar to the adaptive control methods. However, our
method performs an online learning of the forward-model which helps in quick adaptation of
parameters for similar tasks.

Technical challenges

Initially the framework implemented was tried using a single machine running with Ubuntu
16.04 and ROS 3 Kinetic. Running online learning, control loop, trajectory waypoint thread,
and sampling from force torque sensor together on the same machine made the process slow
and inefficient. For example, the online learning involved inversion of the Gaussian Mixture
for prediction which has a time complexity of O(NKD3)4. We know that, implementing
impedance control requires direct torque control of the robot. The Sawyer robot consists
of a real time loop to sample the torque commands from the commanding PC. The inbuilt
controller of the Sawyer expects the control command frequency to be a minimum of 500Hz.
However, the overloaded PC was unable to maintain the required command frequency and

3Robot Operating System
4where N is the number of data points, K is the number of Gaussian components and D is the problem

dimension.
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Figure 5.16: The setup of the network architecture. All computers run ROS Kinetic on
Ubuntu 16.04

hence resulted in sluggish robot behaviour. These problems motivated us to implement a
network of computers as shown in Figure 5.16 to perform the task.

ROS uses messages to communicate between computers, robots and other devices. These
packets by default uses TCP 5. When TCP packets are sent to the robot, if some packets
are lost, the host machine retries till the correct packet arrives. This results in incorrect
behaviour of the robot if it is already in motion. Hence it is better to use UDP 6 packets when
controlling the robot instead of TCP packets.

One of the severe challenges we faced during the development of the framework and
testing of the experiments is a bug in the SDK of the Sawyer robot. Our robot runs Intera
5.2.1, and in this software, there is a mismatch between the end-effector frames. The data
given by the SDK to our controller contains end-effector position in the base frame (global
frame, right-hand coordinate system) of the robot, end-effector velocity in the end-effector
frame (local frame, right-hand coordinate system) and the end-effector force in a left-handed
end-effector frame. This mismatch in frames always triggered an incorrect response of the
robot. It took several months for us to figure out this undocumented bug in the SDK.

5Transmission Control Protocol
6User Datagram Protocol



Chapter 6

Conclusion and future works

We started this research in the domain of dexterous manipulation motivated by the phenome-
nal dexterity of human hands. Strong evidence from human-motor control studies explained
in Chapter 2 provide insights into the importance of having task-specific forward-models
in our motor control. This thesis primarily investigates the use of similar forward-models
in robot manipulation. Promising results of similar studies in robot manipulation research
further support the approach. In this chapter, we summarise our motivations, contributions
and their inherent limitations. Some of the points mentioned in the later future research
section are to address these issues while others are new directions of potential research.

6.1 Forward-models for push planning

Initially, planning a sequence of actions using forward-model was identified to be the fun-
damental problem to perform robot manipulation. As a first step, we decided to pursue the
problem of push manipulation due to two reasons: (1) motivation from the fact that pushing
is a primitive and widely used technique for prehensile manipulation by humans (2) lack of
sufficient literature showing methods to perform robust push manipulation with robots. Plan-
ning robust actions require the knowledge of the object’s behaviour under an action. Object’s
dynamics dictate this behaviour and can be obtained via forward-simulating the object’s
dynamic model. However, prediction of the object behaviour under an action has uncertainty.
This uncertainty arises due to noise in the environment or having incomplete knowledge of
the dynamics of the object. The scope of addressing the issues due to environmental noise
is limited. The incompleteness in the dynamics model could be from (1) approximations
and assumptions made during mathematical modelling or (2) from insufficient data in all
parts of the object’s state space. One of the reasons for the lack of robustness in robot push
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manipulation is the inability of the existing push manipulation planners to consider this
uncertainty.

Push planning without considering uncertainty can result in the object getting lost in
areas of high uncertainty. This can be seen in our experiment result shown in Figure 3.8b.
And hence in our approach, we decided to use forward-models which can learn from data
(due to the reasons explained in Section 3.2) as well as provide a measure to its predictive
uncertainty. Including knowledge of predictive uncertainty helps in planning actions which
upon execution moves the objects through less uncertain areas of object space. We included
predictive uncertainty in planning by combining learned forward-models with stochastic
planners. We propose and test two versions of a planner to generate a sequence of uncertainty
averse pushes to move the object through less uncertain areas towards the goal pose. The
proposed two planners form the first contribution of this thesis. Chapter 3 details the complete
details of them.

