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Abstract The quality of robot-assisted surgery can be improved and the use of
hospital resources can be optimized by enhancing autonomy and reliability in the
robot’s operation. Logic programming is a good choice for task planning in robot-
assisted surgery because it supports reliable reasoning with domain knowledge
and increases transparency in the decision making. However, prior knowledge of
the task and the domain is typically incomplete, and it often needs to be refined
from executions of the surgical task(s) under consideration to avoid sub-optimal
performance. In this paper, we investigate the applicability of inductive logic pro-
gramming for learning previously unknown axioms governing domain dynamics.
We do so under answer set semantics for a benchmark surgical training task, the
ring transfer. We extend our previous work on learning the immediate precondi-
tions of actions and constraints, to also learn axioms encoding arbitrary temporal
delays between atoms that are effects of actions under the event calculus formal-
ism. We propose a systematic approach for learning the specifications of a generic
robotic task under the answer set semantics, allowing easy knowledge refinement
with iterative learning. In the context of 1000 simulated scenarios, we demonstrate
the significant improvement in performance obtained with the learned axioms com-
pared with the hand-written ones; specifically, the learned axioms address some
critical issues related to the plan computation time, which is promising for reliable
real-time performance during surgery.
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1 Introduction

In the last few decades, robots have been used in operating rooms to assist sur-
geons in performing minimally invasive surgery, improving the precision of sur-
geons and the recovery time of patients [32, 49]. At present, surgeons use a console
to tele-operate patient-side manipulators. One long-term goal of research in surgi-
cal robotics is the development of robot systems capable of executing a surgical op-
eration, or at least a part of it, with minimal supervision of a human expert [8, 38].
Such robot systems can boost safety, optimize resource usage, and reduce patient
recovery time, surgeon fatigue, and hospital costs [50]. The complexity of sur-
gical scenarios makes it difficult to encode comprehensive domain knowledge or
provide many labeled training examples. Hence, autonomy requires the robot to
reason with incomplete commonsense domain knowledge, and adapt automatically
to variations in the surgical scenario and individual patients. In [18] we proposed a
framework for surgical task execution that integrated logic-based reasoning about
task-level actions with adaptive motion planning and control. This task-level rea-
soning was based on Answer Set Programming (ASP), a non-monotonic logic pro-
gramming paradigm [15]. Logic programming can encode high-level specifications
and constraints extracted from expert knowledge on the behavior of the robot
system, in order to provide reliable operation in dynamic domains. Moreover, the
non-monotonic logical reasoning capability of ASP, i.e., the ability to retract pre-
viously held beliefs, is important in robotics applications. A key limitation of our
prior framework was that it assumed comprehensive knowledge of the task and do-
main in terms of domain attributes (e.g., object properties) and axioms governing
domain dynamics (e.g., constraints, and action preconditions and effects). This is
not feasible in practical robotics domains, especially in surgical scenarios that are
characterized by high variability in the patient’s anatomy.

In this paper, we focus on the problem of learning previously unknown task-
level knowledge from a small number of example executions of a benchmark surgi-
cal training task, the ring transfer task, executed with the da Vinci® robot from
Intuitive Surgical. We build on our recent proof of concept exploration of the use
of inductive logic programming (ILP) to learn previously unknown axioms govern-
ing domain dynamics in answer set semantics [34]. In that work, learned axioms
represented action preconditions and executability constraints, and learning was
based on four example executions. In this paper, we significantly extend this idea
to consider temporal relations between domain attributes, learning previously un-
known axioms representing the delayed effects of actions. To do so, we reformulate
the axioms in [18] using the principles of event calculus, a state of the art temporal
logic formalism to represent a system’s reaction to events [20, 24]. This integration
of ILP and event calculus supports fast learning with standard hardware resources.

The remainder of this paper is organized as follows. Section 2 reviews the state
of the art in surgical process modeling and learning of domain knowledge. Next,
Section 3 describes the ring transfer task and its original hand-written ASP encod-
ing, introducing the new event calculus formalism for the effects of actions. Sec-
tion 4 formalizes the ILP task under the answer-set semantics. Section 5 presents
the results of evaluating our approach for learning axioms in simulated scenarios
requiring coordination of different action sequences. Finally, Section 6 describes
the conclusions and future research directions.
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Fig. 1: Standard granularity levels of surgical processes, as described in [27].

2 Related work

Building a surgical process model (SPM) requires the designer to choose the level
of granularity at which the task is to be analyzed. We use the definition of granu-
larity (for surgical processes) provided in [27] and shown in Figure 1. Learning an
SPM for tasks involving motion is challenging since surgical gestures present high
variability [41]. Hence, statistical methods such as Markov models [31, 48, 27] are
typically used to infer a motion-level SPM.

In this paper, we focus on learning SPMs at a coarser granularity, i.e. at the
level of relations between activities (or actions) that constitute a surgical step or
phase. An action is an elementary motion associated with semantics; it specifies,
for example, the arm and the surgical tool to be used to perform this action.
The sequence of actions is affected by the variations in the anatomical conditions.
Bayesian networks (BNs) represent the state of the art for learning SPMs at this
granularity [5, 9]. Recurrent (deep) neural networks have also been explored, ex-
hibiting improvement in the accuracy at the expense of increased computational
effort during training [12]. Since surgical tasks typically involve a transition be-
tween a sequence of states, a hidden Markov model has been used to model the
surgical training task of ring transfer, which involves cooperation between a hu-
man and a robot [4]. However, even a simplified version of this training tasks
required 80 labeled human executions for training, making scalability to more
complex tasks challenging. Another key limitation of many statistical methods is
that they generate black-box models that do not provide any guarantees in terms
of correctness and soundness, affecting the reliability of the surgical system. On
the other hand, logic-based formalisms for representing and reasoning with domain
knowledge inherently provide correctness guarantees [41], and they make the un-
derlying reasoning more transparent. However, such logic-based formalisms for the
ring transfer task have required comprehensive domain knowledge to be encoded
a priori [18, 19], which is difficult to do in more complex surgical scenarios.

