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Summary/Abstract

This thesis presents a general framework for the control of a robotic agent tasked with solving problems in the
domain of industrial assembly. A set of motivating example problems are described which shape the development
of the framework. The framework fuses the concepts of a closely coupled, multi-layer reasoning architecture
with abstract assembly sequence planning. This framework provides a reusable and flexible structure for robotic
manipulation via a modular location graph, and a grasp planning mechanism that considers object and task
constraints.

One example assembly task inspired by the building of light gauge steel frame panels for the construction
sector is used to develop a benchmark object set and challenge assemblies. These objects are published as the
open source Robotic Assembly Manipulation and Planning (RAMP) benchmark [1].

The abstract task planning layer finds valid sequences of part addition to complete an assembly task given
a task description specified using Action Language ALd [2] sequentially feeding these steps as subgoals to a
closely coupled robotic reasoning framework based on the REBA architecture [3]. Experiments demonstrate
application to long time horizon assembly problems requiring the addition of many parts with over 200 low level
robot actions. The abstract task planning layer reduced coarse-resolution planning time by 93.5% compared to
a baseline which must simultaneously consider assembly sequencing and robot actions.

The modular location graph structure links positional information between the task space and logical domain.
We utilise this structure to parameterise the assembly actions of the RAMP benchmark tasks. Additionally, a
pruning heuristic is proposed to speed up searching in this location graph when the robot is planning assembly
motions.

A grasp planning approach is detailed utilising a weighted grasp scoring model considering a combination
of measurement uncertainty and variation in the extracted surface, the contact angle of gripper fingers to the
surface, as well as task constraints. A three-level representation for objects, compatible with our framework,
includes object class membership, point cloud data representing the objects surface, and semantic keypoints
linked to the object parts. A learned model is used to encode task-specific knowledge from a small number of
exemplars of objects, tasks, and relevant grasps; preserving the relationship between keypoints and grasp points
for specific tasks despite changes in factors such as the scale and orientation of objects. The learned models
are queried at run time to guide the generation of grasps that balance task and stability constraints. Through
experimental evaluation on a Franka robot manipulator with a parallel gripper, it is demonstrated that this
method is able to generate grasps on previously unseen objects achieving the desired task-specific trade off
whilst maintaining a high degree of grasp stability.
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1 Introduction

Consider an industrial robot which must select, pick-up, and assemble a set of parts to build a product in the
fastest time possible and without mistakes. Industrial robots must achieve over 99.9% error free performance
and minimise cycle time in order to maximise productivity. Now, imagine that the assembly being built is a
set of steel construction beams which together build a roof or wall panel structure which will later be craned
into a building. Depending on elements of the building’s design such as the room layout, window and door
positions, or locations of plumbing or electrical systems; each panel may be subtly or drastically different in
its configuration, but the types of beams and joints used will be similar. We will return to this task, alongside
other motivating example tasks, to illustrate how the work completed in this thesis may be applied.

In order to enforce high performance in industrial settings engineers have typically “designed out” variation
through the development of sensors, fixtures, customised grippers, feeding systems, etc. Presenting robotic
assembly systems, such as those found in automotive body in white lines, with a consistent and repeatable
world in which they perform assembly tasks though the repetition of the same set of pre-programmed actions.
This approach, called “hard automation”, is expensive and as such requires significant volume or value of
products to be produced in order to justify the set up costs.

Increasingly, to make further productivity gains and automate in lower volume, or lower product value
scenarios, more flexible robots capable of handling several tasks whilst requiring lower capital investment are
becoming crucial. Collaborative robots and improvements to the ease of re-programming have already made an
important contribution to increasing robot density in many industrial environments, largely through automation
of simple pick and place applications such as palletising or machine tending. However, there are still many
opportunities for robots which can work more interactively with people, and which can perform more complex
tasks.

There are several key concepts which are important for robots to tackle these more challenging and varied
assembly tasks.

• Perception; robots must be able to understand their surroundings, and find objects of interest within their
operating space.

• Planning; robots must generate reasonable and reliable plans of action i.e. they must be able to determine
for themselves the sequence of actions to take in order to achieve a goal. They must also be able to detect
scenarios where things have not gone to plan, for example when an action has not achieved the desired
outcome, and re-plan to get back on track.

• Object manipulation; robots must be able to manipulate various objects, as humans do, to pick objects
up, move them safely through the work space, and control contact rich interactions between the object
and environment in order to assemble objects together.

1.1 Problem Statement

To achieve complex goals, robots need task planning algorithms to break down problems into sequences of
executable skills. Long time horizon planning and robot skill control are a dual problem as planning relies on
the predictable outcome of skill execution, whilst individual skill execution relies on good preparation achieved
though previous actions. For example to successfully insert a beam into our assembly example the robot must
previously have grasped the beam in a suitable place to complete the necessary insertion action without collision
between the robot gripper and other beams already in the assembly.

One of the challenges of robotic assembly is to coordinate the perception, task planning and motion plan-
ning components that are essential for achieving the desired outcome. Task planning involves determining the
sequence of actions that need to be performed to assemble the parts into the desired structure. For assem-
bly of multi-part assemblies many actions may be required presenting a difficult challenge as these systems
must consider large possible states over many time steps. Task planning in such domains can quickly become
intractable due to the exponential increase in the state space over subsequent time steps. Imperfect models,
and uncertainty in perception and execution of robot actions also present challenges in successful completion of
long-horizon tasks.
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Robot in-hand manipulation remains difficult as robot end effectors (or hands) lack the dexterity or sensitivity
of their anthropomorphic equivalents. Often it is preferable for a robot to grasp objects in such a way that in-
hand manipulation of the object is not required or so that re-orienting and re-grasping the object is made more
feasible. Robotic grasping is the action of attaching an object to the robot’s end effector though the forming
of contacts between end effector and the target object. Robotic grasping presents a challenge of planning and
executing suitable robot grasps based on object-task relationships in a way which generalises to many object
types that a robot might be expected to interact with in an industrial environment.

In this thesis we address the dual problem of robot skill control and long time horizon planning. Specifically
we look at applying a general methodology to long time horizon robot manipulation problems and performing
robotic grasping of objects given some knowledge, or plan, of future object-task behaviours.

1.2 Aims of the Study

This study aims to present three main contributions:

1. A general reasoning and control framework widely applicable to robotic assembly problems

2. A novel method for incorporating task data in grasp planning

3. A scalable benchmark which tests long horizon planning, reasoning and control for robot assembly

1.3 Definition of Manipulation Tasks

Any task where an object is physically moved by an external system can be described as a Manipulation Task.
Object manipulation covers a wide range of interactions including re-positioning an object in a workspace, as
well as more complex interactions with objects such as reconfiguring moving or deformable object parts by
applying forces to the object. We define robotic manipulation tasks as any task where a robot must control the
interaction between an object and the environment or other objects in the environment. Manipulation tasks
are object-centric, in that they can be described by the desired movement of the object. The following are all
examples of robotic manipulation tasks:

• Acquiring and lifting an object from a table

• Using a tool e.g., hammering a nail or driving a screw

• Pushing or sliding a block along a surface to a target destination

• Throwing or tossing objects at a target

• Insertion tasks e.g., placing a peg into a hole

• Squeezing a spray bottle trigger

• Twisting one row of a Rubik cube

• Moving a held object through space

We consider Assembly Tasks as a subset of robotic manipulation tasks where the robot already has an
object in its grasp and this object must be brought into a contact interaction with one or more other objects
in order to fit them together into a desirable configuration. The intention of an assembly task is to achieved a
desired outcome state of the object set. Assembly tasks might include:

• Single or multiple peg in hole insertion

• Screwing a lid onto a container

• Stacking objects into a pile
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Authors writing on mechanical design for assembly [5] [6] present detailed analysis of assembly or “fitting”
task difficulty with features of the task interaction governing a scoring metric for how difficult to assemble a single
part is, the intention of these works was to guide engineering design towards easier to assemble structures, thus
facilitating higher assembly productivity. Features affecting difficulty include; straight-line v.s. non-straight-line
assembly, top-down v.s. non-vertical insertion direction, ease of alignment, resistance to insertion, and single
v.s. multi-site insertion.

Grasping is a key skill for enabling robot manipulation interactions with objects. Robotic Grasping can
be defined as the act of forming a persisting robot-object relationship using an end effector, with the intent
of lifting/transporting the object though free space. Grasping using a generic gripper opens up the possibility
of interacting with a much wider range of objects and Dexterous Grasping specifically refers to grasping
through the use contact between the object and multiple fingers of the end effector as opposed to the use of
suction or other grasping methods.
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2 Related Work

Symbolic knowledge representations are expressive for reasoning about declarative knowledge including describ-
ing relations and constraints of task planning. Since Shakey, the robot used to test the AI planning language
STRIPS [7], approaches for symbolic task planning have intersected robotics and AI research. Declarative lan-
guages for formalising the task planning domain include Answer Set Prolog (ASP) [8] and Planning Domain
Definition Language (PDDL) [9].

Mechanisms for reasoning often incorporate hierarchical levels of abstraction to make planning more effi-
cient [10]. Methods include task decomposition such as Hierarchical Task Network (HTN) planning [11] or
more expressive formulations such as using multi-level knowledge representations [3]. Hierarchical abstraction
is a useful structure in planning for assembly tasks where there must be some inherent order to the assembly
process. For example, we can reason about the beam assembly definition to generate a high-level plan encoding
a viable assembly sequence, and reason at finer granularity about geometric locations to grasp and manipulate
the beams.

Traditionally, a descriptive model of the domain is specified by the designer. More recently researchers have
looked at learning these models. Learning-based methods can be used to generate planning models, to identify
heuristics for guiding search, and to acquire knowledge about unknown action effects or preconditions [12] [13].
However, purely learning-based methods remain data-inefficient in long-horizon problems.

There are many general cognitive architectures with varying approaches to separating high-level task plan-
ning, low-level motion planning and observations including ACT-R [14], SOAR [15], ICARUS [16], DIARC [17]
and T-REX [18]. For example, the T-REX architecture implements a sense-deliberate-act cycle synchronising
several concurrent control loops as Teleo-Reactive programs over unit time steps. Implementations of the T-
REX architecture using variants of Temporal PDDL planners have been demonstrated for control of unmanned
underwater vehicle, orbital satellite robot arm, and exploration rover domains [18,19].

One popular approach is to use the SkiROS2 architecture due to its integration with the latest ROS2 middle-
ware. SkiROS2 uses a modular approach with a separate PDDL based planning module to generate an ordered
sequence of actions with skill execution controlled by a behaviour tree [20]. Behaviour trees can be complex
to implement but have been shown to model the expressiveness of Finite State Machines, Hierarchical Task
Networks, Subsumption Architectures, Teleo-Reactive programs, and Decision Trees [21].

The REBA architecture, which we choose to build upon in this thesis, provides a method for reasoning at two
hierarchical levels. REBA uses the SPARC ASP formulation [22] for knowledge representation, non-monotonic
reasoning, and diagnostics. Formal coupling of the hierarchical layers of the reasoning model allows for more
detailed constraints to be considered only when necessary, by automatically selecting only the relevant objects
from the domain when zooming into the fine-resolution model. REBA also provides a method for implementing
observation actions to update the agent’s belief state in the reasoning model. This can provide continuously
reactive control, for example by implementing robot action controllers using automatically generated partially
observable Markov decision processes (POMDP)’s [3].

The key difference between prior work and REBA is in how REBA formulates and addresses the problem,
i.e., in reasoning about the domain at two (or more) formally coupled abstractions. This coupling helps make
reasoning and learning more reliable and efficient.

Recently, generative Large Language Models (LLMs) have demonstrated impressive common sense reasoning
capability and as such interest in applying this technology to robotics has been increasing. Advantages for
general robotic agents include the ability of such models to infer concepts from large data repositories such as
relations and affordances of objects in a scene [23], and to classify objects in order to take more general, human
language instructions [24]. Currently, LLM’s have known shortcomings for example suffering from confabulations
where they produce inaccurate responses based on inaccuracies in what LLM’s seem to “think” they “know”.
As such LLM’s have only been demonstrated on limited complexity tasks in terms of long horizon interactions.

Perception, grasping, and assembly actions are critical skills to enable the robotic agent to execute and
monitor planned tasks in a physical domain. The robot must be able to perceive objects in its environment
in order to identify items to manipulate and to collect information to be used in subsequent steps such as a
point-cloud of the object surface on which to plan grasps. Perception may also allow the robot to assess if its
actions have completed successfully or not, in combination with a suitable non-monotonic reasoning mechanism
this capability allows the robot to recover from failure [3].
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Figure 1: A generalised pipeline for robotic grasping.

Assembly tasks are a subset of manipulation skills which can be parameterised by the desired object motion
between states. Some tasks may be controlled in an open loop e.g., motion through free space whilst others
might require closed loop control. Perception via robot proprioception, addition of force-torque sensing at the
end effector, tactile sensing and external sensors such as cameras are all commonly used in combination with
mathematical models to control robot motion. Many works rely upon pose detection to assess object state at
each time step, optical markers such as Aruco and April Tags are commonly used for this purpose. 6DOF
pose estimation from RGBD images or pointcloud data, and the construction of a class level semantic keypoint
skeleton [25,26] have also been used to model and control the desired object motion. Assembly skills might be
manually parameterised, learned from human examples via teleoperation, or learned in simulation [27]. Some
assembly skills are generally applicable such as peg-in-hole insertion, and may be parameterised to be reused for
multiple scenarios. However, individual assembly skills might also be unique to the product being constructed,
as such it is important that our framework be able to flexibly support a wide variety of assembly skills.

Grasping is a key skill for enabling the robot to interact with objects in the environment. It is difficult to
compare grasping methods from literature because grasp success measures are often task and domain dependent.
It is clear however that state of the art methods have transitioned from analytic methods towards data-driven
approaches [28]. A generalised pipeline for planning robotic grasps is shown in Figure1. Both analytic and data
driven methods generate feasible grasp candidates and use a scoring system based on mathematical models,
heuristics, learned models or a combination thereof to select the best grasp to execute.

Methods using deep neural networks with RGBD images as input have reported high success rates for
grasping novel objects with a two finger parallel gripper [29–32]. However, many of these approaches are limited
to a single approach direction, typically from above. This is limiting for manipulation tasks where the 6DOF
pose of the gripper w.r.t the object held may have a significant impact on the robots ability to manipulate the
object.

Compared to parallel grippers, finding optimal grasp candidates for robot hands with multiple degrees of
freedom pose a high-dimensional search problem. Dimensionality reduction methods have been explored to
identify good grasps which tend to cluster in this search space [33, 34]. Generative methods have also been
developed to sample the space of grasp candidates, with some methods initialising grasp candidates based on
previously successful grasps before optimising for hand configuration and finger placement [35–38].

The choice of a good grasp is essential for the success of automated robot grasping and manipulation [39,40].
Considering task requirements may result in a less optimal grasp in terms of stability but it may increase the
ability to manipulate the object as required by the task [41,42]. Knowledge of manipulation trajectory can also
be used to impose checks on kinematic feasibility of grasps at the start and end poses thereby reducing the
grasp space considerably [43].