The first version of the planner explained in Section 3.2.2 optimises a combined cost
function given by equation 3.11. The cost function consists of a linear combination of goal
cost and an uncertainty penalisation. The planner generated push actions depending on the
weights. The relative value between the goal cost and the uncertainty cost decides the push
actions. Higher weight given to the goal cost motivates the planner to move faster towards
the goal at the expense of getting lost in uncertain regions. A higher cost on the uncertainty
penalisation can move the object in the least uncertain regions and thus take a long time to
reach the goal. Finding the right balance between these weights is quite tricky and requires
careful hand-tuning. The results of the planner using a forward-model (E-MDN) learned from
a toy dataset after careful hand-tuning of weights is shown in Figures 3.9a. The figure shows
that the planner can push the object towards its goal pose through regions of less uncertainty
and thus provides evidence for our hypothesis H1 (refer Section chap3sec:experiment). From
the figure, we can observe that the planner does not move the object through the blue regions
where the forward-model is fully certain. This is because moving through those regions will
result in a longer path towards the goal pose. The right balance between the goal cost and
the uncertainty cost helps the planner to decide what level of uncertainty will not hurt the
planning. This consideration helps it to find the optimal push actions to move the object in
the shortest path possible. Though this planner was a success, it took a considerable time
to hand craft the right weights for the cost function. Even with the right cost function, the
optimiser takes a long time to converge. This is because the optimiser has to come up with a
solution that satisfies two opposing cost functions. The second version of the planner was an
attempt to solve these problems using hypothesis H3.
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In the second version of the planner, we attempted to separate the two components of the
cost function. Since the goal is to move the object through regions of less uncertainty, we can
first generate an object path through the less uncertain regions. Later this path can be used by
the planner to push the object towards the goal. Initially, we start with a straight-line path
between the start and goal pose of the object. Later this path is updated incrementally by
using randomly generated trajectory samples in its neighbourhood. These trajectory samples
are weighted using the uncertainty cost function. The samples passing through areas of
high uncertainty get penalised more than the ones passing through areas of less uncertainty.
These weighted trajectory samples help to compute the gradient of uncertainty. The gradient
helps to shift the initial trajectory in the direction of least uncertainty. The optimiser stops
modification of the trajectory once the gradient settles to a constant value. Subsequently, the
first version of the planner uses this less uncertain trajectory to find optimal push actions.
The planner takes each point in the trajectory as intermediate goal points and finds push
actions to move the object towards that point. Once the object reaches within a threshold, the
next trajectory point becomes the goal. In this problem set up, the optimiser has no notion of
balancing goal cost and uncertainty cost. Hence, the amount of uncertainty the system can
take becomes a factor to be determined. However, the splitting of the cost function into two
helped the optimiser in spending less time to find a solution which balances these opposing
terms. The result of the pushes generated by the second approach shows that they take almost
half the time as the first and thus proves hypothesis H3.

Further to test the effectiveness of using learned models for robot manipulation, we used
two forward-models trained from real data collected by the robot through the experiment
detailed in Section 3.3. The performance of the learned model in comparison to that of a
physics engine based model is studied. The two learned models used are Gaussian Process
(GP) and E-MDNs. The results in Figures 3.10, 3.11 and 3.12 shows that the learned models
are better than the physics engine based models. This change in performance is primarily due
to these models’ ability to capture environment interactions better than the physics model.
Within the learned models, E-MDNs were better than the GPs and provided evidence for
hypothesis H2.

In short, we use a forward-model (E-MDN) and its predictive uncertainty to perform
risk averse push manipulation. We developed two algorithms to plan a sequence of risk
averse push actions and is described in Chapter 3. These actions are capable of moving
an object towards a target pose through known regions of a table’s surface. The planner
uses the receding horizon approach and hence allows to incorporate feedback to deal with
model inaccuracies and unseen disturbances. The first algorithm optimises a cost function
to simultaneously generate risk averse push sequence and object trajectory. The second
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algorithm solves the same problem in two stages while consuming less time. First stage
finds a risk averse trajectory and the second stage generates optimal push actions to move the
object on this trajectory.

6.2 Forward-models for variable stiffness control

The success of the push planners provided us with further motivation to use forward-models
to aid dexterous manipulation. The task of push planning involved discrete contacts and
quasi-static object behaviour. However, most of the robot tasks require continuous interaction
with the object and environment. However, we know that it is difficult analytically model
the highly non-linear interaction dynamics between the robot and its environment. An
alternate and effective way to model this non-linearity is by using data and methods from
machine learning - measurements of the force-torque sensors, robot encoders can be used
to collect data when the robot interacts with its environment. In our approach, we propose
an incremental Gaussian mixture model to model the interaction data. The data from the
sensors get fed continuously into the model, which automatically decides the number of
kernels required to represent data. Section 4.2.2 covers more information about the proposed
approach. Each of the datapoints consists of [previous end-effector velocity, previous end-
effector force, current end-effector force]. We use conditioning to use the learned model as a
forward-model.

In order to predict the next step force, the learned model is conditioned on the current
sensor measurements of end-effector velocity and force. This predicted force helps the robot
to anticipate the interaction force and perform the corrective actions in control. When a
robot interacts with an environment, there are forces to which robot has to be compliant,
and there are forces to which the robot should be stiff. For example, in the board rubbing
exampled described in Section 5.3 the robot should be compliant to a force disturbance in the
Z direction. At the same time, the robot should be stiff to the frictional force, which impedes
its smooth motion on the surface. Thus, the manipulator should act as an impedance in the Z
direction and admittance in the X-Y direction. Hence we need to have variable impedance
behaviour in different directions. It could also be the case that instead of directions, it could
be at each state. For example, consider the porridge stirring example provided in Section
5.4. In this example, it is better to be stiff while moving the haptic master against gravity and
compliant while moving down. Hence, we require variable stiffness depending on the state
of the task. These are two different cases of variable impedance control. A case in which
directions of stiffness and admittance are known and a case in which it is state dependant.
In order to combine these two cases, we define a hybrid force-position controller (Section
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4.2.4) in task space. (Note: a task space controller automatically provides some level of
compliance in the joint space of a redundant manipulator like Sawyer.) The predictions
from the forward-model anticipate the interaction force. A perfect forward-model will not
require any stiffness adaptation since it can anticipate force at every task step. However,
since it is an online model, the force predictions of the system are less accurate when the
model does not have sufficient experience. To mitigate this, we propose a variable impedance
behaviour depending on the error in force prediction. Section 4.2.3 covers further details
on the topic. In short, the major components of the control framework are a forward-model
learning module and a hybrid force-position controller.

The complete framework described in Chapter 4 is motivated by biological motor control
theories. Strong evidence from human motor control studies detailed in Section 4.2.1
support the idea of the proposed approach. The framework is capable of variable impedance
behaviour in continuous interaction tasks and thus constitutes our second contribution. The
approach learns the forward-model of a task through repetition. The stiffness modulation
happens as a function of model inaccuracy leading to a state-dependent impedance controller.
This controller enables the robot to apply correct end-effector stiffness at each state of the
task. The thorough study and experiments detailed in Chapter 5 prove the capability of
the framework and forms our third contribution. The experiments considered deals with
continuous interaction tasks in static and dynamic environments.