There are many methods in AI for learning domain knowledge. Examples
include the incremental revision of action operators represented in first-order
logic [17], the expansion of a theory of actions to revise or inductively learn ASP
system descriptions [3], and the combination of non-monotonic logical reasoning,
inductive learning, and relational reinforcement learning to incrementally acquire
previously unknown actions and their preconditions and effects [47]. Previously un-
known axioms governing domain dynamics have also been learned using decision
tree induction in a framework that combines ASP-based non-monotonic logical
reasoning with deep learning for scene understanding [36, 37]. These approaches
may be viewed as instances of interactive task learning, a general framework for
acquiring domain knowledge using labeled examples or reinforcement signals ob-
tained from domain observations, demonstrations, or human instructions [26].

Our framework for learning domain knowledge uses ILP to learn previously
unknown domain axioms represented as ASP programs. ILP was developed to sup-
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port learning from a limited set of labeled examples [40]. It has been used by an
international research community in different domains, e.g., to identify a driver’s
cognitive stress and distraction [35]; for event recognition in city transport [21];
and to learn logic programs in robotics [10]. ILP has also been successfully ap-
plied to the learning of programs based on the paradigm of event calculus [39],
but providing the event calculus specification of any non-trivial task or domain
can be challenging. Methods have been developed for automated, scalable, and
incremental learning of event calculus definitions [1, 23]. ILP has also been used to
support learning in non-monotonic logic programs [30] and probabilistic logic pro-
grams [11]. In complex domains such as surgical robotics, learning with probabilis-
tic logics is computationally challenging [42], but non-monotonic logical reasoning
is still necessary. We thus choose to build on ILASP, an implementation of ILP
for learning domain axioms under answer set semantics [28]. ILASP provides key
advantages in comparison with other ILP-based approaches for learning axioms.
For example, it supports faster learning than Inspire [46], another system based
on answer set semantics, because it has fewer hyper-parameters. Although ILASP
(by itself) does not support Inspire’s ability to automatically create and general-
ize predicates to obtain shorter axioms, this limitation can be partially overcome
with an iterative version of ILASP. In addition, it has been shown [28] that ILASP
is more general than XHAIL [43], a state of the art tool for inductive learning of
event calculus-based axioms, and its competitor ILED [22]. It also guarantees some
appealing properties that are discussed in Section 4.

3 Original ASP encoding of the ring transfer task

Figure 2 shows the setup for the illustrative surgical training task of ring transfer.
The objective is to place colored rings on pegs of the corresponding color using the
two patient-side manipulators (PSM1 and PSM2) of the da Vinci® robot. Each
PSM can grasp any reachable ring and place it on any reachable peg; reachability
is determined by the relative position of rings and pegs with respect to the center
of the base. Pegs can be occupied by other rings and must be freed before placing
the desired ring on it. Also, rings may be on pegs or on the base in the initial
state, i.e., some rings may need to be extracted before being moved.

We describe the ring transfer task in an established format for answer set
programming (ASP) [6]. ASP is a declarative language that can represent recursive
definitions, defaults, causal relations, and constructs that are difficult to express
in classical logic formalisms [15]. It encodes concepts such as default negation
(negation by failure) and epistemic disjunction, e.g., unlike “¬a”, which implies
that “a is believed to be false”, “not a” only implies “a is not believed to be true”,
i.e., each literal can be true, false or unknown. ASP supports non-monotonic logical
reasoning, i.e., adding a statement can reduce the set of inferred consequences.
Modern ASP solvers support efficient reasoning with large knowledge bases or
incomplete knowledge, and are used by an international research community [13].

A domain’s description in ASP comprises a system description D and a history
H . D comprises a sorted signature Σ and axioms.Σ comprises basic sorts arranged
hierarchically; statics, i.e., domain attributes whose values do not change over time;
fluents, i.e., domain attributes whose values can be changed; and actions. Domain
attributes and actions are defined in terms of the sorts of their arguments. Fluents
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Fig. 2: Setup for the ring transfer task. The dashed line marks the reachability
regions for the two PSMs of the da Vinci® robot.

can be inertial (i.e., those that obey inertia laws and whose values are changed
directly by actions) or defined (i.e., those that do not obey inertia laws and whose
values are not changed directly by actions). Variables and object constants are
terms; terms with no variables are ground. A predicate of terms is an atom; it is
ground if all its terms are ground. An atom or its negation is a literal. For the
ring transfer task, statics include location (including instance center), object (with
sub-sorts ring and peg), the robot’s arm (with instances psm1 and psm2), the color

of each ring and peg (can take values: red, green, blue, yellow, grey), and time for
temporal reasoning; and fluents include reachable(arm, object, color), in hand(arm,

ring, color), on(ring, color, peg, color), at(arm, center), closed gripper(arm), and
at(arm, object, color). Actions include move(arm, object, color), move(arm, center,

color), grasp(arm, ring, color), extract(arm, ring, color) and release(arm). Given
this Σ, axioms describing domain dynamics are first specified as statements in an
action language, e.g., ALd [16], and then translated to ASP statements. Axioms
define causal laws (i.e., action effects and preconditions), state constraints, and
executability conditions (i.e., conditions under which certain actions are forbid-
den); some examples are provided later in this section. The domain’s history H is
a record of statements encoding the observation of the values of particular fluents,
and the execution of particular actions, at particular time steps.