Methods developed to specify task-specific constraints and regions suitable for grasping an object learn these
regions from simulation trials [44–46], from large numbers of labelled images [47], or as an abstract function
that defines task-specific approach vectors for object classes [48,49].

Whilst symbolic representations are powerful for logical reasoning, continuous representations such as joint
angles and torques are necessary for direct control of the robot at an actuation level. Task and Motion Planning
(TAMP) attempts to integrate high-level task planning with low-level motion planning to generate feasible action
sequences for the completion of long-horizon tasks. We direct interested readers to a recent review of TAMP
approaches [50]. We choose to separate task and motion planning intentionally to allow for manipulation skills
of any kind to be operable with our reasoning system approach. This is an important distinction for making
our framework applicable to many robot agents, and many assembly problems.

There are relatively few benchmarks for long-horizon assembly tasks with many researchers developing their
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own tasks in order to test developed approaches. Multiple object collections exist for grasp planning such
as the YCB dataset [51] and object sets from the Amazon Picking Challenges [52] but these objects may be
difficult to source in some regions and typically the objects do not lend themselves to assembly or manipulation
tasks requiring many time steps. IKEA furniture has been used to provide a comparatively accessible and
repeatable object set requiring longer horizon manipulation sequences to progress assemblies [53]. For such
furniture assembly tasks it is hard to define distinct levels of complexity or difficulty and there is no guarantee
that commercial entities will continue to sell the associated furniture indefinitely. Other works have looked at
timber framing for construction which requires consideration of both robot skills [54] and assembly sequencing
to maintain structural stability [55]. Several researchers have used these object sets to investigate robotic skill
learning but fewer have used them to consider the robots reasoning framework more holistically.

Whilst researchers may wish to focus on specific areas of interest, robotic agents capable of completing
assembly problems require complete system solutions; combining perception, planning and control. The current
benchmarks fail to facilitate comparison of different approaches to the holistic challenge of robotic assembly
over long-horizon tasks. As such, a new benchmark is necessary which represents industrially relevant assembly
tasks, is scaled appropriately for use with common academic robotics hardware, and can be easily recreate-able
at low cost.
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3 Benchmark Tasks

In order to shape our framework three example tasks were considered which provide challenging scenarios for
a robotic agent. These tasks are based on industrial robotic assembly tasks. The scale and object sets of the
tasks have been simplified in order to make the tasks more applicable to type of equipment and setups available
in many academic labs, namely standalone collaborative manipulator robots with a tabletop work space. The
three tasks provide a range of complexities with which a general robotic assembly agent must be able to contend.
We will return to the tasks throughout this work to consider how the research illuminates possible routes to a
general solution.

1. Shape Puzzle - Bin picking introduces a high degree of uncertainty to the order of objects which can be
retrieved by the robot which it must sort through to assemble parts in the desired sequence

2. Tool Tidy - A collaborative robot helper for handling workshop tools putting them away in a shadow
board, rearranging them on a table surface, or presenting them to a person.

3. Beam Assembly - A robot assembly challenge using a tabletop scale representation of light gauge steel
(LGS) framing, used commercially to make construction panels. Individual beams can have a multitude
of joints which place constraints on assembly order and viable robot holding configurations.

The remainder of this section describes the individual tasks in more detail.

3.1 Shape Puzzle

Imagine a robot which has on one side a children’s shape puzzle, illustrated in Figure 2, on the other side it
has a bin full of shapes. The robot’s task is to complete the puzzle by placing shapes, into the correct pockets,
in a specified order. As such, the robot must search through the shapes from the bin to find the right ones to
complete the puzzle. The addition of an ordering constraint reflects the sequential nature of many industrial
assembly tasks. As the input shapes are lacking order in the bin this encourages the exploration of time/action
efficiency trade offs and planning with uncertainty, despite the simplicity of the object handling element.

This pick and place task is actually surprisingly common in industry as many goods are produced and shipped
in bulk but presented to consumers in packaging that holds a set of parts, for example Easter eggs, bathroom
kits, and cutlery sets to name but a few. Outside of consumer products in the automotive and aerospace
industries, kits of parts are often made up manually from bulk so that the assembly workers are presented with
exactly what they need in pre-defined locations in order to maximise efficiency on the production line.

In order to add some variety we add some shapes with handles, and others which are flat, this introduces a
requirement for the robot to change grasping methodologies. In order for the robot to sort through the shapes
we allow the robot to place objects on the table surface at a location between the bin and the puzzle.

3.2 Tool Tidy

In a workshop environment, a collaborative robot helper should be able to retrieve and pass tools to a person
on demand, the robot might also rearrange the tools on a table surface to make finding the right tool easier for
the human worker to find, for example placing spanners in size order.

Consider how tools are stored in a workshop. You may imagine a shadow board, commonly used in manu-
facturing environments, where tool draws or walls may be made with a foam structure to hold the tools. Each

Figure 2: An example of the Shape Puzzle task
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Figure 3: Example’s of shadow boards

tool has its “shadow” cut into the foam so that every tool has a place and it is easy to see which tools are
missing from the set, examples can be seen in Figure 3.

Now consider that once a job has been completed the shadow board has some tools missing, these might now
be left on top of a workbench. We want a robot to place each tool back into its place on the shadow board i.e.,
to tidy the tools. We will constrain the problem to a single robotic agent (a statically mounted manipulator)
and assume that the shadow board and tools are all within its reach. It should be immediately apparent that
the tidying task is similar to the Shape Puzzle, albeit not necessarily with the ordering constraints placed on
which item to insert. In this case though, the objects are more difficult to grasp.

A company might have hundreds of shadow boards with slightly different tool sets for different tasks, as
tools are replaced over time they may not be replaced with an identical match, and over time also the tools will
become scratched, dirty and worn.

The “Tool Tidy” robot has to perceive, identify, grasp and manipulate a set of objects with a variety of
objectives e.g., handing tools which might have sharp edges safely to a person as well as holding them in an
effective way to place them into the correct locations in the shadow board. The objects to handle are designed
for human’s to grip and hold ergonomically, and thus a fingered gripper may be more appropriate. It is also
easy to see how this collaborative robot might be extended in capability to use some of the tools to assist the
human, for example to perform fastening tasks with a screwdriver.

3.3 Beam Assembly

Light Guage Steel (LGS) framing describes a modern approach to modular building construction where struc-
tural components such as wall, roof and floor panels are made from beams typically pinned together with rivets
or screws. The beams themselves are made through a process of bending and stamping sheet metal stock from a
role. The beams have common connection designs but the exact specification of each beam is infinitely variable
and drawn directly from architectural CAD software. Thus each beam and panel can be unique. Illustrative
examples of an LGS panel assembly and of a building constructed with this technique can be seen in Figure 4a
and 4b. Currently, the process of assembling these structures is to manually assemble 2D panels off-site in
a warehouse where the work can progress regardless of weather conditions and in parallel with ground works
to reduce total build timelines. Joints between beams include butt joints forming 90 degree corners and T’s,
angled butt joints, and entire sections of beams slotted through each other to form X structures at a range of
angles. Once assembled 2D panels can then be shipped to the build site relatively efficiently, before connecting
the pieces together into a 3D volumetric structure. In order to enable further efficiency gains in the building of
these structures it is desirable to automate the off-site panel assembly process.

In order to make the “Beam Assembly” task practical for researchers we have designed a set of 3D printable
joints which mount to 20mm square cross section aluminium extrusion. The collection of joint designs allow
for beams to connect in a range of ways representing the types of conenctions seen in LGS structures including
square corner and “T” right angle connections, connections at a range of angles, and connections where one
beam passes through another. This kit allows for the recreation of LGS assemblies at a scale more amenable
to the desktop robots seen in academic labs. Beams can be made through the combination of these parts and
extrusion sections. These beams can then be built up into assemblies representing frame components. The
initial component set can be used to make a range of assemblies of increasing complexity that contain multiple

1Low cost LGS frame housing construction image from https://www.howickltd.com/applications/rapid-building/

low-cost-housing-system
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(a) An example LGS frame assembly (b) LGS frame construction1

Figure 4: Light Guage Steel Frame Strutures

beam connection types reflecting the joints seen in the original LGS structures. A set of assemblies is shown in
Figure 5 which have been published as the goal configurations of the RAMP benchmark [1].

(a) Easy Assemblies

(b) Medium Assemblies

(c) Hard Assemblies

Figure 5: Three classes of assemblies for assessing the capabilities of any proposed solutions to the RAMP
benchmark.

To make the assembly task reversible we lock connections using a single pin at each joint. The assembly of full
panels from the individual beams becomes an increasingly challenging task as more beams are added. Increased
difficulty is driven by the multiple ways the beams can interact with each other requiring both one-to-one, and
one-to-many object interactions.

We provide a standardised and easily extendable way to define beams and assemblies using specification files
in xml format, an example xml file specifying a set of beams is shown in Figure 6a and an assembly specification
in Figure 6b. These specifications allow us to extract relevant data automatically including assembly objects,
parts of those objects and connections between them as well as dimensional data and information about visual
markers which can be attached to our 3D printed parts to aid in beam localisation. We have created and
published software for parsing these beam and assembly specification files which can automatically generate
SE3 location data for final assembly positioning as well as domain information to enable reasoning about the
assembly as will be discussed in Section 4.
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(a) Specification file for two beams each is
a unique chain of links and joints.

(b) Assembly specification connecting 5 beams
into a ladder structure.

Figure 6: Example beam structure description files.

3.4 Task Discussion

The tasks of completing the “Shape Puzzle” and tidying away the tools into their correct places are analogous
to many packaging tasks in industry. For example seasonal products, short run exclusive products, or gift sets
with combinations of products. Increasingly the task of packing these goods into sets is being delegated to
logistics businesses as the producers themselves do not want to employ or retain a workforce of packing staff if
they only produce goods that require packing like this seasonally. However, this means that the supply chain
entity doing the packing task may not have access to part data such as object models. In order to complete
these tasks the robot must have perception skills to find and identify the correct objects and manipulation skills
to handle them. However, the assembly aspects of these challenges are relatively benign, with a limited amount
of assembly constraints. The sequencing requirement of the “Shape Puzzle” increases the robot’s requirement
to be able to plan ahead but once the correct piece is found there are relatively few constraints on the assembly
tasks.

Domains containing a large number of objects or physical states present challenges for efficient and accurate
planning and control. The “Beam Assembly” tasks provides more challenging assemblies consisting of multiple
interacting beams, with many components, assembly joint locations, and pins requiring the execution of long
sequences of many challenging manipulation actions to complete each assembly. Actions such as the insertion
of one beam through multiple others involve changing and multi-surface contact interactions.

Each task presents its own challenges for the robot; Table 1 highlights some of the sources of variation
between the tasks. The following sections will describe a proposed domain independent framework for robot
control applicable to all these tasks and many more.

Task Grasping Modes Object Classes Task Actions Sequencing

Shape Puzzle ✓ - - ✓
Tool Tidy - ✓ ✓ -

Beam Assembly - - ✓ ✓

Table 1: Sources of variation in the example manipulation tasks
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4 Proposed Framework

4.1 Problem Formulation and Approach

The benchmark tasks present a set of challenging scenarios for a robotic agent. We wish to create an extendable
framework for the control of a robot manipulator which provides an underlying structure for all of these tasks.

For all manipulation tasks there will be some similar components, such as a robot with the ability to move
through space and carry objects, and others which are task dependent, such as the nature of the objects involved.
We choose to build upon the general robot architecture REBA [3] which provides a two-layer architecture for
tightly coupling AI reasoning and robot control, this has previously been shown to support robotic agents by
integrating commonsense knowledge to increase task completion rates, and used for control of mobile robots
to find and deliver objects. We contribute a general task-agnostic framework for manipulator robots building
on REBA which can form the starting point for many manipulation agents with general a general set of skills
such as robot motion, object grasping, and tool changing. For the benchmark tasks we also have developed
task domains which supplement this robot domain in order to provide examples of how the framework can be
applied.

Manipulation tasks can be specified by the desired motion of the task objects and assembly tasks are a subset
of manipulation tasks focused on combining objects together to form a composite object. In order to build an
assembly there are likely to be some ordering constraints governing which parts must be assembled first. Our
beam assembly task is a good example of this where some beams must be assembled before others in order to
avoid configurations where the ability to add a beam to the assembly has been blocked by previous additions.
In simple tasks the sequence of assembly may be given; such as in the shape puzzle task. However, for more
complex tasks it is advantageous for the agent to be able to work out a valid assembly sequence for itself. As
such we implement an abstracted planning layer that takes object and task constraints in order to estimate a
valid sequence of assembly. This abstracts away the robot domain, reducing complexity and increasing planning
speed. The planned sequence steps are then used as goals to guide the robots planning and execution.

Just as a manipulation robot must be able to move though space, it must be able to interact with objects. A
key interaction action for assembly robots is grasping, the forming of a relationship between robot and object,
which allows the robot to hold and move objects. Each assembly domain may require its own set of actions
based on the desired relationships between parts, but a general assembly robot will certainly require the ability
to pick objects up. As such, we develop a grasping approach which is applicable to various grasp modalities and
specifically which accommodates the integration of expert knowledge or previous experience to target grasps
which maximise the probability of success for subsequent manipulation actions.

Figure 7 provides an overview schematic of our framework. The remainder of section will provide more
detailed descriptions of the key components of the proposed general framework for robotic assembly applicable
to a wide range of similar robotic assembly problems. In this section we will:

• Explain how we structure manipulation problems using Action Language ALd [2] and Answer Set Prolog
(ASP) [8] to form a multi-resolution reasoning agent.

• Outline our approach for Abstracted Task Planning to find assembly sequences that provide a sequence
of achievable subgoals for the robotic agent to reason about.

• Detail construction of a location graph implementing next-to and near-to location distinctions as used
to implement robot motion in our framework. Including an example of automatically generating this
structure for beam assemblies.

• Outline our methodology for using task knowledge to support grasp selection to maximise probability of
subsequent task success.
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Figure 7: A high level overview of our general framework for robotic assembly, highlighting the flow of control
and key low level skills.

4.2 The Manipulation Robot Domain

Logical statements provide a concise and structured way to reason about the relationships between objects. A
valid assembly plan consists of a sequence of actions for the robot to build the target assembly. However, logical
reasoning can rapidly become inefficient in large domains. If we model assembly tasks only at the resolution
of the robot’s action execution, then the planning problem quickly becomes intractable. To keep assembly
problems tractable we implement a subset of the REBA method [3] which reasons at multiple resolutions and
implements a structured approach to link these representations so that an agent is both able to reason about
problems large enough to be of interest, containing many objects, and yet in enough fine-grained detail to
perform complex tasks.