The results of the experiments show that the use of forward-model highly improves the
tracking performance. The tracking accuracy of all three experiments strongly supports
hypothesis H1. Further, we noted that the stiffness controller learned is transferable to other
similar tasks. In similar tasks, for example, polishing a different board than the trained one,
the learned forward-model can quickly adapt to the new surface properties. The difference
in using the pre-trained model and learning from the beginning has a notable difference in
the graphs. This shows strong evidence of hypothesis H3. However, it also has to be noted
that in our particular setting learning the dynamics of Surface 2 using dynamics model of
Surface 1 results in relearning of the model. The model adapted to Surface 2 will have to
relearn again if applied again on Surface 1. Addressing this limitation is beyond the scope of
this thesis.

In short, the force predictions of the learned model are used to perform anticipatory
interaction control, and its predictive errors are used to control robot stiffness. Experiments
such as board polishing presented a static environment, while non-linear spring and porridge
provided dynamic environments. Board polishing task showed the adaptability of the learned
model to new surfaces. The framework can anticipate forces in dynamic environments
and showed better performance than the baseline tasks. The performance of the same
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framework (with no modifications) on different tasks in diverse environments illustrate its
generalisability.

6.3 Limitations and future work

In this section, we discuss different limitations of our contributions and thus limits their scope
when applied to other scenarios. However, addressing some of the drawbacks discussed
in this section can extend these solutions to broader problem contexts. Additionally, we
also describe some promising future research directions to make our solutions more robust.
Initially, we discuss three limitations of the contribution made in Chapter 3. Subsequently,
we discuss another three limitations of the contribution given by Chapter 4.

Forward-models for push planning

Chapter 3 proposes two versions of a planner which can avoid regions of high uncertainty
while pushing an object towards the goal pose. These planning algorithms relied on a
forward-model based on Ensemble-Mixture Density Networks for object pushing. The model
used in for the experiments is limited to predictions (three dimensions) of object pose in
2D. Theoretically, the forward-model is capable of learning larger dimensions. However,
time constraints did not permit us to test large DoF models. It will be interesting to explore
the dimensional limitations of the model (if any) when trained on high DoF data. The
major challenge in training a large DoF output will be the tuning of hyperparameters. The
experience so far with the networks suggest following approach. Initially take a subset
of the training data and try to overfit the model. Capability to overfit denote the network
to be sufficiently complex to represent the data. Failure to overfit suggest modification of
network parameters like more depth layers, modification of learning rate or tuning of other
hyperparameters of the cost function.

Further, since our problem was constrained to 2D, and since it was a proof of concept
work, we limited ourselves to an action value of 1 dimension. The optimal push actions
found by the planner are in terms of this 1D value. This value gets converted to a push action
using a predefined transformation. Though the planner supports the parameterisation of
continuous actions, they are limited to a single type of actions. Instead of push actions, it
would be interesting to investigate how to add a different parameterisation to include other
types of actions such as toppling, hitting and using environment constraints (e.g. pushing
against a wall) to augment pushing. The availability of different types of actions will make
the planner better equipped to deal with uncertainty.
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Another shortcoming of the current approach is the lack of ability to forward propagate
the uncertainty in prediction. This shortcoming is mainly due to the inability of the forward-
model to include uncertainty in the inputs while forward simulating to predict the next state.
Hence, the current push sequence generated by the algorithm assumes a quasi-static behaviour
of the object. This is the reason for the inability of the planner to generate continuous push
actions. Thus the object moves from start to target in a quasi-static manner. It will be
interesting to use a forward-model which can also incorporate uncertainty associated with
the current state in the input. Adding the capability to propagate uncertainty will help to plan
multiple push actions simultaneously.

Forward-models for variable stiffness control

In Chapter 4, we proposed a framework to deal with continuous interaction tasks. The
framework can incrementally learn the non-linear dynamics when the robot interacts with the
environment. The learned model is used by the framework to anticipate force, and the force
errors are used to modulate the stiffness behaviour. The variable impedance proposed deals
only with the shaping of the stiffness and damping terms of the controller. However, effective
impedance control requires inertia shaping as well. In our case, we use the assumption of
constant end-effector inertia tensor. This assumption is valid for forces which cannot affect
the overall inertia of the robot. However, there could be task states which affect the overall
inertia of the robot. Extending the framework with varying inertia tensor will make it more
generalisable. However, varying inertia tensor requires great care and precision to avoid
unwanted behaviour of the robot. The stability conditions, sensing and choice of additional
feature vectors required to add modulation of inertia tensor is a challenging and exciting
direction for future research.

Further, we can notice that in our two surface experiment (Section 5.3), the agent
tends to forget the forward-model learned on surface 1 when it is moving on surface 2
and vice-versa.This forces the agent to relearn the forward-model when used back on the
older surface again. This problem can be solved by using a context to identify each of the
surfaces. In robotics, context is defined as a feature which helps to understand or classify a
situation sufficiently. For example, polishing two surfaces with distinct friction coefficients
requires the same kinematic movement, but different force adaptation. The context can
be a visual or contact feature of the surface, which helps in its correct classification. This
allows ’switching’ of the forward-models as and when required instead of relearning. At
present, the online learning model of the framework cannot deal with switch models based on
contexts. This is because the current feature vector does not have a component to represent
task context. Context identification will also demand additional sensors (e.g. visual) or
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inference capabilities from existing sensors. Interesting research will be to learn or detect
contextual features to augment the existing framework. This addition will potentially help in
auto-switching of the forward-models depending on the context.