To reason with domain knowledge, we construct the ASP program Π(D ,H )
that includes the signature, axioms of D , inertia axioms, reality checks, closed
world assumptions for actions, observations and actions from H , and helper state-
ments (e.g., for goal definition, planning, and diagnostics). Planning, diagnostics,
and inference can then be reduced to computing answer sets of Π. An answer set
(AS) describes a possible world in terms of the beliefs of an agent associated with
Π. We use the Clingo solver [14] to generate answer set(s) of ASP program(s).
For the ring transfer task, we are primarily interested in atoms of actions, and a
subset of the fluents and statics; for simplicity, we will only focus on these atoms in
our description of Π(D ,H ) and its answer sets below. In our description, we will
denote variables of specific sorts using capital letters (e.g., O for object, R for ring,
P for peg, C for color, and A for arm), while constant values (e.g., specific instances
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of color or location) will be represented in lower case (e.g., center or red). The
axioms of the ring transfer task are described next.

3.1 Preconditions of actions

Preconditions are statements that need to hold true for the corresponding actions
to be have the desired effect(s), i.e., they help define causal laws. We define pre-
conditions and guess executed actions of the domain with the following statement:

0 {move(A, O, C, t) : reachable(A, O, C, t); (1)

move(A, center, , t) : in hand(A, R, C, t);

extract(A, R, C, t) : in hand(A, R, C, t);

grasp(A, R, C, t) : at(A, R, C, t);

release(A, t) : in hand(A, R, , t)} 1.

where 0 {a : b} 1 is an aggregate rule forcing the ASP solver to compute an an-
swer set with at most one element a, given that b holds. Capital letters represent
variables, “ ” is a placeholder for unused variables in the rules, and “t” refers to a
discrete time step. Adding “t” as an additional argument is short hand that the
corresponding action (fluent) occurs (holds) at a particular time step, e.g., grasp(A,
R, C, t) instead of occurs(grasp(A, R, C), t) implies that the robot arm A grasps
ring R of color C at time t; a precondition for this action is that the arm should be
at same position as ring R of color C. In a similar manner, we will use in hand(A, R,

C, t) interchangeably with holds(in hand(A, R, C), t) to imply that arm A has ring
R or color C at time t. We will also denote atoms with the argument t as atomt.

The use of an aggregate rule to define preconditions of actions, i.e., a statement
such as 0 { Action: Pre-condition } 1, constrains the number of elements that can
be selected from a set. In this case, only one action can be executed at a time
step, resulting in a sequential execution of actions. Since the robot has two arms,
we also consider parallel execution of an action by each arm at each time step,
revising Statement 1 as follows:

0 {Action: Pre-condition} 1 :- arm(A). (2)

It is possible to combine the execution strategies, e.g., executing move(A, center,

, t) executes a motion primitive that moves both arms in parallel to transfer a
ring from one arm to another.

3.2 Executability conditions

Executability conditions for the ring transfer task include the following:

:- move(A1, P, , t), in hand(A1, R, C, t),

in hand(A2, R, C, t), A1 != A2. (3a)

:- move(A, center, , t), in hand(A, R, C, t), on(R, C, P, , t). (3b)

:- move(A, P, , t), in hand(A, R, C, t), on(R, C, P, , t). (3c)

:- move(A, R, , t), closed gripper(A, t). (3d)

:- move(A, P, C, t), on(R, , P, C, t). (3e)
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where :- ≡ ←, and each statement can be viewed as having a ⊥ in the head, i.e.,
atoms on the right hand side of each statement cannot hold at the same time.
These statements thus describe conditions under which certain actions should not
be considered for execution. Statement 3a implies that neither arm can move if
they are both holding the same ring (during transfer); Statements 3b-c implies
that a ring which is still on a peg cannot be moved; Statement 3d implies that
an arm cannot move to a ring if the gripper is closed; and Statement 3e specifies
that an arm cannot move to an occupied peg—this does not prevent an arm from
moving to a ring that is on a peg by executing move(A, R, C, t). The objective of
the ring transfer task is to have all visible (i.e., reachable by any arm) rings on
pegs of matching color; this is expressed as the following constraint:

:- reachable( , R, C, t), reachable( , P, C, t), not on(R, C, P, C, t).

3.3 Effects of actions

In our previous work, we assumed the effects of actions to be “instantaneous”,
i.e., that they hold immediately after the action is executed and that these effects
cease to hold at the subsequent time step [18]. Here we consider a more realistic
scenario by making the fluents inertial. Then, the inertia axioms ensure that fluents
continue to hold their value until these values are changed explicitly, e.g., by action
execution or a specific termination condition:

holds(F, t+1) :- holds(F, t), not ¬ holds(F, t+1).