Any robotic agent must reason with domain specific information e.g., the details of objects in its environment,
or task specific actions. Such a robotic agent must also reason about more general information regarding its
basic capabilities e.g., the robot can move between locations, change tools, and has some basic actions to allow
for interaction with objects. First we focus on this domain agnostic capability which will be applicable to all
assembly task domains. Our robot domain contains a single robotic agent which can take actions to interact with
other objects in the environment. By default we provide 3 locations at the coarse resolution, most industrial
scenarios for assembly tasks will have an input region or regions where the parts are presented to the robot,
and the robot will then bring the parts together into an assembly in a specific location be that a jig, fixture or
flat table surface. We also include an intermediate surface for the robot to be able to place objects if it needs to
re-grasp or sort through them. More detailed descriptions of these locations must be provided by the designer
when specifying the domain task specific attributes.

We also define generic sorts for objects and grasp modes and fluents describing relationships between objects
for example to describe the whether an object is held by the robot. Actions are defined which the robot can
take such as moving between locations, picking up objects and putting them down, and changing between grasp
modes; along with casual laws which describe the effects of actions and executability conditions which govern
when actions can be performed, for instance limiting the robot to picking up one object at a time by prohibiting
the robot from picking up an object at a timestep where the robot is already holding something in its grip.

We define a coarse-resolution system description Dc using statements in the action language ALd [2] which
describe a sorted signature and axioms governing domain dynamics. The signature of Dc includes a hierarchy of
sorts such as robot, place, thing, object, and step (for temporal reasoning); actions such as move(robot, place),
pick up(robot, object); statics, i.e., domain attributes such as next to(place, place) that cannot be changed; and
fluents, i.e., domain attributes that can be changed, e.g., loc(thing, place) and in hand(robot, thing). This
signature is used to encode an abstract description of the domain. Given this signature, the axioms in Dc
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include causal laws, state constraints, and executability conditions such as:

putdown(R,O) causes ¬ in hand(R,O)

loc(O,P l) if loc(R,P l), in hand(R,O)

impossible pick up(R,O) if in hand(R,O)

A plan of abstract actions (for any given goal) can be computed by constructing a program Π(Dc,Hc) in
Answer Set Prolog (ASP) [8] that encodes the initial conditions, Dc, a history Hc of prior observations and
action executions, and helper axioms that direct the search for the plan of abstract actions. ASP encodes default
negation and epistemic disjunction, and supports non-monotonic logical reasoning, an essential capability for
robotics applications. Planning, inference, and diagnostics can be reduced to solving Π to generate answer sets
(using an underlying SAT solver) that represent the beliefs of the agent associated with Π. To compute answer
sets, we use the SPARC system [22], which (internally) uses the clingo solver [56]. Through this method for any
given goal inference in the ASP program a plan of abstract actions can be generated allowing our robot agent
to sequence actions to achieve its goal.

Locations are intentionally defined abstractly in this coarse description, we can think of them as regions or
volumes of space, to allow for minimal descriptions to be used for a given task. We provide the robot with paths
along which it can move between locations by specifying next to(place, place) static relations between locations,
this creates a “location graph” for the domain which will be described further in the following section.

If the entire system was modelled at the fine-resolution then quickly the size of the planning problem becomes
inefficient or intractable to solve. As such we use the zooming paradigm from [3] to focus on the fine-resolution
transition diagram relevant to a specific coarse-resolution transition of interest. Automatically cutting away
parts of the fine-resolution diagram irrelevant to the action e.g., when moving between two locations the robot
does not need to consider its grasping mode but it will need to consider the fine-resolution locations through
which it must move.

The fine-resolution system description Df is defined as a formal refinement of Dc. It can be imagined
as viewing Dc through a magnifying lens to discover structures that were previously abstracted away by the
designer, e.g., grid locations within specific places or parts of specific objects. The sorted signature of Df

includes sorts for these new structures and those in Dc, and actions, statics, and fluents described in terms
of these sorts, e.g., in hand(robot, object part). The axioms are refined in a similar manner, and additional
bridge axioms link the attributes in Dc and Df . This leads to a notion of weak refinement that guarantees
that any given abstract transition in the coarse-resolution can be implemented as a sequence of fine-resolution
transitions. The specific steps of the refinement process are described in [3].

REBA provides a further theory of observations which allows the robot to execute knowledge-producing
actions and update the values of knowledge fluents. We consider this theory in developing or framework, but
we leave this theory’s implementation and the use of observations to detect and explain failures for future work.

In this general robot manipulation domain we provide fine-resolution refinements of the coarse-resolution
description, for example new locations which are components of the coarse-resolution regions. In each task we
will use the generic positions “above input”, “above table”, and “above output” to force the robot to move
through clear space when traversing between the regions. At the fine-resolution locations will be defined by
6DOF poses specified for the robot end effector though the specific coordinate data is not needed for our
logical representation. This also uncovers a new generic sort of non placement locations which are a sub-sort
of location at which the robots actions are constrained by a new executability condition that prevents objects
from being put down in mid-air.

impossible putdown(R,O) if loc f(R,C), non placement location(C)

The full system description of the generic robot manipulation domain in both coarse- and fine-resolution is
provided in Appendix A in SPARC syntax.

4.2.1 Location Graph

Design for Assembly guidelines encourage engineers to design parts to be assembled together from the same
direction to reduce non-value added turnover actions in the assembly process [5]. However, a robust robotics
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solution must be able to handle assembly actions from multiple accessible directions in the case that non-linear
and non-vertical insertions cannot be removed by design. Even if the assembly actions can be limited to top
down insertion real assemblies are likely to be 3 dimensional. As such the 2D grid representation used in the
motivating examples of [3] is not sufficient to represent the object locations needed for specifying assembly
actions.

In REBA’s motivating examples a mobile robot agent is imagined traversing a map of locations that represent
rooms at the coarse-resolution and grid cells within those rooms at the fine-resolution. A 3D voxel grid is the
obvious extension of the 2D grid world which could be used to segment volumetric spaces. However, a voxel
grid of useful density would introduce a large number of locations, mainly empty space, which would quickly
become intractable in a logical domain and remains limited in the resolution of positions that it represents
by the size of the voxels. In contrast, assembly tasks require precision placement of components potentially
to sub millimetre location accuracy. SE3 matrix notation is ideal for representing accurate 6DOF locations
with arbitrary resolution in continuous space, and useful mathematically for specifying target locations for both
objects and the robot end effector. In this section a method for defining relevant 6DOF poses in the logical
domain for planning assembly actions is described.

At the coarse resolution, the robot assembly domain is separated first into 3 regions; the input area, assembly
area, and intermediate area. Whilst the concepts of input and assembly areas are clear, the intermediate area
provides a place for the robot to store or manipulate objects if needed. For example, in the blocks domain,
blocks are loosely stacked in a container in the input; the robot may need to remove some blocks from the
input region to find the correct block for the assembly sequence. In that case, it is more efficient to place the
picked blocks to known locations rather than dropping them back into the container should they then need to
be retrieved at a later time.

The fine-resolution domain reveals more granular locations, we proscribe each object in the assembly a set
of assembly location, within the assembly area, including a target location and approach location. Additional
assembly locations such as through or prerotate locations are added as needed for items which must be assembled
in two or more steps such as in the beam assembly example task, these must be specified by the designer when
considering the task description. Each item is also given an input location within the input region. The
intermediate area can be refined as needed for example with a number of locations on a table top or fixture
locations e.g. for turnover operations. Fine locations may be flagged as non placement location to prevent
the robot from placing objects at these locations. All assembly locations apart from the target locations are
labelled non placement location to limit the search space of possible actions once the robot begins assembling
a set of parts.

We define assembly actions as a set of concrete actions which allow the robot to move an object between
relevant assembly locations, these will be task specific actions that might be executed using very different control
mechanisms specified by the designer. In abstract form, these assembly manipulation actions are similar to the
general movef (robot, loc f) action with an additional causal law that updates the in assembly(object) fluent.
We prohibit the generalmovef (robot, loc f) action from reaching assembly target locations whilst holding things
through an executability condition, shown below, to force the agent to select an appropriate assembly action.

impossible move f(robot, place) if in hand c(R, T1), target location(place)

The next to relation as defined in the REBA methodology can be reused in our new location structure
providing the links between location nodes along which the robot can traverse the location graph by movement
or assembly actions. However, some further restrictions are required on the actions that can be taken between
locations. In REBA’s two-dimensional grid world motivating examples locations were defined as regions of space
that the robot or objects could be in, thus if an action failed the robot would either end up non moving, i.e.,
in the location which it started, or moving erroneously into an incorrect grid cell. Here we consider REBA’s
theory of observations, which allows the robot to take knowledge-producing actions and update the values of
knowledge fluents, in this case detecting that it has moved to a different grid cell and updating the agents belief
to reflect this new state.

In contrast, our new representation does not explicitly model all of the accessible space, instead it represents
only important nodes in the task space. In this representation, if the robot attempts to move to a fine-resolution
location but does not reach the desired SE3 pose with sufficient accuracy, perhaps because of collision or
unexpected external forces, its new location may not be represented in our location graph.

In order to address this, an additional set of near to locations, illustrated in Figure 8, are added to represent
any position around a node in the location graph which is beyond a tolerance threshold where we might say that
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the robot or object has reached the target location. An additional move local(robot, loc f) action is defined so
that the robot can recover, for example by using closed loop servo control to approach the target location from
this near to location. Whereas, typically a motion planning and trajectory execution approach is used in the
move f(robot, loc f) action. The near to locations are also defined as next to any locations which the target
location is next to to allow the robot to retreat and retry approach actions. Unlike next to the near to relation
is not a two way relation between the locations. The decision to retreat or move local(robot, loc f) will depend
on the constraints of the movement actions defined with executability conditions, for example a task specific
assembly action may require the robot to retreat and retry. The use of move local(robot, loc f) is restrained by
the following executability condition to prevent the robot from using this action to move larger distances where
a standard movement approach is more appropriate.

impossible move local(R,C2) if loc f(R,C1), ¬ near to(C1, C2)

(a) Relation graph of locations (b) Possible movement actions

Figure 8: C3 represents an automatically generated location near to location C2 which is defined
next to(C1, C2). C3 encompasses a range of space around C2 beyond a nominal distance threshold.

Additionally, we propose a pruning heuristic that further improves reasoning performance by eliminating
potentially many locations that are not of interest to the robot. This is achieved by reducing the set of
relevant locations when performing zooming by eliminating locations which are a component of the coarse
location, but are known to be associated with the assembly of non-relevant objects based on static axioms e.g.,
target location(object a, fine location k). The zooming process defined in REBA already identifies a subset of
relevant objects. In this example if object a is not in the relevant subset, then we can also remove fine location k
from our set of relevant locations as shown in Figure 9.

The SE3 representations of these locations, including rigid offsets for positioning the robot end effector e.g.
for grasping or manipulation actions, can be calculated or extracted from observations in process. In this way
a flexible and rich vocabulary for specifying locations in the logical domain is defined.

4.3 Abstract Task Planning

It is clear that considering the robots motion and behaviour adds a lot of complexity to the domain, introducing
many locations and actions about which the robot must reason to successfully complete assembly tasks. In
some industrial settings assembly tasks benefit from a defined sequence of part addition as in the shape puzzle
example, but for more complex or flexible situations such as the beam assembly example there may be many
plausible routes to completing an assembly.

In the baseline REBA coarse-resolution layer must consider assembly sequencing and robot behaviour si-
multaneously. It is possible to provide sequencing constraints by specifying relationships between the timesteps
at which goals axioms are achieved, for example:

goal : − holds(assemble(rob0, O1), n), holds(assemble(rob0, O2),m), n < m.
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Figure 9: As more parts are added to the domain we automatically generate many nodes in the location graph
for assembly of those parts, in this example when moving “beamA” we are able to prune the branch of the
graph which is only related to “beamB” as this beam is not in the set of relevant objects. Locations within the
coarse “RegionB” will already be removed from consideration by the zooming operation described in REBA as
all states in the coarse-resolution transition maintain loc c(rob0, RegionA).
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However, this implies that some prior reasoning has provided this additional relation between n and m that
gives the planner a sequence constraint. Constraints on the order or part addition create sub-goals towards the
completion of an assembly task, significantly reducing the horizon of the planning problem i.e., if part O1 must
always be assembled before part O2 then the robot can plan the assembly in two parts, from the first time step
to step n to assemble O1 and then from n to m to assemble O2. Using breadth first search we expect to see the
size of the search space grow exponentially by O(bd) where b is the branching factor and d is the depth of the
solution in this case the number of time steps. Finding two short sequences should usually require a smaller
search than finding one long sequence. Consider that the two shorter sequences should have the same length as
the longer sequence in total, let’s call the sequence lengths f and g, assuming that b = f + g, and a, b, c, d are
all positive constants greater than 1 then:

bd = bf+g

bf+g = bf ∗ bg

bf ∗ bg > bf + bg

∴ bd > bf + bg

Thus we hypothesise that, for these more complex assemblies, finding a valid sequence of assembly and using
that as a sequential succession of sub-goals for the robot planner will produce a more efficient planning approach.

The abstract planner must correlate precisely to the coarse-resolution reasoning layer in that any part added
into the assembly in the abstract plan must represent a feasible sub-goal for the robot to attempt. As such we
define the abstract task domain using ALd as described for the robot domain, so that the state constraints and
executability conditions are transferable into the coarse-resolution robot domain.

The abstract task domain signature must be provided by the designer for a given robot task and should
include a single action assemble(object) with causal laws, state constraints, and executability conditions specific
to the task, for example the in beam assembly task:

assemble(O) causes in assembly(O)

supported(O1) if in assembly c(O2), fits into c(O1, O2)

impossible assemble(O) if ¬ supported(O)

Here we have introduced two inertial fluents to represent the concepts of parts being added to the assembly, and
parts being supported for addition if they have an assembly relationship with other parts already in the assembly
such as fits into(O1, O2). As well as an executability condition limiting assembly actions to supported parts
only. Appendix B provides a full example abstract domain for a beam assembly task in ASP.

Given a starting state of a single part defined with a special sort base(object) that is the first part of the
assembly, and assembly constraints between the parts, we can use the same ASP planning pipeline to find
answer sets which meet the goal of all parts P0..x being in assembly(Px). We retrieve an assembly sequence
by extracting the actions which occur at each timestep of a selected answer set:

occurs(assemble(O1), 0), occurs(assemble(O3), 1), ..., occurs(assemble(Ox, n).

Any valid answer set provides a possible assembly sequence for the robot to attempt, by searching for
answer sets incrementally increasing the number of total steps, starting with a plan length of 1, we are able
to identify the shortest valid assembly sequences. In our later experiments we will simply select the first such
found sequence to pass to the robot as a series of sub goals, leaving to further work the analysis and selection of
better or more reliable sequences of equal length or other more efficient methods of finding the shortest plans.

4.4 Combining Robot and Task Domains

The combination of the abstract task planner and coarse robot domain form the coarse-resolution robot-task
domain. Here, the assemble(O) action of the abstract domain is associated with a robot actor, becoming:
assemble(robot, object). The state constraints and executability conditions of the sub-domains otherwise com-
bine without change with the exception of an additional executability condition added to constrain the agent
to only assembling parts which the robot is holding.

impossible assemble(R,O) if ¬ in hand(R,O)
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In some cases, elements of the generic robot domain may not be necessary for the task at hand, for example,
in the beam assembly task, only parallel grasping is used and therefore multiple grasp modalities are not
required. In this case, we advise that the designer remove any unnecessary elements of the generic domain in
order to minimise the number of actions and objects for better performance.