Earlier, we mentioned that the implementation of task space controllers helps in intro-
ducing some amount of joint space compliance for redundant manipulators. The current
framework deployed do not optimise any forces in the task space. This is because direct
optimisation of the end-effector forces in task space is meaningless (a specific motion requires
a specific amount of force). However, since for a redundant manipulator there exist multiple
joint configurations for each task space configuration (provided the manipulator is not near a
singular configuration). Hence it provides a possibility to include energy-saving optimisation
in the null-space of the robot. Research in this direction can further improve the current
framework. However, such optimisation will also demand the kinematic knowledge of the
manipulator used and design of a task-specific cost function.
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Appendix A

Task space control law formulation

The problem task space control is formulated using rigid body assumptions starting with
the manipulator equation. All notations in bold denote multi-dimensional quantities (i.e.
matrices, vectors).

M(q)q̈+C(q, q̇)+g(q) = τ −JT
CFi

ext (A.1)

where q is the (generalised) joint angle vector, q̇ is the joint velocity vector, q̈ is the
joint acceleration vector, M(q) is the inertia matrix, C(q, q̇) is the Coriolis vector, g(q) is
the gravity vector, and τ is the joint torque vector. J is the contact Jacobian and Fi

ext is the
external force in the Cartesian space at step i. Here we are assuming JC = J the end effector
jacobian. For ease of notational simplicity we write the same equation as:

Mq̈+h = τ −JT
CFi

ext (A.2)

where, h = C(q, q̇)+g(q). This equation is defined in the joint space of the robot and
needs to be translated to its equivalent in the task space for implementing task space control.

The aim is to develop a controller which has a linear relationship between input (control
input) and output (joint state acceleration of the robot). In other words, we like to make
the entire robot behave like a spring either in the joint space (if a joint space controller is
implemented) or in the task space (if a task space controller is implemented). Suppose we
have a torque command as follows:

τ = Mu+h (A.3)

where, u is the control input to the robot and other parameters as described previously.



106

Mq̈+h = Mu+h−JT Fi
ext (A.4)

q̈ = u−M−1JT Fi
ext (A.5)

Jq̈ = J(u−M−1JT Fi
ext) (A.6)

Jq̈ = Ju−JM−1JT Fi
ext (A.7)

Recall from the fundamental relationship.

Jq̇ = ẋ (A.8)

Jq̈+ J̇q̇ = ẍ (A.9)

Jq̈ = ẍ− J̇q̇ (A.10)

Substitute A.10 in A.7.

ẍ− J̇q̇ = Ju−JM−1JT Fi
ext (A.11)

ẍ = Ju−JM−1JT Fi
ext + J̇q̇ (A.12)

Suppose we choose:

u = J−1(ẍd +Md
−1KP(xd −x)+Md

−1KD(ẋd − ẋ)− J̇q̇+JM−1JT Fi
ext (A.13)

where, Md is the desired inertia matrix and xd, ẋd, ẍd is desired components of the
trajectory to be tracked. The term JM−1JT = M−1

ee is the task space inertia of the robot.
Since we are not interested in inertia shaping, we can keep the desired inertia matrix as the
default end-effector inertia; that is Md = Mee, A.13 becomes, Now let us choose:

u = J−1(ẍd +M−1
ee KP(xd −x)+M−1

ee KD(ẋd − ẋ)− J̇q̇+M−1
ee Fi

ext (A.14)
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Let us assume that we are able to express Fi
ext as a spring model:

Fi
ext = KP

i(xd −x)+KD
i(ẋd − ẋ) (A.15)

Then, A.14 becomes:

u = J−1(ẍd +M−1
ee (KP +KP

i)(xd −x)+M−1
ee (KD +KD

i)(ẋd − ẋ)− J̇q̇ (A.16)

Substituting A.16 in A.12, we get:

ẍ = J(J−1(ẍd +M−1
ee (KP +KP

i)(xd −x)+M−1
ee (KD +KD

i)(ẋd − ẋ))−M−1
ee Fi

ext (A.17)

0 = (ẍ− ẍd)+M−1
ee (KP +KP

i)(xd −x)+M−1
ee (KD +KD

i)(ẋd − ẋ)−M−1
ee Fi

ext (A.18)

Mee(ẍd − ẍ)+(KP +KP
i)(xd −x)+(KD +KD

i)(ẋd − ẋ) = Fi
ext (A.19)

x̃ = xd −x

Mee ¨̃x+(KP +KP
i)x̃+(KD +KD

i) ˙̃x = Fi
ext (A.20)

Learning problem

Suppose we set:

KPmean =
KPmax +KPmin

2
(A.21)

KDmean =
KDmax +KDmin

2
(A.22)

and choose KP
i and KD

i such that:

KP
i = f1(F̂i

ext)

KD
i = f2(F̂i

ext) (A.23)
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where, F̂i
ext is predicted external force.

If we can express this function as a parametarised basis function (for example the
Gaussian kernel), we can use some learning methods to learn the parameters.

f1(F̂i
ext) = Kernel(uwP ,ΣwP) (A.24)

f2(F̂i
ext) = Kernel(uwD ,ΣwD) (A.25)

The external force needs to be learned and has to be expressed as function of the state.



Appendix B

Brief review on hardware and software
built

B.1 Hardware

This section covers the different robots (Baxter and Sawyer) used in this thesis and a small
description of the haptic device used to emulate the porridge environment.

Baxter

Baxter is a dual-armed robot designed and manufactured by Rethink Robotics, USA (Ret
[132]). It was primarily designed as a collaborative robot which can safely interact with
humans. Each arm of the robot consists of seven degrees of freedom. The joints of the
arm actuated using serial elastic motors and hence are passively compliant. The robot gives
precise position control, velocity control but lacks torque control. Baxter provides interface
via ROS and their open source SDK.