¬ holds(F, t+1) :- ¬ holds(F, t), not holds(F, t+1).

where F is an inertial fluent. In our illustrative ring transfer domain, effects are
explicitly related to the corresponding actions as follows:

in hand(A, R, C, t) :- grasp(A, R, C, t-1). (4)

in hand(A, R, C, t) :- in hand(A, R, C, t-1), not release(A, t-1).

closed gripper(A, t) :- grasp(A, R, , t-1).

closed gripper(A, t) :- closed gripper(A, t-1), not release(A, t-1).

on(R, C1, P, C2, t) :- in hand(A, R, C1, t-1),

at(A, P, C2, t-1), release(A, t-1).

on(R, C1, P, C2, t) :- on(R, C1, P, C2, t-1), not extract( , R, C1, t-1).

at(A, R, C, t) :- move(A, R, C, t-1).

at(A, P, C, t) :- move(A, P, C, t-1).

at(A, center, t) :- move(A, center, , t-1)

at(A, O, C, t) :- at(A, O, C, t-1), not move(A, O, C, t-1).

at(A, O, C, t) :- at(A, O, C, t-1), not move(A, center, t-1).

at(A, center, t) :- at(A, center, t-1), not move(A, O, C, t-1).

at(A, center, t) :- at(A, center, t-1), not move(A, center, t-1).

However, this formulation is challenging for ILP since it includes many default
negations. To reduce the number of such default negation statements, we intro-
duce relations inspired by work in event calculus. Event calculus was developed
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to represent and reason about events and their effects in a logic programming
framework [24]. An event calculus program relates the properties of a domain to
triggering events. In our case, we introduce two relations, initiated and terminated,
to encode the initiating and terminating conditions (respectively) for each fluent.
We then reformulate the inertia axioms as follows:

holds(F, t) :- initiated(F, t). (5)

holds(F, t) :- holds(F, t-1), not terminated(F, t).

Next, we use these new relations to describe the effects of actions in the ring
transfer domain as follows:

initiated(in hand(A, R, C), t) :- grasp(A, R, C, t-1). (6)

initiated(closed gripper(A), t) :- grasp(A, R, , t-1).

initiated(on(R, C1, P, C2), t) :- in hand(A, R, C1, t-1),

at(A, P, C2, t-1), release(A, t-1).

initiated(at(A, R, C), t) :- move(A, R, C, t-1).

initiated(at(A, P, C), t) :- move(A, P, C, t-1).

initiated(at(A, center), t) :- move(A, center, , t-1).

terminated(in hand(A, R, C), t) :- release(A, t-1),

in hand(A, R, C, t-1). (7a)

terminated(closed gripper(A), t) :- release(A, t-1). (7b)

terminated(on(R, C1, P, C2), t) :- extract( , R, C1, t-1),

color(C2), C1 != C2. (7c)

terminated(at(A, R, C), t) :- move(A, R, C1, t-1), color(C), C1 != C. (7d)

terminated(at(A, R, C), t) :- move(A, P, , t-1), color(C).

terminated(at(A, R, C), t) :- move(A, center, , t-1), color(C). (7e)

terminated(at(A, P, C), t) :- move(A, P, C1, t-1), color(C), C != C1. (7f)

terminated(at(A, P, C), t) :- move(A, R, , t-1), color(C). (7g)

terminated(at(A, P, C), t) :- move(A, center, , t-1), color(C). (7h)

terminated(at(A, center), t) :- move(A, O, , t-1). (7i)

As stated in Section 3.1, two actions can be executed in parallel under some
conditions. For example, the execution of move(A, center, C) causes a different
motion primitive to be executed concurrently on the two arms; the main arm A is
eventually at the transfer location center, while the other arm is eventually at the
grasping location of ring C. Two additional axioms are added to encode this effect:

initiated(at(A1, R, C), t) :- move(A2, center, C, t-1), A2 != A1, arm(A1). (8)

terminated(at(A1, center), t) :- move(A2, center, , t-1), A2 != A1, arm(A1).

4 ILP task under AS semantics

The task of learning the system description under AS semantics has been formu-
lated as an ILP by other researchers; please see [30] for details. Here, we provide
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the relevant definitions suitably adapted to our work and domain. A generic ILP
problem T under the AS semantics is defined as the tuple T = 〈B,SM , E〉, where
B is the background knowledge, i.e. a set of axioms in ASP syntax; SM is the search
space, i.e. the set of candidate ASP axioms that can be learned; and E is a set of
examples. The goal of T is to find a subset H ⊆ SM such that H ∪B |= E.

We use the iterative version of ILASP2 algorithm, ILASP2i, in the ILASP
tool [28] to learn axioms inductively from ASP-syntax examples. This algorithm
optimizes the search process by focusing on incrementally satisfying only those
examples which are not covered by B and the current partial hypothesis [29]. In
ILASP, examples are considered to be partial interpretations defined as follows.

Definition 1 (Partial interpretation). Let P be an ASP program. Any set of
grounded atoms that can be generated from axioms in P is an interpretation of P .
Given an interpretation I of P , we say that a pair of subsets of grounded atoms
e = 〈einc, eexc〉 is a partial interpretation extended by interpretation I if einc ⊆ I
and eexc ∩ I = ∅.

Given this definition, ILASP solves a learning task defined as follows.

Definition 2 (ILASP learning task). The ILASP learning task T = 〈B,SM , E〉 is
a tuple of background knowledge B, search space SM and examples E = 〈E+, E−〉
such that E+ (E−) is the subset of positive (negative) examples. The goal of T
is to find H ⊆ SM such that ∀e ∈ E, e is a partial interpretation of the ASP
program B ∪H. If AS is an answer set of the ASP program H ∪B, the following
must hold:

∀e ∈ E+ ∃AS s.t. B ∪H |= AS : e is extended by AS
∀e ∈ E− @AS s.t. B ∪H |= AS : e is extended by AS

The above definition introduces two different categories of examples: positive ex-
amples, which must be extended by at least one answer set of B∪H, and negative
examples, which cannot be extended by any of the answer sets. In this sense, we
say that ILASP bravely induces positive examples, and cautiously induces nega-
tive examples [45]. ILASP can learn action preconditions and effects from positive
examples, and executability conditions from negative examples. In particular, we
exploit the ability of ILASP to learn from context-dependent examples (partial
interpretations), as explained in [29].