In the abstract task domain we had ignored the physical interaction of robot and objects. Practically, when
testing for the beam assembly task, we found that as the parts were not well fixtured, the assembly actions could
knock the parts already in the assembly slightly, making future assembly actions much less likely to succeed.
This is not an unlikely result in many assembly tasks where we seek to assemble larger structures. To address
this, we add an additional inertial fluent to the domain, misaligned c(object), which represents these inserted
parts along with a corrective action push(robot, object). An additional causal law is added to the assemble
action and the push action is constrained with executability conditions:

assemble(R,O1) causes misaligned c(O2)if ¬ base(O2),

in assembly(O2), O2! = O1

push(R,O) causes ¬ misaligned c(O)

impossible push(R,O) if in hand(R, T ) thing(T )

impossible push(R,O) if ¬ in assembly c(O)

Finally, the assemble action receives an additional executability condition which prevents the robot from
trying to assemble objects when the assembly has become misaligned. This results in the robot having to correct
the positions of disturbed items before proceeding to add more components to the assembly.

impossible assemble(R,B1) if in assembly c(O2), misaligned c(O2)

We note that implementation of the probabilistic Theory of Observations from REBA could reduce the
number of corrective actions applied by the robot by more accurately capturing the true state of the domain,
sensing whether parts have become misaligned or not, and updating the robot’s belief state.

4.5 Refining the Coarse Robot-Task Domain

The fine-resolution domain is a weak refinement of the coarse robot-task domain as defined in the original REBA
paper [3]. We discuss the refinement process here using the beam domain as a motivating example.

The reader will remember that we describe the fine-resolution system description as viewing the coarse-
resolution model through a magnifying glass, uncovering details which might previously have been abstracted
away. The control mechanisms for robot actions can vary at the execution level but the fine-resolution domain
must describe concrete actions which match the actions that the agent can execute. To construct the fine-
resolution system description Df first we construct a signature Σf by:

1. Preserving all elements of the coarse-resolution signature (including sorts, object constants, statics, fluents
and actions)

2. Introducing new sorts s∗ for each sort that is magnified consisting of components of elements of the coarse
sorts s.

3. Introducing fine-resolution counterparts of each abstract function f magnified by the resolution change.

4. Adding static relations component(O,O∗), which hold iff object O∗ is a component of a magnified object
O of sort s.

With this signature we can define the fine-resolution system description Df by:

1. Replacing any abstract functions of the coarse-resolution description with their fine-resolution counterparts
with variables ranging over appropriate sorts required by these counterparts.
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2. introducing bridge axioms relating the coarse- and fine-resolution functions of the form:

f(X1, ..., Xm) = Y if component(C1, X1), ..., component(Cm, Xm),

component(C, Y ), f∗(C1, ..., Cm) = C

For further details and proofs we refer the reader to the original paper [3].

In our beam domain example we can consider the beams to be made up of modular parts, uncovering the
new sorts links and joints which are subsorts of beampart a fine-resolution magnification of the coarse beam
sort. Following the steps above we introduce the following component relation, abstract function and bridge
axiom:

component(beam, beam part)

fits into f(beam part, beam part)

fits into c(B1, B2) if fits into f(BP1, BP2), component(B1, BP1),

component(B2, BP2)

We also update relevant actions and axioms, such as adding a fine-resolution counterpart to the pick up
action and in hand fluent, to reflect that in this resolution the robot is picking up thing parts and that, in
doing so, it now holds the relevant thing parts at the fine-resolution, and thing of which this part is a component
at the coarse resolution.

Furthermore each joint component of the beam part sort is of a specific type defined by how it con-
nects to other parts and different joints may require alternative assembly actions to put together. We go
further than in previous REBA application examples by not only refining sorts, but also actions. At the
coarse resolution we have the action: assemble c(robot, beam), we refine this single coarse-resolution action
into multiple fine-resolution actions to represent different concrete actions the robot must use to assemble
the parts, for assemble f square(robot, beam part) and assemble f cap(robot, beam part) represent actions
first, where the robot can insert a beam end-joint directly into a joint of another beam in the assembly and
second, where the robot must place a beam to “cap” or encapsulate several beams already in the assem-
bly by inserting it onto the previously positioned beams. These actions might involve very different con-
trol approaches or tuned behaviours at execution time and may have statistically different probabilities of
success, therefore it is desirable to separate them in our agents reasoning model. Alternative assembly ac-
tions might include assemble f through(robot, beam part) for joints where one beam passes though another,
or assemble f rotate(robot, beam part) for joints which are first inserted square and then rotated to a final
position.

In practice we find that to split an action in the fine-resolution; first the designer should construct a
fine-resolution description of the general action, a∗, in this case assemble f(robot, beam part) following the
previously outlined approach. Then create duplicate actions each with additional executability conditions to
represent the newly uncovered fine-resolution state information which should drive the agent to choose between
the variant fine-resolution actions. Each variant action must:

1. Only be applicable in a subset of the a∗’s starting states, but every starting state of a∗ must be a valid
starting state of one or more variant.

2. Not be applicable in any state at which a∗ is invalid, i.e., all of a∗’s executability conditions must still
apply.

3. The resultant state of the variant action (or a series of sub-actions) must be a resultant state of a∗, i.e.,
all of causal laws of a∗ must apply.

In some cases a series of fine-resolution actions will represent a single action at the coarse level, this is
expected as we seek to include more detail about the robot behaviour when reasoning at the fine-resolution. An
example is when a beam needs to be inserted at an angle. It is feasible to specify this as a single action, or to
separate the behaviours into two actions, to first insert the beam straight on, then rotate. In practice the second
approach takes advantage of the existing ability to insert the beam square first which may be more reliable, the
choice is up to the task designer. If a series of actions is chosen then suitable executability conditions and casual
laws must be added to restrict the fine-resolution behaviour so that the path P of states in the fine-resolution
domain represent the transition T = ⟨σ1, a

c, σ2⟩ in the coarse domain and all states of P are extensions of σ1

and σ2.
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4.6 Task Oriented Grasping

Given a general plan for manipulation actions such as assembly or handover tasks it is feasible for the robot to
look ahead in the plan in order to obtain some understanding of the tasks in which a held object is likely to be
used. This task-object relationship may require the robot to grasp the object in different ways. For example in
the tool-tidy task the robot might be required to handover a spanner to a person, in this case the robot should
hold the end of the spanner to present the handle to a person, but to use the spanner for tightening, the robot
must hold the handle leaving the head of the spanner free so that it can be placed over the nut to be turned.
Further more, holding the right part of the object is not sufficient to use the object efficiently but the correct
grip type and position upon the object part are also important for maximising task-object mechanics.

In this section we present a method for training the robot to model task-object interactions as a function
of finger tip placement, and a method using this learned function combined with other grasp quality indicators
to generate better task relevant grasps in a way that is easily extendable to different robot hand designs. This
section elaborates on the work published under the title A Keypoint-based Object Representation for
Generating Task-specific Grasps presented as a conference paper at the IEEE 18th International Conference
on Automation Science and Engineering (IEEE CASE2022) [4].

The reader will recall that given any example beam from the beam assembly task we model the beam object
as a single sort for coarse-resolution reasoning, at the fine-resolution we uncover parts of the beam and classify
them as link components or one of multiple joint component types. In order to successfully plan robot grasps
on the beam we must go further and model the surface of the object that the robot will interact with. We want
to place the gripper fingers onto the surface and generate a force closure grasp to trap the object in the robot’s
grip in a way that will allow the robot to apply wrenches to move the object or apply force through the object
in order to achieve manipulation actions such as a contact rich assembly action.

To enable task oriented grasp planning we propose a three-level object representation aiming to closely link
low level geometric and higher level abstract representations. At the top level, any object is an instance of a
particular class (e.g., beam, cup, or hammer). The lowest level is a point cloud representation of an object’s
surfaces, encoding the geometric data (e.g., shape, size) necessary for planning grasps. The intermediate level
is a small set of keypoints that concisely define the object’s pose while allowing for in-class variations in shape
and size which we link to the object-part representation of our fine-resolution domain.

4.6.1 Modelling The Object Surface

Low cost RGBD cameras offer an excellent tool for capturing the object’s surface as a point cloud. These
cameras have reduced in cost significantly over the last 10 years making them easily accessible to academia
and typically combine time-of-flight or Infrared (IR) projection mapping technology with a colour camera to
capture a single channel depth image alongside a standard three channel colour image of a scene. Typically,
these images must be aligned in software as the lenses of the depth and colour cameras are physically separate,
software libraries such as Intel’s RealSense™provide open source implementations for depth image alignment.
The view of an aligned RGBD camera can then be modelled as a rectangular pyramid called a view frustum
using the pinhole model as show in Figure 10. A single camera position is only able to see one view of an
object and low cost RGBD cameras are prone to shadowing near the edges of objects where depth data cannot
be accurately recovered. In order to model the objects surface more fully and accurately we combine multiple
views of the scene.

In order to combine multiple views of the object into a point cloud representation we use a method based
on the probabilistic signed distance function (pSDF) [57], which allows multiple views of an object to be
combined and models measurement uncertainty. We explicitly model measurement uncertainty in the captured
representation in order to make use of this later when considering where to place the finger tips of the gripper
on the objects surface. A voxel grid is used to capture the signed distance to the surface from the centre of
each voxel, with distance data only stored for voxels close to the measured surface using a truncation threshold.
Our implementation of the pSDF representation utilises a scalable truncated signed distance function (tSDF)
meaning that, unlike the original implementation, the size of the tSDF voxel region is not constrained to a set
number of voxels and can so can grow to accommodate a larger scene without loss of surface reconstruction
accuracy. Instead of modelling distance uncertainty as a weight [58], surface distance is modelled as a random
variable with a normal distribution N (dsdf , σ

2
sdf ). The effect of any new measurement (dsens, σ

2
sens) at step k
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Figure 10: Illustration of a single cameras view of a 3D object, from a single viewpoint only one side of the
object can be seen.

is merged using a Gaussian update:

dk =
dk−1.σ

2
sens,k + dsens,k.σ

2
k−1

σ2
k−1 + σ2

sens,k

(1)

σ2
k =

σ2
k−1.σ

2
sens,k

σ2
k−1 + σ2

sens,k

where the measurement variance (σ2
sens) is computed experimentally (see Equation 11). We implemented this

encoding by revising the Open3D library [59]. A uniformly-sampled point cloud, with an uncertainty measure at
each point, is then extracted from the pSDF representation using the marching cubes algorithm [60], Figure 11
shows a spirit level captured over three views from different positions, illustrating how multiple views of the same
object can reduce uncertainty in the measured surface by colouring the extracted point cloud by uncertainty.

Figure 11: Pointclouds showing measurement uncertainty (σ2
sens) update as multiple views are combined using

the pSDF representation, three views are captured sequentially using a RealSense D415 camera.

It is necessary to separate objects from the background environment to target the correct object surface for
grasping, Figure 13 shows recovered point cloud data of example objects using this approach. There are many
ways to achieve this including simple plane removal for isolated objects on a flat surface or CAD matching to find
known objects within a 3D scene. The designer will need to select an appropriate method for the manipulation
task to be automated. Below we describe the method which we used in our grasping experiments which uses
neural network image segmentation and might easily be applied to many other manipulation tasks.

We chose to segment relevant pixels from our input data before fusing views into our pSDF model, this
reduces the amount of data in the pSDF update allowing for a finer voxel grid with a shorter update time
as the number of calculations required to update the pSDF scales proportionately to the number of voxels.
In our experiments, we used a the Detectron2 Mask R-CNN implementation from Facebook AI Research [61]
to perform instance segmentation on the colour image data. Mask R-CNN is an extension of Faster R-CNN
which performs object classification and bounding box detection, adding an additional branch which outputs
an object pixel mask [62]. Transfer learning was used to train a Mask R-CNN model with a ResNet-50-FPN
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backbone to segment a selection of example objects. Transfer learning reduces the training time and data
needed for the network by using a pre-trained model which has been trained on a large dataset, in this case
the COCO 2017 Object detection dataset [63]. In transfer learning we assume that the pre-trained network
has learned how to extract salient image features, determine bounding boxes, and estimate object boundaries
already. Rather than retraining the whole model from a default starting point with randomised weights; we
instead only retrain the head of the model to tailor its outputs to find our objects of interest. Our example
dataset contained approximately 500 images of our objects of interest on various background surfaces. Our
object set contained 8 object classes with three or more instance objects of each class to provide in-class
variation. We manually labelled about 350 images using the VIA online annotation tool [64] before switching
to use V7 Labs [65] annotation software to speed up labelling of the remaining images, examples of labelled
training images can be seen in Figure 12. We found that in addition to varying the background surface, using a
torch to introduce lighting variation and using software data augmentation such as mirroring, random cropping
and random rotation to increase the number and variety of images in the training dataset was useful in making
the trained network more robust to the conditions in the workshop setting of our experiments. Training the
network for 800 iterations took less than 15 minutes using a P100-GPU through Google colab2.

Figure 12: Examples of training images used to train Mask-RCNN instance segmentation

Figure 13: Recovered segmented object point cloud data

4.6.2 Keypoint Object Representation

We introduce an intermediate representation using a lightweight set of semantic object keypoints building on
existing work [25,26] which serves several purposes:

• Linking to our fine-resolution domain description of objects, links in the keypoint skeleton define object
parts, and nodes define the boundaries between parts.

• Providing a lightweight object representation useful for encoding task-oriented grasping knowledge and
planning manipulation motions through an object pose estimate in terms of the spatial relationships
between keypoints.

• Modelling large in-class variations allowing us to automatically scale associated representations to new
instances of a class despite changes in size, shape and orientation.

Figure 14(b) illustrates the keypoint representation for an example screwdriver class. In our implementation
during data capture of multiple views of the object, 2D keypoints are detected in each colour image using a

2https://colab.research.google.com/
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Figure 14: Keypoint representation: (a) illustrates in-class variation; (b) shows coordinate systems mapped to
keypoints, a domain expert associates good grasps for fastening task with points in dashed region; (c) vectors
between relevant keypoints and good surface points.

stacked hourglass network originally developed for human pose estimation [66]. We triangulate the 3D positions
of keypoints from multiple views, with links between the keypoints forming a skeleton. This skeleton is used
to guide grasp generation and to transfer knowledge for grasping across similar objects when used to perform
similar tasks.

The stacked hourglass network was implemented in PyTorch and trained on labelled images from the tool-
tidy example task. Each class required its own network as classes might have varying numbers of keypoints,
changing the output dimensions of the network. In order to aid labelling, a simple python keypoint labelling
tool was made to guide a user through a series of images saving the associated keypoint data into a yaml format
which is easily loaded as training data3. The output of the network is a heatmap per keypoint to which we apply
a gaussian blur to in order to remove extreme values before extracting the maximum point in image coordinates
Pi = (ui, vi), Figure 15 shows the extracted keypoints and mask for a screwdriver in a single image.