Sawyer

Sawyer is a single arm robot from Rethink Robotics, USA (Ret [133]). This robot also
consists of serial elastic actuators and has seven degrees of freedom. The robot can be
controlled via ROS and provides position, velocity and torque control modes. Sawyer
provides built in force sensing capabilities and the passive compliance make it capable to
operate safely with humans.
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Moog Haptic Master

The HapticMaster is a haptic device designed and developed by Moog FCS Robotics (Haptics
[60]). The device is primarily used for human robot interaction and psychophysics studies.
It is a force controlled device and can render arbitrary stiffness, damping and forces with
minimal friction. The device consists of a force sensor at its end-effector which can be used
to measure human interaction forces.

Design of the non-linear spring

Figure B.1: Designed non-linear spring

The non-linear spring used consists of a combination of three linear springs of different
(B.1) spring constants connected at an angle. This results in the setup pulling the robot
end-effector with different forces in different directions. A plot of the spring extension in
different directions against the force experienced is shown in Figure.
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B.2 Software

This section covers a short description of the software stack developed as a part of the
thesis as a collaborative effort between myself and Ermano Arruda for IRLab, University of
Birmingham. 1.

AML:Advanced Manipulation and Learning (AML)

The stack is currently used by all research students at the IRLab for their work. Manipulating
objects is one of the key domains actively researched in robotics and mainly comprises of
dexterous manipulation (planning and changing contacts) and grasping. Initial methods in the
domain were purely based on classical mechanics. Though these methods were successful
in highly structured environments, they tend to fail in situations that included unmodeled
scenarios like friction, variation in kinematic and dynamic properties of the objects etc.
This inability to effectively and safely cope with uncertainty is still the bottleneck that
inhibits the use of robots along with humans. Various methods in the machine learning
domain were suggested to circumvent the problem of coping with this uncertainty. Apart
from this, directly learning from data had the advantage of reduced complexity of manually
modelling the scenario. One of the main challenges of using machine learning methods
in manipulation (or robotics in general) is need of large quantities of data. This calls for
methods to actively collect, store, check and retrieve the data as required. This software
package puts forward some automated data collection infrastructure for manipulation. Apart
from learning methods, usage of various trajectory optimisation methods gained prominence
in manipulation. Trajectory optimisation methods tend to find an optimal trajectory (and or)
policy for a task based on minimising a cost function. Also methods of directly encoding
an human expert demonstration for a task execution were suggested in the past decade.
Sometimes these demonstrations are also used to warm start the optimiser (this helps to
converge to a good solution in less number of iterations). Having mentioned various methods
of research in robot manipulation, it was our intention to bring several of these methods
under a common software package. This package could serve as a common infrastructure
(or starting point) for anyone in the IRLab or even as a open source project in the future.
The stack includes many key methods actively researched like deep learning, classical
methods, trajectory optimisation techniques and some data collection infrastructure for
machine learning methods. This motivation led to the creation of the software package called
Active Manipulation and Learning - AML. Apart from interfacing hardware platforms like
Baxter, the package also supports 3D physics engines like Mujoco and Bullet and 2D engines

1https://github.com/RobotsLab/AML
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like Box2D. The main advantage of the package is that any new hardware can be added to the
existing stack by writing a single interface file. This makes the stack a general infrastructure
for any amateur researcher in manipulation. In short, AML is a stack build for manipulation
and learning for robot manipulators. The stack is written mostly in Python and partly in C++.
It makes use of the ROS Indigo (Quigley et al. [130]) platform to create a general package
for robot control, manipulation and grasping. The stack contains various packages that
support classical control techniques, learning from demonstration, trajectory optimisation,
deep learning and necessary support packages. The learning methods implemented depends
on Google’s tensorflow (Abadi et al. [1]).

Key points

• Highly modular.

• Interface with both hardware and software.

• Automatic manipulation data collection methods.

• Can be easily extended to any robotic platform.

• Availability of many recent algorithms, methods for manipulation.

• Actively maintained and tested.

• A good starting point for anyone in IRLab to pursue research on manipulation.

• A common library for the domain of manipulation.
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Alternate attempted approaches

Before arriving at the proposed framework in Chapter 4, a set of studies were conducted to
gain critical insight to some of the existing methods and understand the technical challenges
involved in their implementations. These studies were successful in terms of understanding
the approaches and their capability to solve different aspects of the thesis topic. The goal
of the thesis was to make a planner capable of performing in-hand manipulation. Such a
task involves creation of planner to plan contacts and a framework to apply optimal forces to
manipulate the object.

During manipulation, stages might arise where the fingers will have to re-position the
contact location due to instability of the object or their kinematic limits. The re-positioning
of a finger from one contact location to another is called a finger gait. But such making and
breaking of contacts results in discontinuous object dynamics. These discontinuities makes
the problem of dexterous manipulation exceptionally hard.The change in dynamics can be
smoothed by minimising the energy change of the object while initiating or leaving a contact.
This can be achieved by making the fingers compliant while breaking and making contacts.
Once the contacts are initiated, the fingers should be made stiff to effectively manipulate the
object. Lack of stiffness after making the contact leads to slip and dynamic instability of the
object.

A contact planner with all these capabilities is still an open problem in the literature.
Solving the problem requires solving several constituent sub problems to be studied and
solved. For instance, the dexterous manipulation requires to study dynamic discontinuities
that arise during manipulation, variable impedance behaviour of the fingers to mitigate these
discontinuities, representation of manipulation policies (skills), designing the search space
on object surface to make contact etc. The following set of studies uses different type of
popular approaches in the literature such as:

1 Deep Deterministic Policy Gradients for pushing, stiffness learning
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2 QP based contact planner

3 Receding horizon manipulation planner

4 Movement Primitives(DMP & ProMP) based contact planner

5 PI2 based gait planner

6 Contextual Relative Entropy Policy Search (C-REPS)

7 Gaussian Process Relative Entropy Policy Search (GP-REPS)

The above mentioned seven implementations are to investigate these aspects. The main
sub-questions investigated are:

1 Can a completely data driven approach learn an effective policy for dexterous manipu-
lation? (Studies C, C)

2 What is the effective way to represent manipulation skills? (Studies C, C, C)

3 How to identify when to gait fingers? (Studies C, C, C)

4 How to find contact locations on an object surface? (Study C)

5 How to incorporate a learned dynamics model for policy search? (Study C)

6 How to anticipate a contact? (Study C)

7 Should a global or local forward-model be learned? (Study C)

8 How to vary stiffness while initiating contact and manipulating the object? (Study C)

Study 1: Learning ballistic compliant skills with DDPG

The main intention of this problem is to investigate whether a completely data driven approach
is good for learning effective manipulation skills. The architecture starts from a randomly
initialised policy and learns an optimal policy by collecting data from the robot and the
environment.