Definition 3 (Context-dependent partial interpretation (CDPI)). A CDPI of an
ASP program P with an interpretation I is a tuple ec = 〈e, C〉, where e is a partial
interpretation, and C is an ASP program called context. I is said to extend ec if
einc ∪ C ⊆ I and (eexc ∪ C) ∩ I = ∅.

Definition 4 (ILASP task with CDPIs). An ILASP learning task with CDPIs is
a tuple T = 〈B,SM , E〉, where E = 〈E+, E−〉 is a set of CDPIs with context C.
We say that H ⊆ SM is a solution to T if the following hold:

∀e ∈ E+ ∃AS s.t. B ∪H ∪ C |= AS : e is extended by AS
∀e ∈ E− @AS s.t. B ∪H ∪ C |= AS : e is extended by AS

All examples (for ILASP learning task) considered in this paper are tuples of the
form e = 〈einc, eexc, C〉. This allows us to relate environmental fluents to actions
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when learning axioms for the task, thus capturing the dynamic nature of the
illustrative ring transfer task.

ILASP allows to define the search space SM with compact syntax, using mode
bias to specify the atoms that can occur in the body and head of axioms (right- and
left-hand side of an axiom respectively). In this paper, we consider two different
kinds of learning tasks: one for preconditions and executability conditions and
one for effects of actions. The specification of the mode bias for the two learning
tasks will be presented in the next section. Another feature of ILASP is that it is
designed to find the minimal H in the search space SM . To explain this feature,
we first define the length of an axiom.

Definition 5 (Length of an axiom). Let R be an axiom in an ASP program.
The length of R, |R|, is defined as the number of atoms that appear in it. For an
aggregate rule, i.e. a rule with an aggregate l {a1; a2; . . . ; an} u in the head, the
length of the head is defined as

∑u
i=l i · n.

The minimal set H is then the set of rules in SM with minimal length that satisfy
the goal of ILASP task.

5 Experiments in the ring transfer domain

In this section, we describe the experimental setup and the results of experimen-
tally evaluating the capabilities of our approach in the context of the ring transfer
task. In our experiments, we focused primarily on the ability to learn previously
unknown axioms describing actions’ preconditions (e.g., Statement 1) and effects
(e.g., Statement 4), and executability conditions (Statement 3). In order to restrict
the search space and improve the computational efficiency, separate ILASP tasks
for each action are defined to learn the different types of axioms. Also, separate
ILASP tasks are defined for each domain fluent, one each for the initiated and
the terminated conditions respectively.

We begin by defining the background knowledge and the search space for
ILASP tasks (Section 5.1), and describe how the training examples were generated
(Section 5.2). We then discuss the results of comparing the learned axioms with
the ground truth information provided by the designer (Section 5.3). In the first
experiment, we used the length of axioms and the computational time required by
ILASP as the evaluation measures; we hypothesized that the learned axioms would
closely match the ground truth information. In the next experiment, we considered
1000 simulated scenarios that mimic challenging conditions for the ring transfer
task, including both sequential and parallel execution of actions. In each scenario,
we conducted paired trials with the learned and ground truth axioms respectively.
In these trials, we used planning time and plan length as the evaluation measures
(with plans computed using the Clingo ASP solver).

5.1 Background knowledge and search space

In our experimental trials, we considered action preconditions and executability
conditions in one set and the action effects in another set. Below, we describe the
initial set up for these two sets of axioms.
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5.1.1 Preconditions and executability conditions

For the experiment that focused on learning action preconditions and executabil-
ity conditions, the background knowledge of each ILASP learning task (one per
action) included the definitions of sorts and helper axioms describing the difference
between two different arms or colors:

different(A1, A2) :- arm(A1), arm(A2), A1 != A2.

different(C1, C2) :- color(C1), color(C2), C1 != C2.

The search space for each ILASP task was defined using mode bias for compact-
ness. Specifically, for the task of learning preconditions and executability condi-
tions for any given action, we defined the search space such that the action can
only occur in the head of an aggregate rule (to capture preconditions) or in the
body of axioms (for executability conditions). In ILASP syntax, this corresponded
to the statements #modeha(action) and #modeb(1, action), respectively; #modeb(1,

action) specifies that action can appear in the body of an axiom only once. We
also specified that each environmental (i.e., domain) fluent presented in Section 3
may appear in the body of axioms, by adding the mode bias statement #modeb(1,

fluent). Similarly, we added the statement #modeb(1, different). When defining the
search space, arguments of atoms which are variables or constants must be clearly
stated in ILASP. Axioms with more variables generally require more computa-
tional effort. For the task of learning preconditions and executability constraints,
only arm and color were defined as variables in atoms. Finally, the length of the
body of axioms is limited to three atoms using a specific ILASP flag from command
line, to reduce the dimension of the problem.