Figure 15: Keypoint and mask detection example for a single view of a screwdriver

For each view of the object we have a reasonably accurate model of the camera’s intrinsic and extrinsic
parameters through camera calibration. In order to obtain an estimate of a 3D position of the keypoint, we
need to perform triangulation. However, due to small inaccuracies in calibration and limits of repeatability of
keypoint detection from different angles, it is unlikely that the rays cast from camera origin to a detected 2D
keypoint in each image will intersect. We use the midpoint triangulation method to estimate the 3D keypoint
P = (X,Y, Z)T. For two images the midpoint triangulation method can be visualised as drawing the shortest
line between the two rays and estimating the 3D point as the midpoint of that line, i.e., the found point
minimises the euclidean distance to each ray. A generalised, closed form solution for midpoint triangulation
of n rays is provided by Ramalingam et al. [67] given the start point of the ith ray Ai, and a unit vector Bi

encoding the rays direction, B = (B1, ..., Bn)3×n and C = nI3 −BBT:

P =
1

n
{I3 −BBTC−1}

n∑
i=1

Ai − C−1
n∑

i=1

BiB
T
i Ai (2)

3Keypoint labelling tool code is available from https://github.com/M-A-Robson/keypoint_labelling_tool
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4.6.3 Encoding Task-Grasp Data

When performing robotic manipulation tasks, a key factor determining success or failure is whether the robot
has grasped the object appropriately. Using our framework it is possible for the agent to look ahead, using the
reasoning layers to form an idealised plan, before grasping an object to identify task constraints. If the robot
does not grasp the object in a suitable manner for the task, it risks sub-optimal performance through additional
re-grasping actions or poor task mechanics, and ultimately task failure. We propose a method for encoding
functions which represent knowledge about how to grasp an object for a given task, using the keypoint skeleton
representation.

We extend the keypoint representation to include a class-specific Euclidean coordinate system at each key-
point. Let a pair of keypoints be linked by a line segment which terminates at each keypoint and denote the
length of this line segment, S. A euclidean coordinate system can be formed with the origin at one keypoint
where the x axis is aligned to the link. The orientation of the y-axis and z-axis axes are defined by the plane
formed by these two keypoints and one other keypoint, and the normal to the plane; if the object model has
less than three keypoints, the coordinate system is based on eigenvectors of the object’s point cloud.

Given the axes at a keypoint, unit directional vectors ⟨x, y, z⟩ = 1 are computed to each recovered surface
point of the exemplar grasp. These vectors are scaled onto a sphere of radius S and converted into spherical
coordinates θ, ϕ where θ ∈ [−2π, 2π] and ϕ ∈ [−π, π]:

S2 = x2+y2 + z2 (3)

tan θ = y/x, ϕ = arccos

(
z

S

)

The scaled vectors are used to construct a Gaussian Mixture Model (GMM) for each keypoint using an
existing software implementation for automatically retrieving the optimum number of components with ap-
proximations of the Dirichlet Process inference algorithm and fitting using Expectation Maximisation [68]. To
provide data points for learning the GMM we use an expert labelling approach where the task designer labels
a single exemplar object surface with points in regions representing desirable finger tip placements labelled as
good and all other points on the surface labelled as bad. An example of this approach and the GMM learned
for a single keypoint in spherical coordinates is show in Figure 16. We use a mesh model as the exemplar object
in order to extract evenly distributed points across the mesh surface accurately representing all of the part in
3D without noise or missing data which would typically be associated with RGBD data.

Figure 16: Right: Expert labelled grasp region for “tool use” task with a screwdriver object. Left: Negitive
log likelihood contours of the learned Gaussian mixture model in spherical coordinates from the “‘handle end”
keypoint showing training data points colourised by GMM component.

Our representation based on spherical coordinates provides some robustness to scaling and orientation
changes in new object instances of the corresponding class. At run time, point cloud points on the recov-
ered surface of an object are assigned a probabilistic score based on the GMM models of the relevant keypoints,
i.e., those that are on the nearest link (based on Euclidean distance). The object and task-specific probability
value Ti for each surface point is calculated as the product of the probabilities from the relevant keypoints.
Figure 17 shows the results of querying learned models, trained using a single labelled examplar, to score the
surface points of new object meshes demonstrating that the models transfer well despite in class variation.

We note that many objects designed for manipulation by humans share similar features, a good example
of this being “handle” parts. One advantage of our learned models is that the same model for grasping one
object’s handle may be intuitively transferred to a new object with a similar keypoint skeleton structure. We
will return to exploring this concept further in our experiments.
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(a) Screwdriver class tool use and handover task models.

(b) Cup class tool use and handover task models.

(c) Watering Can class handover and tool use task models.

Figure 17: Illustration of results of querying learned GMM’s for new object meshes. The first column of each
plot shows the mesh model of the examplar object and the labelled training data used to learn the GMMs, the
remaining columns show a new instance mesh model and the recovered heatmap of scoring data for points on
the new surface when we query the learned GMMs for each task.

4.6.4 Grasp Synthesis and Scoring

The objective of our grasp synthesis strategy is to identify good grasps balancing considerations of stability,
measurement uncertainty, and task-specific constraints. There is existing work on considering different criteria
to design and evaluate grasps with different grippers, e.g., estimating the marginal success probability P (S) of
a proposed grasp g, given object state x, as the sum of a weighted set of probabilistic criteria Pi [69]:

P (S|x, g) =
n∑

i=1

wi.Pi,

n∑
i=1

wi = 1 (4)
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where wi are the weights. We modify the original criteria to incorporate task-specific scoring functions and
focus on factors relevant to any dexterous gripper. Additional functions and factors can be added to modify
grasping behaviour for specific gripper designs or tasks.

One factor of interest is a good contact angle α between gripper finger contact vector and the surface normal
of the contact region on the object. We estimate the probability of good contacts for grasps with any number
k of finger tips:

P1 =


k∑

i=1

1− 2
θ |π − αi|
k

,
∏k

i=1 zi > 0

0, else

 (5)

zi =

{
1, |π − αi| < θ/2
0, else

}
where θ is the static friction cone’s maximum contact angle, which is set to 0.54 radians in our experiments.

The next factor is based on the insight that grasp success probability is dependent on the extent to which
an object’s surface is recovered from observed data. Poor surface recovery makes it difficult to estimate the
surface location, and a surface with a high degree of curvature or variations may not provide a good contact
region. The probability of a set of surface points being good contact points is given by:

P2 =


k∏

i=1

(1− ci
cmax

).(1− 3ui), ci < cmax

0, else

 (6)

where u is a measure of the surface variation at each point based on the eigenvalue decomposition of points
in its neighbourhood; u = 0 if all points lie on a plane and u = 1/3 if points are isotropically distributed [70].
Also, c is an estimate of the uncertainty in the location of the point, as obtained from the pSDF; cmax is the
maximum value of this uncertainty, which is experimentally set to be 5mm.

Finally, each task and object-specific constraint is encoded as a function that assigns a score ∈ [0, 1] to
each recovered surface point describing its likelihood of being a finger tip location for grasps that meet this
constraint. The overall probability for this factor is then the product of the values of probabilistic functions for
individual constraints:

P3 =
∏
j

Tj (7)

This model allows for the application of the previously described task-grasp knowledge models and is easily
extendable with additional functions as desired by the task designer. For example in the beam task it is likely
that we want to grasp near the centre of beams due to the rotational wenches caused by their significant length.
An additional function could be incorporated into P3 to penalise grasping the object at its extremities such as:

T1 =
2

1 + e
4.|d|
dmax

(8)

Where d is the euclidean distance from the point to the objects geometric centre and dmax the distance to the
furthest point. This assumes that the object’s centre of gravity is near to its geometric centre and that we desire
a more stable grasp for our manipulation task. Both of these assumptions do not always hold and as such we
may reason at a higher level that some feature of the object or task negates application of this constraint.

The grasp scoring system described above is applicable to any method that generates grasp candidates that
can identify a set of proposed contact points on the object point cloud. For our experiments we implement a
simple grasp synthesis algorithm which will be detailed in the remainder of this section.

The unified robot description format (URDF) provides a standardised approach to to describe the kinematic
relationship between links and joints of the end effector or robot. Forward kinematics allows us to model the
effects of joint actuation on a the robots links as an update to the sequence of rigid transformation chain locating
the end links e.g., the gripper finger tips.
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Letting P1, ..., Pn
iid∼ U(Z) where Z is the set of points extracted from the pSDF model using the marching

cubes algorithm in the form:

Zi = ⟨Xi, Yi, Zi, Ni, Di, Ti⟩

Where N is the surface normal at the point, D is the point recovery score obtained using Eq. 6 and T is the
task-object score obtained using Eq. 7. We generate a set of grasp candidates using 1 by iteratively closing
a gripper defined by a URDF using eigengrasp notation to capture which gripper fingers are used and how
the fingers should close relative to one another in the grasp [33]. We test for contact using the collision mesh
for each link in touch links, a specified set of links in the URDF that can form contact with the object, by
checking after each closure iteration if any point of the point cloud is inside the boundary of the link’s collision
mesh polygon. We select a primary link from the set of touch links to place on the sampled surface in order to
initialise the grasp candidate.

Instead of using a uniform distribution to sample the surface points for grasp candidate initialisation it is
also possible to use the task score probability distribution to drive sampling towards task specific grasps. This
is advantageous because a smaller number of samples are needed to get a good result, reducing processing time.
A disadvantage is that this method tends to produce an unbalanced grasp where the primary finger has a better
placement that the other fingers. To address this we use a subsequent local optimisation step for the best grasp
candidates by iteratively offsetting the selected grasp candidate with small linear and rotational offsets before
rerunning the closure algorithm 1. In our experiments we optimise only the single best grasp candidate using
three iterations with initial offsets in grasp rotation and position of 15◦ and 5mm, with the offset values halved
in each iteration.

Whilst the proposed grasp candidate generation method is clearly slower than some of the neural network
driven methods used for parallel grasping we have chosen this approach so that the same method is applicable
to a wide range of different gripper designs with different numbers of fingers through use of new URDF data
and eigengrasp specifications. Alongside the flexibility of our grasp scoring method we believe that this is more
widely applicable to the variety of manipulation challenges for which our framework may be applied.

Algorithm 1 Grasp candidate generation

Input : Hand H, Eigengrasps E, number of samples n
Output : Set of valid grasp candidates, G

Initialise Candidate Grasps G = {}
for Sampled points P0, ..., Pn do

for Eigengrasp eig in E, samples n, rotation angles R do
Position primary link of H such that contact is formed at ⟨X,Y, Z⟩ in the direction of −N with rotation
about the contact axis r
let i = 0, contact = False
while ¬ contact ∧ (i < max iterations) do

calculate Joint Positions J of H with J =
∑b

i=0 ai.eig
calculate Link Positions L = forward kinematics(H,J)
for touch link h in H except primary link do

contact = test contact(H,PCD)
end
i = i+ 1

end
if contact then

calculate contact quality q using Eq. 5
calculate grasp score g(d, q, t) using Eq. 4
Grasp Candidate c←− ⟨J, L, g⟩
G ∪ {c}

end

end

end
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5 Experimental Results

In this section we collate the experiments conducted during the study to establish the viability of our framework
and provide a discussion of the experimental results obtained. We experimentally test the following hypotheses:

H1 Our grasping method provides better grasps than baseline methods by balancing stability constraints with
task/object-specific constraints;

H2 Our tiered object representation supports reuse of the learned task-specific object models for other similar
objects being used to perform similar tasks;

H3 Our grasping method provides robustness to variations in size, shape, scale, and orientation within each
object class.

H4 Our multilevel architecture with zooming allows us to plan action sequences for larger domains of object
assembly than would be possible without layers of refinement.

H5 Our multilevel architecture with zooming reduces the overall planning time to generate a sequence of
proposed actions for a given assembly.

H6 The addition of the abstract task planning level improves planning times and supports larger domains
than the original REBA formulation.

H7 Our location pruning heuristic reduces planning times through a reduction in the number of objects in
the zoomed domain during assembly tasks. The effect of pruning should be more pronounced on larger
domains where more locations are pruned.

5.1 Grasp Planning Experiments

Hypothesis H1-H3 were evaluated through implementation of parts of the tool-tidy task in the context of a
robot assisting humans by grasping objects on a tabletop.

Physical experiments were conducted using a Franka Panda robot manipulator, with low-cost Intel Realsense
D415 cameras mounted on the end effector, and statically in the workspace, as shown in Figure 18. Objects
were placed on the gray tray to ensure it was within the robot’s workspace and field of view. We segmented the
objects from the background in each image as described in Section 4, and use the pSDF algorithm to obtain a
point cloud.

The pSDF algorithm requires a model of measurement noise for each pixel in the input images. In our
experiments we used 3 similar cameras, two statically mounted and one on the robot end effector, this simplifies
our measurement updates as the same error functions can be used for each camera. However, the pSDF
algorithm can be used with a variety of cameras provided that an estimate of measurement update variance is
provided for each data source. We combine 4 different views of the object input region, one from each static
camera and two views from different positions of the robot end effector camera, segmenting the object data as
described in Section 4.6.1. The measurement update variance σ2

sens in Equation 1 is estimated as the sum of
two known sources of measurement error for the Realsense cameras, which we set to an X resolution Xres of
1280 pixels and a horizontal field of view (HFOV) of 65 degrees. The first source is the RMS error Edrms of
depth measurement, which is the noise for a localised plane at a given depth d in mm [71]:

Edrms =
0.08d2

55f
(9)

where f is the camera focal length in pixels:

f =
0.5Xres

tan (HFOV
2 )

(10)

The second source of error is based on the angle between the ray from the camera and the surface, measured
as θ ∈ [0, π] radians. This error Eθ (mm) is estimated as described in [72]:

Eθ =
θ

(π2 − θ)2
(11)
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(a) Robot set up (b) Object Set

Figure 18: Franka manipulator robot and some objects used in the experiments. Where to grasp an object is
dependent on task-specific and object-specific constraints in addition to stability.

Object Class
Baseline Model Handover Model Tool Use Model

Stability Handover Tool Use Stability Handover Tool Use Stability Handover Tool Use
Brush 56.7% 52.9% 35.3% 83.3% 100.0% 0.0% 90.0% 0.0% 100.0%
Cup 80.0% 83.3% 12.5% 80.0% 95.8% 4.2% 76.7% 0.0% 82.6%
Dustpan 86.7% 100.0% 0.0% 96.7% 100.0% 0.0% 96.7% 0.0% 100.0%
Screwdriver 83.3% 12.0% 72.0% 80.0% 91.7% 0.0% 83.3% 0.0% 96.0%
Spoon 70.0% 52.4% 47.6% 90.0% 88.9% 11.1% 90.0% 0.0% 100.0%

Table 2: Summary of results from 450 trials split across 5 object classes. For each class, 30 practical trials spread
evenly across three example objects (see Figure 18b) were conducted for each of three task-specific models
(stability, handover, tool use). In each case, the “Stability” column indicates the proportion of successful grasps
while the “Handover” and “Tool use” columns present the proportion of stable grasps which met the associated
task criteria. Bold-faced numbers along each row indicate the best scores for the corresponding object class for
each of the three tasks.