Problem setting

The experiment is conducted in a physics engine (Bullet) based simulation platform. The
environment consists of a box and a wall with a hole in it. A three link robot should learn a
compliant policy to push the box inside the hole.
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Approach

In this attempt, a version of the deep deterministic policy gradient (DDPG) was tested in
simulation. DDPG is an off policy search method proposed in Lillicrap et al. [97]. An
initial kinematic trajectory was given to the manipulator to push the box inside the hole. The
algorithm aims to learn a set of state dependent torque commands to push the box inside
the hole. The framework consists of an actor-critic neural network architecture. The actor
consists of a 20 dimensional input vector and outputs a three dimensional joint torque value.
The critic consists of the 23 dimensional input vector to output a one dimensional advantage
factor. The input vector consisted of the joint position and velocity of the arm, end effector
pose and position of the box in the end-effector frame. The reward function complimented
for following the demonstration, for reaching the object and for pushing the object inside the
hole.

Results

• The algorithm was able to learn a set of torque commands to push the box inside the
hole1.

• Further attempt to learn a state dependent stiffness value failed to produce good results.

• Attempting the same approach on robots with redundant degrees of freedom was also
not successful2.

Observations

• DDPG requires large amount of data to train.

• The algorithm learned a direct mapping between state and control commands instead
of a policy distribution.

• The training time for the three link arm took 3 hours while the redundant manipulator
took almost a day.

• This long time of training makes it hard to debug the approach effectively.

• The algorithm also had several hyper parameters with non-trivial values to be hand
tuned.

1https://youtu.be/ee94RoWlCE4
2https://youtu.be/PzCVZ6ANkl0
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• The convergence required around 700 epochs for training.

• The policy learned is task specific and hence not generalizable.

• The algorithm does not learn any explicit model of the task which can be reused.

• The structure of the neural network prevents from incorporating already known knowl-
edge into the system.

Conclusion

DDPG learns a task specific global policy. The data complexity and training times for larger
systems are practically impossible to satisfy with a real robot. This study showed various
inabilities associated with a direct data based approach and motivated to use a model based
approach.

Study 2: QP based contact planner

Quadratic Programming (QP) is popular optimisation technique used to solve constrained
minimisation problems. This study aims to formulate the object manipulation problem as a
quadratic minimisation problem, subject to different physics constraints.

Problem setting

The problem consists of an object initially grasped by a four finger manipulator. The task is
to manipulate the object and gait the fingers as required.

Approach

This work was inspired by two works in the graphics literature by Fan et al. [46] and Liu [99].
In this approach, the gaiting problem is defined as a QP problem. The algorithm searches for
a potential contact location in the neighbouring area of the current location subject to various
physics constraints. The constraints include (i) finite search space around the current location
(ii) manipulability of the finger and (iii) shape information of the object. While moving to the
optimal contact location, the fingers slide on the object’s surface resulting in manipulating it.

Results

• The algorithm successfully finds the adjacent contact locations.

• The contact locations found are within the manipulable range of the fingers.
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• Attempts of the robot to slide to the new contact locations result in manipulating the
object.

Observations

• The algorithm was only able to slide on the object’s surface rather than making proper
gaits 3.

• Finding a contact location far from the exiting location results in failure.

• Dynamic stability of the object is not considered.

• The search space had to be well defined in the neighbourhood of the existing contact
location.

• The algorithm demands a smooth object surface.

• The method assumes point contacts with friction which is practically impossible to
achieve with a physical robot.

Conclusion

The QP based approach is an intuitive approach to solve the problem of dexterous manipula-
tion (with certain assumptions). The problem is to find better contact locations adjacent to
current grasp locations subject to various constraints. By sliding along the shortest distance
to newly found contact locations, forces are imparted on the object to manipulate it. The
force applied at the contact locations are non-optimal. There is no notion of compliance
while manipulating the object.

Study 3: Receding horizon manipulation planner

The success of the QP implementation motivated the following investigation. The same
method was used to solve the problem of dexterous manipulation along with object dynamics.

Problem setting

The problem consists of an object initially grasped by a four finger manipulator. The task is
to manipulate the object to a specified arbitrary configuration using an optimal sequence of
commands.

3https://youtu.be/mMeV1oVj0dE
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Approach

This work is inspired from the previous approach, yet is unique in several aspects. The
algorithm is based on the idea of rigid body transformations. The approach assumes that the
object is under a stable grasp using point contacts with friction. Using the forward-model of
the object dynamics, a sequence of optimal wrenches to be applied on the object’s centre
of mass to reach a target pose can be computed, The resulting object trajectory from the
optimal wrenches is computed by simulating the forward-model. The object trajectory
contains potential poses which would be generated if the computed wrenches are applied at
its centre of mass. Assuming no slip and with the knowledge of initial contact locations, a
potential contact trajectory of the fingers on the object surface is computed using rigid body
transformations. Once the contact trajectory is found, by using a polygonal approximation
of the friction cone, a set of optimal forces to be applied at these contact locations can be
obtained using quadratic programming. The friction cone approximation used in this work is
similar to the one in Liu [99]. The computed contact trajectory and contact forces are used
by a position-force controller in a receding horizon setting. In case of a slip, the algorithm
re-computes the contact trajectory and object trajectory from the corresponding grasped
location.