5.1.2 Effects of actions

To learn the effects of action, we set up two ILASP learning tasks per environmen-
tal fluent, one each for the axioms associated with the initiated and terminated

relations. The background knowledge for these learning tasks contained the same
ASP statements presented in the previous section, and the laws of inertia (State-
ment 5). Moreover, since effects are delayed with respect to actions, we included
the concept of temporal sequence:

delay(1..N)

prev(T1, T2, D) :- time(T1), time(T2), delay(D), T2 = T1+D.

where delay is a variable constrained to the set 1..N and N is an estimate of the
maximum delay between actions and effects in the domain; N can be increased
until ILASP is able to find a suitable hypothesis with the minimum temporal
delay. For the ring transfer task, ILASP found the minimum value of N=1. We
then defined the search space using the mode bias #modeh(initiated(fluent, t))

or #modeh(terminated(fluent, t)), which specified the head of candidate normal ax-
ioms. Moreover, for each environmental fluent f and each action action of the task,
we stated #modeb(1, ft), #mode(1, actiont) to allow them in the body of candidate
rules. Also #modeb(1, prev) was included in the mode bias. Note that the inertia
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(a) (b) (c)

Fig. 3: Screenshots of initial states of surgical robot executing action sequences;
information extracted from the corresponding images were used for experimental
evaluation.

laws (Statement 5) imply that fluentt :- initiated(fluent, t), which would lead
ILASP to learn the trivial axiom:

initiated(fluent, t) :- fluentt

As a result, in the ILASP task to learn initiated conditions for a specific fluent,
we omitted the mode bias #modeb(1, fluentt). ILASP variables included color, arm,
and time, and delay was defined as a constant #constant(delay, 1..N) to reduce the
size of the search space. The maximum body length of axioms is limited to three.

5.2 Experimental setup: generation of examples

The training and testing examples were extracted from videos of a human or the
robot performing the target task; we used similar videos in our prior work [18].
When a human performed the task, all four rings were on grey pegs, and had to
be transferred between the two arms before being placed on suitable colored pegs.
Hence, all actions mentioned in Section 3 appeared in the videos. Figure 3 shows
screenshots of the initial states of the task, when performed by the robot, focus-
ing on scenarios that are useful to learn previously unknown knowledge about the
task and the domain. For example, in Figure 3a the transfer of the blue ring failed,
and PSM2 had to re-open its gripper before moving to the blue ring again; this
scenario can be used to learn the constraint encoded by Statement 3c. In a similar
manner, the blue and red pegs were occupied in Figure 3b and one of these pegs
had to be freed to complete the task; this scenario can be used to learn the axiom
encoded by Statement 3d. Finally, Figure 3c corresponds to the scenario that re-
quires concurrent (i.e., parallel) movement of the two arms. From each video, we
extracted geometric features from each image (i.e., frame) of the videos using stan-
dard (color and shape) image segmentation algorithms. We matched these features
semantically to the corresponding fluents; this is the same approach used in our
previous work [18]. In this process, we also exploited known transforms between
frames of the PSMs and the RGB-D cameral these transforms were obtained from
the calibration method described in [44]. We then labeled each frame in the video
with the recognized fluents and action being executed. This process was repeated
in all the videos to generate the set of labeled examples that serves as the input to
our approach to learn previously unknown axioms corresponding to executability
conditions (Statement 3), action preconditions (Statement 1), and action effects
(Statement 4). The target axioms define logical relations between atoms describ-
ing actions and domain fluents; the corresponding examples will only contain these
atoms. We next describe the setup for these types of axioms.
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5.2.1 Action preconditions and executability conditions

Since all atoms in the axioms corresponding to the preconditions and executability
conditions of actions refer to the same timestep t (Sections 3.1-3.2), we omitted the
timestep in the literals to reduce the number of variables in the search space and
speed up learning. For each timestep, we defined the positive examples as CDPIs
of the form 〈einc, eexc, C〉, where einc was the executed action, C contained the
atoms of the fluents describing the environmental state, and eexc = ∅. We also
specified actions that could not occur at each timestep, simulating knowledge
from an expert designer analyzing the video under consideration. We then defined
negative examples with forbidden actions in einc and eexc = ∅. Although it is
possible to add forbidden actions in the set eexc in the positive examples, the fact
that ILASP learns through brave induction from positive examples (see Section 4)
implies there is no guarantee that actions in eexc will always be excluded by the
solution hypothesis. On the contrary, negative examples are cautiously entailed by
adding executability conditions to the hypothesis set to ensure that the learned
axioms are reliable. As an illustrative example, consider the scene in Figure 3a.
The first action moves PSM1 towards the red ring, providing a positive example:

#pos{ex1, {move(psm1,R,red)}, {},

{reachable(psm1,R,red), reachable(psm2,R,blue),

reachable(psm1,P,red), reachable(psm1,P,blue),

reachable(psm2,P,green), reachable(psm2,P,yellow),

reachable(psm1,P,grey), reachable(psm2,P,grey),

on(R,red,P,grey)}}

At the same time, it is not possible to move PSM1 to the blue ring, providing the
negative example:

#neg{ex2, {move(psm1,R,blue)}, {},

{reachable(psm1,R,red), reachable(psm2,R,blue),

reachable(psm1,P,red), reachable(psm1,P,blue),

reachable(psm2,P,green), reachable(psm2,P,yellow),

reachable(psm1,P,grey), reachable(psm2,P,grey),

on(R,red,P,grey)}}

To reduce the complexity of the learning task, we omitted redundant examples, i.e.,
examples that only differ in the grounding of variables in the atoms. For example,
in the scenario in Figure 3c, both arms moved to a ring (PSM1 moved to blue ring,
PSM2 moved to yellow one) at t=1. This generated two examples that differ not in
context but only in the grounding of move(A, R, C); only one example was added.
Overall, we generated 8 positive examples and 8 negative examples for move(A,