We considered six object classes for our physical robot experiments: cup, hammer, screwdriver, brush, dustpan,
and spoon. Figure 18 shows the specific instances of each class used in our experiments. Object rotation was
varied to create additional instances of each class, but cups were always placed with the opening facing upwards
to allow the robot to grasp the handle.

For each class, we defined semantic keypoints (e.g., handle, top, bottom), exemplar grasps, and specific
tasks. For object classes with a “handle” region, a grasp is suitable for the “handover” task if it leaves the
handle unobstructed to allow another agent to grasp it when the object is presented. Each object class also
supports a “tool use” or “pour” task. A grasp is suitable for the “pour” task if it leaves the outlet unobstructed
to pour the liquid out. A grasp is suitable for “tool use” if it leaves unobstructed the region of the object that
interacts with the environment when the tool is used, e.g., a hammer’s head. These grasps should also target
the handle that is often designed to maximise performance when performing associated tasks.

Hypotheses H1 and H2 were evaluated through robot trials using our method to pick different objects. We
compared our method with a baseline method that does not encode task-specific knowledge, i.e., it considers
P1 (Equation 5) and P2 (Equation 6) but not P3 (Equation 7) described in Section 4.6.4. The relative
weights in Equation 4 were tuned experimentally. In each trial, candidate grasps were generated as described
in Section 4.6.4. The robot executed the best grasp found using MoveIt to plan collision free paths to an
approach position offset 10cm along the gripper z axis and approaching the target pose with a linear motion
before closing the gripper to maintain a closure force of 70N (the maximum continuous grasp force of the Franka
Hand gripper). From the target grasp pose, the robot attempted to lift the object 10cm from the table and
hold it for 10 seconds; if it succeeded, the grasp was recorded as being successful and stable. Suitability of each
stable grasp to any given task was assessed visually against the given exemplars.
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Figure 19: Trials in the hammer class focusing on stability; trials split 20:10:10 across the three hammer objects
for each of the baseline and keypoint models for a total of 80 trials.

Hypothesis H3 was evaluated qualitatively and quantitatively by exploring the use of task models’ on images
depicting a range of in-class variations. Our initial experiments on generating task-grasp fingertip placements
on a range of previously unseen instances of the same class are shown in Figure17, but the robot trials on real
objects allow us to better evaluate how well this works in practice. In Figure 17a, we see that the learned models
of task and object-specific constraints scale well to new object instances despite variations in the shape of the
handle or length of the screwdriver shaft. The nonlinear shapes of the cups and watering cans are modelled and
considered when evaluating the suitability of new surface points as grasp points in Figures 17b and 17c, with
different sets of points being preferred for the handover and pour tasks. These qualitative results demonstrate
our method’s ability to use models learned from a small set of exemplars to evaluate grasps for different tasks
and guide grasping towards locations favoured by the domain expert.

We completed a total of 530 grasp trials on the physical robot platform. Table 2 summarises results for
the five classes Brush, Cup, Dustpan, Screwdriver, and Spoon. The results for the object class Hammer are
shown separately in Figure 19 that focuses on the stability criterion to highlight some interesting results that
are discussed further below.

In Table 2, bold-faced numbers along each row indicate the best scores for the corresponding object class for
each of the three tasks. For example, for the class cup, the ‘Baseline’ and ‘Handover’ model were equally good
for providing good stability, while the ‘Handover’ model and ‘Tool use’ model (i.e., the task-specific models)
provide the best performance for the corresponding tasks. Our experiments showed that for some object classes
the baseline algorithm is more likely to produce grasps which suit one task, e.g., handover for cups and tool use
for screwdrivers. This result is expected as these tasks require grasps which place the fingers on larger, lower
curvature areas of the model that better fit the stability criteria optimised by the baseline approach. Results also
indicated that including task and object-specific information in the learned models for different classes steered
grasps towards regions that better suit the task under consideration and produced more successful grasps.

To evaluate H2, we focused on the brush and dustpan object classes, which have a “handle” configuration
similar to that of the screwdriver; we modelled this configuration with a keypoint at each end. In our trials
for these new object classes, we applied the same “tool use” model which had been trained for the screwdriver.
Our results show that this produced grasps with both high stability and task suitability illustrating that our
method can be used to translate learned task knowledge to other similar object classes when they are used to
perform similar functions.

The results also supported H3. For example, experiments in the screwdriver class showed adaption to scaling
changes by stretching the learned models based on keypoint positions to handle length (size) differences. Also,
the trials for the cup class illustrated the ability of our approach to handle intra-class variations in appearance
and shape, with each cup having different height, diameter, thickness, and handle design. Figures 17a and 17b
show some variations in these two classes in the point cloud representation; additional qualitative results are
shown in Figure 20.

For some objects there is a small drop in stability with our approach when our task-specific models result in
the robot targeting regions that the baseline algorithm is less likely to target, such as when the robot attempts
to grasp the cup handle for pouring. This is expected as the handle regions typically have reduced low curvature
surface area for the gripper finger tips to contact. The drop in stability is balanced by the other constraints
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in grasp scoring resulting in grasps with an acceptable stability which also meet the task requirements. As an
additional test, we added a 6mm thick strip of foam to the handle of the cup with the thinnest handle and
repeated an additional ten trials with the pour task model. With a larger surface area for grasping, the rate of
successful grasps increased from 70% to 90% with our approach, and the proportion of these grasps that met
the criteria for the pour task increased from 71% to 88%. Overall, these results support hypotheses H1-H3.

The results in Figure 19 for the hammer class highlight some issues of interest. Many grasp algorithms in
literature aim for the centre of objects to increase the likelihood of a stable grasp. In the case of a hammer
this heuristic is flawed as the functional design of a hammer requires concentration of mass at the head end.
With the baseline model and the parallel gripper, it was difficult to find a stable grasp to lift a hammer without
the hammer rotating in the grasp. In our tests the robot was not able to successfully grasp, lift, and hold the
hammer for the required time in many trials. The use of our learned models showed a significant improvement
in stability over the baseline method because our approach learned to guide grasping away from the handle and
towards the head end of the hammer shaft for stability (and handover). The functional distribution of weight
and our choice of a simple, parallel motion, two jaw gripper make it difficult to run trials successfully for a tool
use task even with our learned model as whilst the robot often selects the correct grasp points on the handle it
is unable to maintain a stable hold the object for the required time to meet our 10 second threshold. This could
be addressed by using a more suitable gripper with more fingers that wrap around the the handle to provide
reaction force against the hammers tendency to pivot out of the gripper.

5.2 Reasoning Experiments

Hypothesis H4-H7 were tested by generating sequences of plans for a series of frame designs incorporat-
ing increasing numbers of beams and pins into a ladder structure using the RAMP benchmark beam set.
Each task domain extends the general manipulation robot domain with three coarse locations assembly area,
intermediate area, and input area. The general manipulation robot domain provides the robot the ability to
move between locations as well as pick up and put down objects. A more detailed description of the general
domain is provided in Section 4.2. The domain contains a single manipulator robot which starts with its hand
empty in a neutral home location above intermediate area which joins the assembly and input areas through
next to(P1, P2) relations. We define the following task domains, illustrated in Figure 21:

• D1 - Containing 4 beams joined in a square with 4 pegs. Equivalent to the Easy-3 assembly of the RAMP
benchmark.

• D2 - Containing 5 beams with 6 pegs.

• D3 - Containing 6 beams with 8 pegs. Equivalent to the Medium-3 assembly of the RAMP benchmark

• D4 - Containing 7 beams with 10 pegs.

In these configurations each additional beam adds 2 more pegs to be inserted at the connection points. Each
assembly was started with one of the long horizontal beams labelled as the base beam to initialise the assembly.

We provide additional task domain information by automatically extracting from xml descriptions the as-
sembly objects defined as beams and pins at the coarse-resolution and with distinct beam-parts at the fine-
resolution. We automatically generate an input location and assembly locations for each object as discussed in
Section 4.2.1. We initialise all parts except the base beam at their input locations, with the base beam fixed at
its target assembly location.

The combined domain provides the following actions for the robot:

• move(robot, place) - to move the robot end effector to a particular location.

• pick up(robot, part) - to grasp a particular part with the robot’s gripper.

• put down(robot, part) - to release a particular part from the robot’s gripper.

• assemble square(robot, joint) - to insert beams where a specified joint fits into an existing joint in the
assembly.

• assemble cap(robot, joint) - to insert a beam such that one or more joints in the assembly fit into the
beam.
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Figure 20: Illustrative examples of qualitative results using our grasping approach. The first seven rows show
use of task-specific models to guide grasping despite intra-class variations in scale and orientation: first column
shows keypoints; second shows heatmap of good grasp locations (lighter colours are better); and third shows
preferred grasp. Rows 1-5 show use of same task-specific model (of screwdriver class) for the same task (tool
use) across different object classes. Rows 6 and 7 show the “handover” task model for the dustpan class and
the “pour” model for the cup class respectively. The final row illustrates some failure cases: firstly incorrect
keypoint detection; second an instance where the object moved during imaging; and third an example of a point
cloud with substantial noise, potentially leading to incorrect grasp placement.
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(a) D1 (b) D2

(c) D3 (d) D4

Figure 21: Assemblies used for testing planning with increasing numbers of connecting parts, pegs are highlighted
orange.

• fasten(robot, joint, joint, peg) - to insert a peg into two beams at their connecting joints.

• push(robot, beam) - to correct the position of beams already in the assembly.

We provide open source xml descriptions of each of these beam assemblies, the detailed domain descriptions,
and all code used to run experiments via GitHub4. Experiments were run on a single desktop PC with a AMD
Ryzen 7 3700X 8-Core Processor running at 3.59 GHz with 32.0 GB RAM. Graphical processing specification
is not important in this case as the SPARC answer set solver is constrained to execution on a single CPU core.

First we conduct an experiment to track the execution times for each step of planning for domains of different
sizes, for this experiment we use D1 and D3 as our example domains. We first attempted to plan in only the
fine-resolution domain, starting with a step length of 0 and increasing the number of steps, numSteps, by a
single step each iteration and recording the time taken for the planner to return a response. We set the goal
to be the completed assembly, for example the goal definition for D1 containing beams b4, b5, b7, b8 and pins
p1-4, where b7 is the base beam which starts in the assembly at numSteps = 0;

goal(I)←− holds(in assembly c(b4), true, I),

holds(in assembly c(b5), true, I),

holds(in assembly c(b8), true, I),

holds(fastened c(b4, b8, p1), true, I),

holds(fastened c(b5, b8, p2), true, I),

holds(fastened c(b7, b4, p3), true, I),

holds(fastened c(b7, b5, p4), true, I).

A response from the planner takes the form of either an empty set or one or more answer sets representing a
set of state transitions that include the goal at step I. We set a limit of 50 steps and a time out of 120 seconds
per step. We then repeat the same process but this time using only the coarse–resolution domain.

Our results in Figure 22 show us that cycle time is affected by two factors:

1. The length of the plan i.e., the number of steps we are looking ahead.

2. The complexity of the domain i.e., the number of objects in the domain.

4https://github.com/M-A-Robson/RAMP-Benchmark-Planner
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Figure 22: Cycle times for planning at different resolutions for domains D1 and D3, requiring 7 and 13 objects
be added to the assembly respectively. Planning in the fine domain quickly becomes impractical with plans of
greater than 25 steps timing out. The coarse planning times for the smaller domain spike drastically from 43
steps as the planner approaches the goal at 50 steps.

In essence we are performing a breadth first search considering the possible sets of states after each step where a
single step represents a single possible action execution. Therefore, we expect to see the size of the search space
grow exponentially by O(bd) where b is the branching factor and d is the depth of the solution (the number of
time steps). All of the graphed results show an increase in cycle time as the number of steps increases. We can
also see in the results that the fine resolution domains require significantly longer processing times for each step
compared to the coarse domain equivalents. Using our iterative approach cumulative planning time is the sum
of planning times per step, we can clearly see that planning only in the fine domain is not feasible for practical
assembly tasks.

SPARC sets an internal limit on the size of answer sets to 100,000,000 characters so answer sets larger than
this limit are considered intractable. We do not reach this boundary in this experiment but this provides the
upper limit of the size of the search space.

We also see that cycle time appears to be affected by proximity to a goal state. This can be seen in the
coarse-resolution planning cycle times for D1 which increase drastically from 43 steps as the planner approaches
the goal at 50 steps. We speculate that this is due to the increased internal work that the SPARC system
must perform to check if a goal has been reached and in parsing out the valid answer sets found when goals are
achieved, in this case at step 50.

Next we compare our framework using an abstract task planning layer with the original 2-layer imple-
mentation from REBA [3]. We provide the same D1 domain each time. The abstract domain only consid-
ers the beams of the assembly and their relationships defined with statements such as fits into(B1, B2) or
fits through(B2, B3) which are automatically extracted from the connection information in the assembly xml
file. The base beam is still fixed at its target location as previously described. The abstract planner then
searches for answer sets with a goal of the form:

abstract goal(I)←− holds(in assembly c(b4), true, I),

holds(in assembly c(b5), true, I),

holds(in assembly c(b8), true, I),

The only action in the abstract domain is assemble(beam) as discussed in Section 4. Plans are found by the same
iterative search method, starting with plans of length 0. When using the abstract planner the coarse-resolution
planner is tasked with finding sequential goals based on the returned abstract assembly sequence. For example,
if the sequence from the abstract planner returns a valid plan of the form:

occurs(assemble(b4), 0), occurs(assemble(b5), 1), occurs(assemble(b8), 2)
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Planning Time (seconds)
Method Abstract Coarse Fine Total

REBA Baseline 0 267.90±0.92 33.81±0.16 301.72±1.04
Our Method 0.25±0.01 17.12±0.10 34.03±0.22 51.40±0.25

Delta: 250.31

Table 3: Planning times averaged over 10 iterations of the D1 domain using the REBA coarse-fine planning
approach and our extension using an additional abstract task planning layer.

Figure 23: Graph showing the effect of the additional task abstraction planning step on the total planning time
averaged over 10 iterations of the D1 domain, which requires the addition of 7 objects (3 beams and 4 pins) to
the assembly. The abstract planning time is such a small portion of the overall planning time that it is virtually
hidden in the graph, see Table 3

Then we provide the coarse-resolution planner with the subgoals such as;

goal(I)←− holds(in assembly c(b4), true, I).