Results

• The algorithm was successful in manipulating the object to any arbitrary configuration4.

• The computation time was negligible.

Observations

• Used a friction cone approximation for the contact forces.

• Assumes practically non-existent point contacts for problem solving.

• Failure to gait the fingers when their kinematic limits are reached.

• The approach demands full observability of the object state.

• The approach heavily relies on the accuracy of the kinematic information of both
object and the fingers.

• Gaiting while manipulation is a non-trivial problem.
4https://youtu.be/4cNDvj0PPcU
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Conclusion

This study gave insights to the analytic formulation of dexterous manipulation. The main
shortcoming of this work is the assumption of contact type. The algorithm relies on stable
initial contact of the object.

Study 4: Movement Primitives based contact planner

It is easier to use human demonstrations to initialise the optimiser or use them as a skill
with an appropriate parameter based representation (Kumar and Levine [83]). This study
aims at learning different techniques used to represent kinesthetic teaching of robots. One
of the aim of this thesis is to use parametarised movement primitive (skill) to encode the
demonstrations. Directly learning the modifying parameters of a skill is a much easier task
compared to learning the entire skill from scratch. This study aims to learn about techniques
which can represent manipulation skills from demonstration. The study also aims to find the
right frame to represent the skills; i.e object frame or the robot frame or individual finger’s
tip frame.

Problem setting

The problem consists of an object initially grasped by a four finger manipulator. The aim is
to make the manipulator follow a predefined set of skills specified in the object’s frame.

Approach

The set of skills required to manipulate the object and gait the fingers are collected from
demonstration. The skills are encoded using two popular techniques (i) Dynamic Move-
ment Primitives (DMP)(Ijspeert et al. [66]) and (ii) Probabilistic Movement Primitives
(ProMP)(Paraschos et al. [127]). The skills are followed using a position controller or an
impedance controller. The skills were defined both in the robot frame and in the object frame.
It was found that representing skills on object surface gives a pose invariant representation to
the skills. Later, when a skill is to be followed, the object’ surface skill is transformed to the
manipulator frame. A finger can be either in manipulating or gait mode. The finger mode is
determined by ranking fingers according to their manipulability. The least manipulable finger
undergo gait first. Both manipulation primitives used in this study can scale temporarily and
spatially. This helps to generalise the skills to objects of similar shape.
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Results

• The implementation successfully manipulated the object using a set of pre-defined
skills 5.

• The sequencing of the gait primitive after manipulating policy was successful.

Observations

• Defining skills on the surface of the object helps to preserve them irrespective of the
pose of the object.

• By using an appropriate tracking controller, effective manipulation of the object can
achieved.

• It is best to gait one finger at a time.

• The impedance controller was less stiff and resulted in slip from the intended skill.

• The approach lacked ability to independently choose gait target location.

• Modification of gait primitive under arbitrary object pose is non-trial due to collision.

• ProMPs does not have a notion of attractive goal state like DMP. This seems to cause
instability at certain scaling conditions.

Conclusion

Effective manipulation skills can be collected from demonstration and are best defined in
the object frame. Gait primitives are also defined in the object frame but modification of
these skills under arbitrary object pose is non-trivial . The impedance controller alone is not
capable to manipulate the object due to slip. Hence a variable impedance controller should
be used. DMPs seems to be a better choice for movement primitive representation due to
their inherent stability.

Study 5: PI2 based gait planner

One of the problems in manipulation is to reliably gait fingers as required. The movement
primitives described in the previous section are capable of representing the gait primitive.
But sometimes, the encoding parameters of the primitive have to be updated to completely

5https://youtu.be/37zzzK0ltac
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modify the skill. This study investigates the use of a method proposed in Theodorou et al.
[157] to address the issue of modifying primitive representation.

Problem setting

The problem consists of an object initially grasped by a four finger manipulator. The fingers
are at their respective kinematic limits. A given gait primitive is to be modified to achieve a
collision free path with the object.

Approach

The gait primitive is encoded in a suitable parametric form. The aim of this study is to find an
effective way to modify the encoding parameters of the gait primitive to achieve a collision
free path with the object. The collision of the default gait trajectory with the object can arise
due to a particular pose of the object (typically reached during manipulation). The encoding
parameters can be modified using a sampling based motion planner described in Arruda et al.
[9]. The trajectory planner uses a PI2 based update to the parameters of the gait primitive to
find a collision free path with the object. The update also takes into account various kinematic
limitations of the manipulator and shape information of the object. Samples are generated
around the given gait trajectory and are evaluated using a hand designed cost function. The
cost function uses ray-casting to find collision of each point on the trajectory with the object.
The trajectory is updated in the direction of low cost samples. Gradually the algorithm finds
a path that is collision free with the object.

Results

• The implementation was able to modify a given gait primitive in collision with the
object to be collision free. However, the approach failed to manipulate the object 6.

Observations

• Finding a collision free path with the object takes a lot of time to compute (in this
attempt, around 25 seconds per finger to gait).

• Sometimes the optimiser fails to find a path due to the presence of a local minima in
the cost function.

6https://youtu.be/MUPvgS2NbGU



122

• Defining the cost function demands complete knowledge of the object shape and the
availability of a collision checker.

• The algorithm requires exact pose information of each fingers to perform precise
collision checking.

• The approach do not use any information about the dynamics of the object.

Conclusion

The cost function design is non trivial and is not good for real time implementations due to
the computational time. The study helped to understand the problems associated with the
PI2 algorithm for the particular task of gait modification in manipulation.

Study 6: Contextual Relative Entropy Policy Search

A movement primitive can be considered as a lower level policy executed by the robot.
Modifying the hyper-parameters can be considered as an upper level policy to the movement
primitive. Policy search methods are effective in finding locally optimal parameters. The use
of policy search for finding parameters of a lower level policy reduces the search space for
the task. The main aim of the study described in this section is to find a method which can
effectively learn the hyper-parameters of a skill. The algorithm used here was proposed in
Kupcsik et al. [86] .