P, C); 9 positive examples and 20 negative examples for move(A, R, C); 2 positive
examples and 1 negative example for move(A, center, C); 11 positive examples for
grasp(A, R, C); 10 positive examples and 4 negative examples for release(A); and
1 positive example for extract(A, R, C).
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5.2.2 Action effects

Since atoms in axioms corresponding to action effects do not share the same
timestep (Section 3.3), examples for these axioms must account for the tempo-
ral aspects. Since our formulation includes predicates inspired by event calculus,
we generated two examples for each fluent for each task execution, one each for
the initiated and the terminated axioms of this fluent. Only positive examples
were considered since they would not be used to learn executability conditions
(see above). Examples were CDPIs of the form 〈einc, eexc, C〉, where einc was the
set of initiated (or terminated) conditions at all timesteps, while eexc was the set of
initiated (or terminated) conditions that did not hold at all timesteps. The context
C was the task history, i.e., the set of atoms corresponding to actions and fluents
that were true at all timesteps. The set eexc was needed to guarantee that only rel-
evant causal laws were learned, given that positive examples are subject to brave
induction—see Definition 2. Consider the scene in Figure 3b as an illustrative ex-
ample. For the fluent at(A, R, C, t), the positive example (considering only the
initiated condition for simplicity) is shown below, with the atoms corresponding
to the set eexc underlined:

#pos{ex3,

{initiated(at(psm1,R,red,2)),initiated(at(psm1,R,blue,7)),...},

{initiated(at(psm1,R,blue,2)),initiated(at(psm1,R,red,7)),...},

{reachable(psm1,R,red, ), reachable(psm2,R,blue, ),

reachable(psm1,P,red, ), reachable(psm1,P,blue, ),

reachable(psm2,P,green, ), reachable(psm2,P,yellow, ),

reachable(psm1,P,grey, ), reachable(psm2,P,grey, ),

on(R,red,P,blue,1), on(R,blue,P,red,1), ...}}

As before, we omit redundant examples for action effects. Overall, we generated 1
example for the initiated (equivalently, terminated) condition for closed gripper(A);
2 examples for in hand(A, R, C); 1 example for at(A, center); 2 examples for on(R,

C1, P, C2); and 3 examples for at(A, O, C).

5.3 Experimental Results

Next, we describe and discuss the experimental results1; these results were ob-
tained on a PC with 2.6 GHz Intel Core i7 processor and 16 GB RAM.

1 Files available: https://gitlab.com/dan11694/ilp-for-task-knowledge-learning.git
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5.3.1 Preconditions and executability conditions

We begin by describing the results for learning the action preconditions and exe-
cutability conditions. The learned action preconditions are as follows:

0 {move(A, O, C, t) : reachable(A, O, C, t); (12)

move(A, center, C, t) : in hand(A, R, C, t);

extract(A, R, C, t) : in hand(A, R, C, t);

grasp(A, R, C, t) : at(A, R, C, t);

release(A, t) : in hand(A, R, C, t)} 1 :- arm(A).
2

Statement 12 matches the action preconditions in Statement 1. Note that the
ILASP learning task for any given action only provides the aggregate rule for
the precondition of that action, e.g., 0 {move(A, R, C) : reachable(A, R, C)} 1. In
Statement 12, the preconditions for all the actions are compacted into a single
aggregate rule, which allows the agent to choose at most one of the available
actions when solving the task planning problem. Moreover, the temporal variable
is manually added to all atoms.

Next, the learned executability constraints obtained from the ILASP learning
tasks for all actions are as follows:

:- move(A, P, C2, t), in hand(A, R, C, t), on(R, C, P, C1, t). (13a)

:- move( , P, , t), in hand(A, R, C, t), not reachable(A, P, C, t). (13b)

:- move(A, center, C, t), on(R, C, P, C1, t). (13c)

:- move(A, R, C, t), closed gripper(A, t). (13d)

:- on(R, C1, P, C, t), move(A, P, C, t). (13e)

Note that the timestep variable is added to each atom after it is learned. State-
ments 13a-c represent the same conditions as in Statements 3c, 3a and 3b re-
spectively; forbidding motion when both arms hold the same ring is equivalent to
forbidding motion when the arm which cannot reach the peg is holding the ring
after transfer. Statements 13d-e match the constraints in Statements 3d-e. Note
that Statement 13b contains placeholders in the action atom. In fact, executabil-
ity conditions are learned through a separate ILASP learning task for each action,
considering only examples that are relevant to that action. This results in the
following executability condition without the action fluent (of moving to a peg):

:- in hand(A, R, C, t), not reachable(A, P, C, t).

This condition cannot be satisfied when combined with the set of axioms for the
other actions. Hence, we add the action atom with placeholders to relate this condi-
tion to the action of moving to a peg. These placeholders help ensure the generality
of the learned conditions. Table 1 shows the time taken to learn the preconditions
and executability conditions for each action, and compares the length of the learned
axioms with the original ASP encoding of the domain. Action move(A, P, C) has
the largest learning time, the largest axiom length, and the largest number of vari-
ables in the axioms; more time is hence needed to search the set of hypotheses

2 arm(A) is needed only for parallel execution of the task, see Section 3.1.
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Table 1: Quantitative results of the ILASP task for preconditions and executability
conditions. The lengths of original and learned axioms are compared, and the
learning time is shown (as computed by ILASP).