We then plan in the coarse domain until to find a valid sequence of actions that achieve the subgoal, recording
the coarse state and history of actions to this point, then progressively feed the planner each subsequent
subgoals until a valid coarse-resolution plan is found. We search for fine-resolution plans in the same manner
as the original REBA paper, using the coarse-resolution states as goal definitions and zooming to only consider
relevant parts of the fine domain. Table 3 shows the average planning times when applying our approach to
the D1 assembly domain which are then illustrated in Figure23. Each table value is the numerical average
and standard deviation over 10 runs. Our results show that finding valid assembly sequences in the abstract
domain is very time efficient as our method of feeding sequential subgoals significantly reduced the time taken
to find coarse-resolution plans. When using a starting plan length of 0 and performing an iterative search
for a minimum length plan in the domain D1 the abstract planning step required only 0.25 seconds to find a
valid assembly sequence for adding 3 beams, reducing total planning time compared to the REBA baseline by
over 250 seconds. As expected fine resolution plan times remain roughly the same as before, benefiting from
the domain size reduction of the zooming process from the original REBA paper. Both methods outperform
planning in the fine domain alone which times out before finding a valid solution to the D1 assembly strongly
supporting H4 and H5.

In order to test applicability of our framework to larger domains we apply our search method to find plans for
D2 - D4 which expand the domain by adding more beams and pegs to form more complex assemblies. Table 4
shows the increasing complexity caused by adding these additional components. Our method successfully finds
plans for all of the test domains including D4 which requires 125 coarse-resolution actions that refine into 214
fine-resolution concrete actions for the robot to execute. Without the abstract planning step we are unable to
formulate such long plans using the coarse-resolution planner as there are too many valid paths to the goal,
resulting in answer sets over the 100,000,000 character limit that the SPARC library can successfully handle,
and in-feasibly long search times. Planning times and standard deviations at each stage returned when using
our method are recorded in Table 5 and illustrated in Figure 24.
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Domain n Beams
Assembled
Beams

Pins:
2(n− 2)

Assembly
Objects

Abstract
Plan
Steps

Coarse
Plan
Steps

Fine
Plan
Steps

D1 4 3 4 7 3 50 83
D2 5 4 6 10 4 74 125
D3 6 5 8 13 5 91 166
D4 7 6 10 16 6 125 214

Table 4: Planning data for the four test assemblies

Time (seconds)
Number of
Objects

Assembled

Abstract
Planning

Coarse
Planning

Fine
Planning

Fine Planning,
with Pruning

Pruning Delta

7 0.25±0.01 17.12±0.10 34.033±0.22 33.38±0.25 0.66±0.18
10 0.27±0.01 30.17±0.11 62.43±0.39 60.37±0.35 2.06±0.38
13 0.36±0.01 68.07±0.35 108.16±0.61 104.26±0.49 3.91±0.54
16 0.80±0.02 113.80±0.33 216.78±0.84 212.06±1.75 4.72±1.84

Table 5: Planning time results increase as the number of objects to be assembled grows, abstract and coarse
data points are averaged over 10 runs with 5 runs each used to compare between fine planning with and without
the pruning heuristic.

Figure 24: Planning times increase with the size of the domain.

Our results show that our planner scales effectively to these larger domains with the abstract planning step
requiring an average of just 0.8 seconds to find a valid assembly sequence for adding 7 beams in domain D4 over
5 iterations. Considering the drastic effect that this has on reducing the planning time in the coarse planning
step our results strongly support H4-H6.

We also test our location pruning heuristic discussed in Section 4. The heuristic appeared to have a small
positive effect, reducing fine-resolution planning times marginally. Additionally, the average time reduction,
shown in 25, does increase as the number of assembly objects in the domain grows confirming H7.

The effect of pruning in reducing the overall planning time was not as effective as we might have hoped.
This may be due to the added overhead of additional processing of location data in the zooming step consuming
almost as much time as is saved by reducing the size of the domain. Some location traversal sequences cannot
benefit from pruning because they are not associated with robot moving a specific assembly object, limiting
the application of the pruning heuristic. We note that Zooming already significantly reduces the size of the
domain for planning fine-resolution actions representing transitions between coarse-resolution states. In general
we found that these sequences of fine-resolution actions are not very long, averaging 1.73 fine actions per
coarse-resolution transition across D1-D4. The remainder of this section will cover the results of applying our
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Figure 25: Time savings in fine planning step using pruning heuristic increase with the domain size.

framework to the Easy class of RAMP benchmark tasks. In these experiments the base beam is rigidly attached
to the table and beams and pins are placed on a A2 paper template in order to lay them out in such a way that
the robot can reach them, this template is available from the project website5. The implementation of concrete
robot actions and running of trials on a physical robot were conducted by coauthors of the RAMP paper; Jack
Collins and Jun Yamada of the Oxford Robotics Institute. We will outline the implementation details and trial
results for completeness and to discuss the implications for our framework.

The baseline method presented in the RAMP paper [1] relies on our framework to find a successful plan
before executing the found action sequence in open-loop using hand-designed concrete actions. Sensors (e.g.,
wrist-mounted and bird’s eye cameras) are used to observe the April tags [73] on the beams and pegs, estimating
their location in world coordinates. Since the offsets of these tags to each joint and link of the beams are known
from our xml assembly description, joint and link poses can be computed in the global reference frame. We
leverage the MoveIt [74] motion planner for executing the move action, and Cartesian-space impedance control
and force feedback for contact-rich actions. The benchmark does not implement the grasp planner detailed in
Section: 4, instead relying on predefined grasp poses relative to the sensed beam locations.

The fasten action is executed using a force based spiral contact search algorithm [75] with small oscillations
used during insertion to prevent jamming. In the event of an unsuccessful hole detection, the robot moves
upwards to re-estimate the hole position using the nearest fiducial marker observed by the wrist camera and
re-attempts the insertion once more.

The assemble square and assemble cap use Cartesian impedance control to move the grasped beam towards
the desired pose until a reactionary force, exerted against the robot, exceeds a threshold value. The push action
is also implemented using Cartesian impedance control and is used to correct the position of a beam to a nominal
target position in order to ensure alignment with future beams that might be inserted into the assembly.

We use the location system described in Section 4 to parameterise the motion and assembly locations in
SE3 based on using the April Tags to locate the base beam and from this automatically determining the target
and approach positions needed to complete the assembly actions of the other beams by the chaining of rigid
transforms.

For each of the three Easy assemblies of the RAMP benchmark, shown in 5 five repeat trials were conducted
with the results presented in Fig. 26. Fig. 27 shows snapshots of an assembly summarising the actions and
showing execution of a single plan, further videos are available on the RAMP website. Fig. 26 depicts task
completion percentage versus time (in seconds) across the three easy assemblies. Each subplot plots the average,
best and standard deviation over the five repeats. On average the robot was able to complete 84% of the target
assembly in an average execution time of 580 seconds. The standard deviation shown in 26 increases with
execution time since the more complex assemblies typically require more actions and so the robot is more likely
to fail in action execution.

5https://sites.google.com/oxfordrobotics.institute/ramp/create-your-own
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Figure 26: Results applying our framework to the three Easy tasks of the RAMP benchmark, with the percentage
of completion of the desired assembly expressed as a function of the time (planning and execution, in seconds).
The best and average of the repeats are plotted along with the standard deviation.

Figure 27: Visualising the assembly steps taken by the robot to assemble the RAMP Easy-3 assembly, equivalent
to D1. Motion sequences have been shortened highlight object interaction actions.

In these experiments planning was conducted without the abstraction layer and takes 180-200 seconds, our
results in Figure 24 suggest that the abstraction layer would reduce this by 50-75% for assembly domains of
this level of complexity.

A significant portion of failure cases in the RAMP assembly experiments occurred due to failure of the peg
insertion action. The fit between peg and hole requires a reasonable level of alignment and observation noise
limits the accuracy of the robots pose estimations with real object. The hand crafted insertion skill relied on
a spiral search which assumes that the peg is held vertically in the robots gripper which was not always the
case. Furthermore, insertion of the peg into the designated hole is only possible if the two beams are well
aligned as the peg must pass through matching holes in both beams of the connection. The peg insertion action
could be made reliable through use of an external observation to check the pegs alignment in the gripper or
by implementation of a learning-based method [76]. Fig. 26 shows clearly that the standard deviation on the
assembly metric increases with time, implying that assemblies requiring a greater number of actions result in
lower success rates, this is expected as each action execution carries a small probability of failure so over many
actions there are more chances that the robot fails.

The curse of dimensionality causing an exponential increase in planning times is still apparent in the trend
lines of Figure 24. Using our framework we are able to look ahead over the detailed assembly process in the
fine domain of 16 or more objects, totalling over 200 concrete robot actions. The RAMP experiments on real
hardware demonstrate that in practical applications, it is likely that the robot will struggle to execute this many
actions without failure.
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6 Conclusions

We have presented a general framework for the control of a robotic agent which has application to a wide range
of assembly problems. The framework is built upon a tiered architecture consisting of an abstract task planning
layer which feeds sequential goals to closely coupled coarse and fine resolution reasoning layers that direct a
manipulation robot’s behaviours,

The abstract task planning layer finds valid sequences of part addition to complete an assembly task given
a task description specified using Action Language ALd [2] and feeds these steps as a series of goals to a closely
coupled robotic reasoning framework based on the REBA architecture [3]. The actions in the fine resolution
domain description must be precisely matched to the concrete actions executable on the robot. Our results
showed that the addition of the abstract task planner allows the robot to reason about action sequences over
long time horizons needed for challenging assembly tasks such as the assembly of LGS beams in the construction
of modular panels for the offsite construction industry. Our method demonstrated a 93.5% reduction in the
total time needed to calculate a coarse-resolution plan for and example domain containing 7 objects to be added
into a target assembly when using the abstract task-planning step compared to iteratively searching for a plan
in the coarse-resolution domain alone. We showed that our method can scale to assemblies of practical sizes
that would be intractable without the tiered architecture including finding sequences of over 200 robot actions
in length to assemble structures requiring the addition of 16 objects.

A key part of our framework which enables assembly manipulation is a reusable location structure which can
be used to automatically parameterise assembly behaviours in the logical domain and which directly translated
into SE3 pose data suitable for robotic manipulation and assembly tasks. We demonstrated the use of this
structure in parameterising the assembly actions of the RAMP benchmark tasks which represent a tabletop
facsimile of the LGS beam assembly task. Additionally, we demonstrated a pruning heuristic to speed up
searching in this location graph when the robot is searching for valid assembly motions.

We established that another key aspect of deploying a robotic agent to a manipulation domain such as
assembly tasks is object grasping. Towards this end we also presented a grasp planning approach for considering
task and object-specific constraints while generating suitable grasp points on the target object’s surface for robot
manipulation. We introduced a three-level representation for objects, compatible with our framework, which
includes object class membership, point cloud data representing the objects surface, and semantic keypoints
linked to the object parts. We presented a weighted grasp scoring model considering a minimum set of factors;
a combination of measurement uncertainty and variation in the extracted surface, and the contact angle of
gripper fingers to the surface. And demonstrated a method of learning a task-object model that preserves the
relationship between keypoints and grasp points for specific tasks despite changes in factors such as the scale
and orientation of objects.

We showed, through experimental evaluation on a Franka robot manipulator with a parallel gripper, that
our grasping method was able to learn from a single expert labelled exemplar of an object class and apply this
knowledge to generate grasps on previously unseen objects of that class which achieved the desired task-specific
trade off whilst maintaining a high degree of grasp stability. Our experiments also provided promising results
for the transfer of knowledge (models) learned for one object class to other classes that share similar semantic
regions, e.g., handles.
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7 Further Work

Our research opens up many directions for further work to address current limitations and explore interesting
extensions. Testing the RAMP benchmark assemblies showed clearly that as the robot performs more actions
using open loop control the likelihood of failure increases as each subsequent action carries a small risk that
it does not change the state as intended e.g., the fasten action fails to insert a peg. The REBA architecture
provides a Theory of Observations to address this by adding observation actions with probabilistic modelling of
action outcomes so that the robot can reason about, detect, and react to these execution failures. The extension
of our work to incorporate a similar closed loop control mechanism would provide an essential capability for the
robot to be able to successfully complete long horizon assembly tasks reliably. Demonstrating application of the
framework to other assembly tasks such as the example tasks which we used as examples to guide the framework’s
specification, and comparison of our approach to other baselines, such as PlanSys2 [77] which combines PDDL
domains and behaviour tree execution control, would provide valuable insight into its advantages and limitations.

The general robot manipulation domain is currently constrained to a single robot in our applications, but
specification using ALd allows for expansion to consider several agents, enabling multi-robot collaboration which
might be extremely useful for the building of larger assembly structures. Other authors have considered how
multiple agents might use a similar reasoning framework to cooperate as an ad-hoc teams without prior coordi-
nation [78] which might be further investigated towards the development of assembly robots as a collaborating
swarm.

Our reasoning framework allows the robot to look ahead to reason about the assembly actions which it must
take at future time steps and to use this information to guide the planning of grasps to interact with objects
in the environment. In our grasp planning experiments we explored the trade off of some task-specific criteria
with stability; future work should expand on this to include additional object classes and criteria, for example
many task-oriented grasps align with the object’s principal axes and a measure of this alignment can also be
considered when optimising grasp locations. Our grasping method specifically scores finger tip placement on the
object but the orientation of the robots wrist and the object’s relative pose in the gripper can have a large effect
on the functionality of the grasp for task execution [43]. As such an interesting extension would be to include
a model of approach vectors to relevant semantic keypoints to learn task-specific grasp approach vectors, in a
similar manner to the finger tip placements, to learn more optimal configurations for task execution.

We provided our grasp planner with expert labelled exemplar objects from which to learn grasp points but
it would also be interesting to reduce the extent of involvement of a human expert by exploring methods that
automatically segment and process image sequences (i.e., videos) to learn semantic keypoints and grasp regions
for additional objects. The overall objective would be to smoothly trade off different criteria to result in safe
and successful grasps for a wide range of object classes and tasks. It would also be of interest to further explore
the transfer of knowledge (models) learned for one object class to other classes with similar semantic regions.
We were able to show that this concept worked for “handle” regions in our experiments but there is scope for
further work to explore how far this concept is applicable to other object classes and other types of semantic
region, e.g. packaging, doors and books all share hinging components that might have similar properties.

Finally, in order to fully combine the grasp planner into our framework we would like to build upon our
work by testing the combined elements using the grasp planning element in tandem with planning and executing
assembly tasks, in more practical and simulated example domains, to develop a truly flexible robotic assembly
system.

43



References

[1] J. Collins, M. Robson, J. Yamada, M. Sridharan, K. Janik, and I. Posner, “RAMP: A benchmark for
evaluating robotic assembly manipulation and planning,” IEEE Robotics and Automation Letters, vol. 9,
no. 1, p. 9–16, Jan. 2024. [Online]. Available: http://dx.doi.org/10.1109/LRA.2023.3330611

[2] M. Gelfond and D. Inclezan, “Some properties of system descriptions of ALd,” Journal of Applied Non-
Classical Logics, vol. 23, no. 1-2, pp. 105–120, 2013.

[3] M. Sridharan, M. Gelfond, S. Zhang, and J. Wyatt, “ReBA: A refinement-based architecture for knowledge
representation and reasoning in robotics,” Journal of Artificial Intelligence Research, vol. 65, pp. 87–180,
2019.

[4] M. Robson and M. Sridharan, “A keypoint-based object representation for generating task-specific grasps,”
in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), 2022, pp.
374–381.