Problem setting

The task involves the classic peg insertion problem. A rectangular peg is attached to the
end-effector of the Sawyer robot. The goal is to correctly insert the peg into a upward facing
rectangular hole with 1.5mm of allowance. The orientation (with z axis) of the hole is set to
randomly change. The robot has to learn a general policy applicable to different orientations.

Approach

The aim of this study is to investigate a policy search technique which can learn the hyper-
parameters of a movement primitive. Consider the skill of forward hand in tennis. There
will be many instances where the forward hand is the right skill to counter an incoming
ball. But the player might also require to do minor adjustments to the same skill primitive
in different cases of the same forward hand task. This scenario can be thought as follows.
All the situations for which the forward hand is the right solution can be treated as a cluster.
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Within this cluster, there will be several instances where the skill has to be modified to meet
certain requirements (e.g. hitting to a particular location of the court). The points within a
cluster are called as contexts. In other words, there will be a fixed skill or a chain of skills
associated with a cluster of contexts. In each of these contexts, we may need to modify the
hyper-parameters of the same skill according to the requirements.

The idea described here is inspired by the tennis playing scenario. Consider the peg
insertion problem where the hole is facing upwards. A set of skills are required to push the
peg inside the hole. Now consider the case of changing orientation of the hole (i.e rotation
about the z axis). The robot could use the same skill (with appropriate modifications) for all
the different cases of orientation change about z axis. The random orientation change can be
thought as a context. The policy search described here aims to learn an upper level policy for
all the contexts in a cluster (i,e, the skills are fixed for the cluster, we are only learning their
hyper-parameters). In this problem, each orientation of the hole is considered as a context
(s). The aim is to find a optimal policy π(w|s), where w is the hyper-parameters of the skills.
The skill is defined as a DMP. The aim of the policy search method is to come up with a set
of parameters to modify the DMP to adapt it for the observed context.

The peg insertion problem is solved as a sequence of two DMPs. The first DMP is used
to reach the hole and second DMP is used to insert the peg to the hole. The peg has to be
exactly aligned with the hole to be successfully move inside it. In this problem setting, the
w denotes the spatial scaling parameters of the DMP as well as the orientation of the peg.
The policy search has to find these six parameters for different hole orientations (contexts).
The cost function consists of three terms (i) alignment reward (make the peg aligned with
the hole) (ii) closeness reward (get close to the hole to insert in) and (iii) insertion reward
(move inside the hole as deep as possible). Once the set of parameters are found, new skill
trajectory is computed and is followed by using a position controller.

Results

• The implementation was successful 7 in learning all the six parameters for hole orien-
tation change from -5 to +5 degrees.

Observations

• The algorithm was able to find a solution in 200 epochs.

• The policy is updated using samples hence is susceptible to the bias in the samples.

7https://youtu.be/R_JtEG6Hxuk
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• The policy search uses large number of samples which scales with increase in parameter
dimension.

Conclusion

The success of the policy search method relies on the effective parameterisation of the skills.
The method does not learn or approximate any model of the task, this results in larger number
of trials on the robot.

Study 7: Gaussian Process Relative Entropy Policy Search

The problem with direct policy search methods is the lack of a model. Model learning
involves collecting several examples from the real robot. Collecting data from the real robot
is expensive. If the learning process can be augmented by a model of the system, it can be
used to generate additional data about the task. The problem was attempted using a model
based extension of C-REPS Kupcsik et al. [86] explained in Section C.

Problem setting

The task involves a classic peg insertion problem. A rectangular peg is attached to the
end-effector of the robot. The goal is to correctly insert the peg into a rectangular hole with
1.5mm allowance. The orientation of the hole is set to randomly change within a range. The
robot has to learn a general policy applicable in different orientations to complete the peg
insertion.

Approach

The aim is to collect data and then learn a forward-model of the system. Later this model
is used for policy search. Insights into the algorithm are described in Kupcsik et al. [86].
Learning of the forward-model helps in reducing the data complexity of the algorithm. The
forward-model used consists of multiple models. One model is used to learn the contexts
and another model is used to learn the reward function. Gaussian Process regression is
used to learn the reward function. The contexts are learned using the maximum likelihood
estimation of a Gaussian distribution. Later this learned model is used to generate additional
data during the policy search operations. After a pre-defined number of iterations using the
forward-model, additional data are collected from the real robot using the updated policy.
These steps are repeated until convergence of the reward.
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Results

• The implementation was successful in learning all the six parameters for a hole
orientation change from -5 to +5 degrees.

• Same technique was also tried for context changes from -12 to +12 degrees. The
algorithm successfully 8 learned for all angles between -12 and 0 degree while failed
for the ones from 0 to 12 degrees.

Observations

• The algorithm was able to find an optimal solution in 70 epochs for the -5 to 5 degree
case.

• The solution depended on the initial set of random samples. Hence collecting them
in such a way as to span the search space results in faster convergence and better
solutions.

• The forward-model learned can be a set of different models instead of a single global
model. This allows incorporating more structure to the forward-model to learn faster.

• Each of the separate models can be learned using different function approximators.

• The use of different contexts for forward-model learning helps to choose models in
accordance with the data instead of using a single global model.

Conclusion

The algorithm offers a model based reinforcement learning to find a higher level optimal
policy that dictate the hyper parameters of skills to complete the peg insertion problem. This
study showed that using a forward-model can greatly reduce the sample complexity of the
algorithm. The algorithm uses two separate techniques to learn the context distribution and
the reward distribution. This supports the use of multiple modular models for learning the
forward-model of the task.

8https://youtu.be/rC3hVlMbH2Y
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