[5] G. Boothroyd, “Product design for manufacture and assembly,” Computer-Aided Design, vol. 26, no. 7, pp.
505–520, 1994.

[6] M. Sealy and S. Corns, “Lucas design for assembly method applied at hawker siddeley switchgear,” in IEE
Seminar on Team Based Techniques Design to Manufacture, 1992, pp. 5/1–5/7.

[7] N. J. Nilsson, Shakey the Robot. SRI International. Artificial Intelligence Center, 1984.

[8] M. Gelfond and Y. Kahl, Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University Press, 2014.

[9] D. McDermott, M. Ghallab, A. E. Howe, C. A. Knoblock, A. Ram, M. M. Veloso, D. S. Weld,
and D. E. Wilkins, “PDDL - the planning domain definition language,” Yale Center for Computional
Vision and Control, Tech. Rep., 1998. [Online]. Available: https://www.researchgate.net/publication/
2278933 PDDL - The Planning Domain Definition Language

[10] S. Zhang and M. Sridharan, “A survey of knowledge-based sequential decision-making under uncertainty,”
AI Magazine, vol. 43, no. 2, pp. 249–266, 2022.

[11] I. Georgievski and M. Aiello, “HTN planning: Overview, comparison, and beyond,” Artificial Intelligence,
vol. 222, pp. 124–156, 2015.

[12] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215–289,
2018.

[13] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer, “Search-based task planning with
learned skill effect models for lifelong robotic manipulation,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE Press, 2022, p. 6351–6357.

[14] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A Theory of Higher Level Cognition and Its Relation
to Visual Attention,” Human–Computer Interaction, vol. 12, no. 4, pp. 439–462, dec 1997.

[15] J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive robotics using the SOAR cognitive
architecture,” in Workshops at the twenty-sixth AAAI conference on artificial intelligence, 2012.

[16] D. Choi and P. Langley, “Evolution of the icarus cognitive architecture,” Cognitive Systems Research,
vol. 48, pp. 25–38, 2018, cognitive Architectures for Artificial Minds.

[17] M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V. Sarathy, and T. Frasca, An Overview of the Dis-
tributed Integrated Cognition Affect and Reflection DIARC Architecture. Cham: Springer International
Publishing, 2019, pp. 165–193.

[18] C. McGann, K. Rajan, H. Thomas, R. Henthorn, and R. S. McEwen, “A deliberative architecture for
auv control,” in 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pp.
1049–1054.

44

http://dx.doi.org/10.1109/LRA.2023.3330611
https://www.researchgate.net/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language
https://www.researchgate.net/publication/2278933_PDDL_-_The_Planning_Domain_Definition_Language
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A General Manipulation Domain

file: robot domain coarse.sp

#const numSteps = 1.

sorts

#robot = {rob0}.

#thing = {}.

#object = #robot + #thing.

#place = {input_area,intermediate_area,assembly_area}.

#grasp_mode = {dexterous,vacuum}.

#action = putdown(#robot,#thing), move(#robot,#place), pick_up(#robot,#thing),

change_grasp_mode(#robot,#grasp_mode).

#boolean = {true, false}.

#outcome = {true, false, undet}.

#inertial_fluent = in_hand(#robot, #thing)+ location(#object, #place)+

current_grasp_mode(#robot, #grasp_mode).

#fluent = #inertial_fluent + #defined_fluent.

#step = 0..numSteps.

predicates

next_to(#place, #place).

holds(#fluent, #boolean, #step).

occurs(#action, #step).

success().

goal(#step).

something_happened(#step).

rules

% next_to works both ways

next_to(P1,P2):- next_to(P2,P1).

% CWA on next_to

-next_to(P1,P2):- not next_to(P1,P2).

% things can only have a single locaiton at a time

holds(location(T,P1), false, I) :- holds(location(T,P2), true, I), P1!=P2.

% robot can only have one grasping mode at a time

holds(current_grasp_mode(R,G1), false, I) :- holds(current_grasp_mode(R,G2), true, I), G1!=G2.

% objects are removed from the robots hand when they are putdown

holds(in_hand(R,T), false, I+1) :- occurs(putdown(R,T), I).

% robot cannot put down an object which it is not holding

-occurs(putdown(R,T), I) :- not holds(in_hand(R,T), true, I).

% moving updates the robots location

holds(location(R,P), true, I+1) :- occurs(move(R,P), I).

% objects in the robot’s hand move with it

holds(location(T,P), true, I+1) :- occurs(move(R,P), I), holds(in_hand(R,T), true, I).

% cannot move to the current location

-occurs(move(R,P1), I) :- holds(location(R,P2), true, I), P1=P2.

% can only move to locations next to the current locaiton

-occurs(move(R,P1), I) :- holds(location(R,P2), true, I), not next_to(P1,P2).

% picking objects up adds them to the robot’s grasp

holds(in_hand(R,T), true, I+1) :- occurs(pick_up(R,T), I).

% robot must be at objects location to pick it up

-occurs(pick_up(R,T1), I) :- holds(location(T1,P1), true, I),

holds(location(R,P2), true, I), P1!=P2.

% robot cannot pick up two objects at once

-occurs(pick_up(R,T1), I) :- holds(in_hand(R,T2), true, I), #thing(T2).

% grasp mode change updates current grasp mode
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holds(current_grasp_mode(R,G), true, I+1) :- occurs(change_grasp_mode(R,G), I).

% grasp mode cannot be changed to the current mode

-occurs(change_grasp_mode(R,G1), I) :- holds(current_grasp_mode(R,G1), true, I), G1=G2.

% cannot change grasp mode whilst holding an object

-occurs(change_grasp_mode(R,G), I) :- holds(in_hand(R,T), true, I), #thing(T).

% planning rules

-holds(F, V2, I) :- holds(F, V1, I), V1!=V2.

holds(F, Y, I+1) :- #inertial_fluent(F), holds(F, Y, I), not -holds(F, Y, I+1), I < numSteps.

-occurs(A,I) :- not occurs(A,I).

success :- goal(I), I <= numSteps.

:- not success.

occurs(A, I) | -occurs(A, I) :- not goal(I).

-occurs(A2, I) :- occurs(A1, I), A1 != A2.

something_happened(I) :- occurs(A, I).

:- not goal(I), not something_happened(I).

% no specified goal

goal(I) :- .

% domain set up

next_to(intermediate_area, assembly_area).

next_to(intermediate_area, input_area).

file: robot domain fine.sp

#const numSteps = 1.

sorts

#robot = {rob0}.

#thing = {}.

#object = #robot + #thing.

#grasp_mode = {dexterous,vacuum}.

#place_c = {input_area,intermediate_area,assembly_area}.

#table_locs = {c1,c2,c3,c4,c5,c6}.

#non_placement_location = {above_input,above_intermediate,above_assembly}.

#place_f = #table_locs + #non_placement_location.

#fine_res_sort = #place_f.

#coarse_res_sort = #place_c.

#action = putdown(#robot,#thing) + move_f(#robot,#place_f) + pick_up(#robot,#thing)

+ change_grasp_mode(#robot,#grasp_mode).

#boolean = {true, false}.

#outcome = {true, false, undet}.

#inertial_fluent = in_hand(#robot, #thing)+ loc_c(#object, #place_c)

+ loc_f(#object, #place_f)+ current_grasp_mode(#robot, #grasp_mode).

#step = 0..numSteps.

#fluent = #inertial_fluent.

predicates

next_to_c(#place_c, #place_c).

next_to_f(#place_f, #place_f).

component(#coarse_res_sort, #fine_res_sort).

holds(#fluent, #boolean, #step).

occurs(#action, #step).

success().

goal(#step).

something_happened(#step).

rules

% only place_f can be a component of place_c
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-component(C1,P1):- #place_c(P1), not #place_f(C1).

% next_to relationships in fine level link coarse locations

next_to_f(C1,C2):- next_to_f(C2,C1).

next_to_c(C1,C2):- next_to_c(C2,C1).

-next_to_f(P1,P2):- not next_to_f(P1,P2).

-next_to_c(P1,P2):- not next_to_c(P1,P2).

next_to_c(P1,P2):- next_to_f(C1,C2), component(P1,C1), component(P2,C2).

% location bridge axiom

holds(loc_c(T,P), true, I) :- holds(loc_f(T,C), true, I), component(P,C).

% can only hold one fine location at a time

holds(loc_f(T,P1), false, I) :- holds(loc_f(T,P2), true, I), P1!=P2.

holds(current_grasp_mode(R,G1), false, I) :- holds(current_grasp_mode(R,G2), true, I), G1!=G2.

holds(in_hand(R,T), false, I+1) :- occurs(putdown(R,T), I).

-occurs(putdown(R,T), I) :- not holds(in_hand(R,T), true, I).

% moving now affects fine location fluent

holds(loc_f(R,P), true, I+1) :- occurs(move_f(R,P), I).

holds(loc_f(T,P), true, I+1) :- occurs(move_f(R,P), I), holds(in_hand(R,T), true, I).

-occurs(move_f(R,P1), I) :- holds(loc_f(R,P2), true, I), P1=P2.

-occurs(move_f(R,P1), I) :- holds(loc_f(R,P2), true, I), not next_to_f(P1,P2).

holds(in_hand(R,T), true, I+1) :- occurs(pick_up(R,T), I).

-occurs(pick_up(R,T1), I) :- holds(in_hand(R,T2), true, I), #thing(T2).

-occurs(pick_up(R,T1), I) :- holds(loc_f(T1,P1), true, I), holds(loc_f(T2,P2), true, I), P1!=P2.

holds(current_grasp_mode(R,G), true, I+1) :- occurs(change_grasp_mode(R,G), I).

-occurs(change_grasp_mode(R,G1), I) :- holds(current_grasp_mode(R,G1), true, I), G1=G2.

-occurs(change_grasp_mode(R,G), I) :- holds(in_hand(R,T), true, I).

% planning rules

-holds(F, V2, I) :- holds(F, V1, I), V1!=V2.

holds(F, Y, I+1) :- #inertial_fluent(F), holds(F, Y, I), not -holds(F, Y, I+1), I < numSteps.

-occurs(A,I) :- not occurs(A,I).

success :- goal(I), I <= numSteps.

:- not success.

occurs(A, I) | -occurs(A, I) :- not goal(I).

-occurs(A2, I) :- occurs(A1, I), A1 != A2.

something_happened(I) :- occurs(A, I).

:- not goal(I), not something_happened(I).

% no specified goal

goal(I) :- .

% domain set up links locations and defines components

next_to_f(above_intermediate_area, above_assembly_area).

next_to_f(above_intermediate_area, above_input_area).

component(c1, intermediate_area).

next_to_f(c1, above_intermediate_area).

component(c2, intermediate_area).

next_to_f(c2, above_intermediate_area).

component(c3, intermediate_area).

next_to_f(c3, above_intermediate_area).

component(c4, intermediate_area).

next_to_f(c4, above_intermediate_area).

component(c5, intermediate_area).

next_to_f(c5, above_intermediate_area).

component(c6, intermediate_area).

next_to_f(c6, above_intermediate_area).
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B Abstract Beam Domain

file: abstract beam domain D2.sp

#const numSteps = 4.

#const startStep = 0.

sorts

#beam = {b7,b4,b5,b8,b3}.

#action = assemble(#beam).

#boolean = {true, false}.

#outcome = {true, false, undet}.

#inertial_fluent = in_assembly_c(#beam)+ supported_c(#beam).

#step = startStep..numSteps.

#fluent = #inertial_fluent.

predicates

fits_into_c(#beam, #beam).

fits_through_c(#beam, #beam).

is_capped_by(#beam, #beam, #beam).

base(#beam).

holds(#fluent, #boolean, #step).

occurs(#action, #step).

success().

goal(#step).

something_happened(#step).

rules

% a beam is capped by two other beams if it fits into both of those beams

is_capped_by(B1,B2,B3):- fits_into_c(B1,B2), fits_into_c(B1,B3), B2!=B3.

is_capped_by(B1,B2,B3):- is_capped_by(B1,B3,B2).

% CWA on capping

-is_capped_by(B1,B2,B3):- not is_capped_by(B1,B2,B3).

% beams are supported if a beam they fit into is already in the assembly

holds(supported_c(B1), true, I) :- holds(in_assembly_c(B2), true, I), fits_into_c(B1,B2).

holds(supported_c(B1), true, I) :- holds(in_assembly_c(B2), true, I), fits_into_c(B2,B1).

% beams cant connect to themselves

-fits_into_c(B1,B2):- B1=B2.

-fits_through_c(B1,B2):- B1=B2.

% cannot have multiple relationships between beams

-fits_through_c(B1,B2):- fits_into_c(B1,B2).

-fits_into_c(B1,B2):- fits_through_c(B1,B2).

% fits are one way relationships

-fits_into_c(B1,B2):- fits_into_c(B2,B1).

-fits_through_c(B1,B2):- fits_through_c(B2,B1).

% CWA on fit relationships

-fits_into_c(B1,B2):- not fits_into_c(B1,B2).

% causal law on assemble action puts beams into the assembly

holds(in_assembly_c(B), true, I+1) :- occurs(assemble(B), I).

% cannot assemble a beam if beams which would cap its ends are already

% in the assembly

-occurs(assemble(B1), I) :- holds(in_assembly_c(B2), true, I),

holds(in_assembly_c(B3), true, I), is_capped_by(B1,B2,B3), B2!=B3.

% cannot assemble a beam if a beam which needs to be passed through it is already assembled

-occurs(assemble(B1), I) :- holds(in_assembly_c(B2), true, I), fits_through_c(B2,B1).

% cannot assemble a capping beam untill all of the beams it caps are in the assembly

-occurs(assemble(B1), I) :- not holds(in_assembly_c(B2), true, I),
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holds(in_assembly_c(B3), true, I), is_capped_by(B2,B1,B3), B2!=B3.

% cannot assemble a beam already in the assembly

-occurs(assemble(B), I) :- holds(in_assembly_c(B), true, I).

% cannot assemble beams that are not yet supported

-occurs(assemble(B), I) :- not holds(supported_c(B), true, I).

% planning rules

-holds(F, V2, I) :- holds(F, V1, I), V1!=V2.

holds(F, Y, I+1) :- #inertial_fluent(F), holds(F, Y, I), not -holds(F, Y, I+1), I < numSteps.

-occurs(A,I) :- not occurs(A,I).

success :- goal(I), I <= numSteps.

:- not success.

occurs(A, I) | -occurs(A, I) :- not goal(I).

-occurs(A2, I) :- occurs(A1, I), A1 != A2.

something_happened(I) :- occurs(A, I).

:- not goal(I), not something_happened(I).

% goal definition

goal(I) :- holds(in_assembly_c(b4), true, I) , holds(in_assembly_c(b5), true, I) ,

holds(in_assembly_c(b8), true, I) , holds(in_assembly_c(b3), true, I).

% domain setup

holds(in_assembly_c(b7),true,0).

fits_into_c(b4,b7).

fits_into_c(b5,b7).

fits_into_c(b4,b8).

fits_into_c(b5,b8).

fits_into_c(b3,b7).

fits_into_c(b3,b8).

base(b7).
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