Actions Original (length) Learned (length) Time (sec)

move(A, R, C) 4 4 0.49
move(A, P, C) 11 10 49.17
move(A, center, C) 5 4 0.09
extract(A, R, C) 2 2 0.06
grasp(A, R, C) 2 2 0.09
release(A) 2 2 0.79

total 26 24 50.69

and find the correct one. Performance is also influenced by the number and type
(i.e., positive, negative) of examples, e.g., the learning time for the release action
is more than that of the grasp action that has more variables because release has
four negative examples while grasp has none. An overall reduction from 26 to 24
is obtained in the length of the axioms using the ILASP-based approach. This re-
duction is based on the ability of ILASP to find shorter axioms connecting actions
and environmental conditions, discovering logical relations that are not intuitive
for a human manually encoding the domain and the task.

5.3.2 Effects of actions

The learned axioms corresponding to the effects of actions, after replacing prev(T1,

T2, 1) with the more compact representation of the temporal variable in Clingo’s
syntax, includes the following axioms related to the initiated relation:

initiated(in hand(A, R, C), t) :- grasp(A, R, C, t-1). (14a)

initiated(closed gripper(A), t) :- grasp(A, R, , t-1). (14b)

initiated(on(R, C1, P, C2), t) :- in hand(A, R, C1, t-1),

at(A, P, C2, t-1), release(A, t-1). (14c)

initiated(at(A, R, C), t) :- move(A, R, C, t-1). (14d)

initiated(at(A1, R, C), t) :- move(A2, center, C, t-1),

different(A1, A2). (14e)

initiated(at(A, P, C), t) :- move(A, P, C, t-1). (14f)

initiated(at(A, center), t) :- move(A, center, , t-1). (14g)

Note that ILASP initially finds the following axiom corresponding to the initiated

relation for fluent closed gripper(A):

initiated(closed gripper(A), t) :- in hand(A, R, C, t). (15)

This axiom is found because the execution of a grasp action sets the value of both
of these fluents to be true. So we split any such axioms such that the fluents are re-
lated to the corresponding actions, as shown in Statement 14a and Statement 14b.
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Another point of interest is that Statement 14c is learnt using intermediate pred-
icate invention. In fact, the ILASP2i algorithm used in this paper returns the
partial hypothesis after evaluation of each example, particularly when it is unable
to find a valid hypothesis for all examples at the first try; this is due to the con-
straint we imposed on the length of body of axioms to limit the search space for
computational efficiency. In this case, the partial hypothesis is:

initiated(on(R, C, P, C), t) :- release(A, t-1), at(A, P, C, t-1).

This hypothesis only covers examples in which a ring is placed on the same-colored
peg, but it does not cover scenarios in which a ring has to be placed on a grey
peg (Figure 3b). We add this partial hypothesis as an axiom in the background
knowledge:

flag(A, C, T1, T2) :- release(A, T1), at(A, P, C, T1), prev(T1, T2, 1). (16)

and we modify the mode bias to include flag in the search space. ILASP is then
able to find the correct axiom. Notice that increasing the maximum axiom length in
the hyper-parameters would lead to the same result without intermediate predicate
invention, though increasing the search space.

Note that the axioms learned also include statements corresponding to the
terminated relation:

terminated(in hand(A, R, C), t) :- release(A, t-1),

in hand(A, R, C, t-1). (17a)

terminated(closed gripper(A), t) :- release(A, t-1). (17b)

terminated(on(R, C1, P, C2), t) :- in hand(A, R, C1, t-1),

on(R, C1, P, C2, t-1). (17c)

terminated(at(A, R, C), t) :- extract(A, R, C, t-1). (17d)

terminated(at(A1, R, C), t) :- at(A1, P, C, t), at(A2, center, t),

release(A1, t). (17e)

terminated(at(A, P, C), t) :- at(A, P, C, t-1), grasp(A, R, C1, t). (17f)

terminated(at(A1, center), t) :- at(A1, center, ),

move(A2, R, C, t), grasp(A1, R, C, t). (17g)

Recall that Section 5.2.2 had highlighted the need to include non-observed fluents
while learning causal laws. As an example, consider the initiated condition for the
fluent at(A, R, C). Excluding non-occurring fluents from examples generates the
following initiating axiom:

initiated(at(A, R, C), t) :- in hand(A, R, C, t+1).

which does not always hold and inverts the causal relation between body and head
of a rule.
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Table 2: Quantitative results for axioms of action effects in the context of initiated.
We compare the length of the original axioms with that of the learned axiom; we
also show the learning time returned from ILASP.

Actions Original (length) Learned (length) Time (sec)

at(A, R, C) 6 5 17.77
at(A, P, C) 2 2 24.89
at(A, center) 2 2 13.50
in hand(A, R, C) 2 2 10.15
on(R, C1, P, C2) 4 4 67.063

closed gripper(A) 2 2 10.15

total 18 17 143.52

Table 3: Quantitative results for axioms of action effects in the context of
terminated. We compare the length of the original axioms with that of the learned
axiom; we also show the learning time returned from ILASP.

Actions Original (length) Learned (length) Time (sec)

at(A, R, C) 10 8 18.23
at(A, P, C) 10 3 24.79
at(A,center) 6 4 20.86
in hand(A, R, C) 3 3 10.76
on(R, C1, P, C2) 3 3 92.36
closed gripper(A) 2 2 10.76

total 34 23 177.76

5.3.3 Validation of learned axioms

We validated the learned axioms in simulated scenarios that mimic challenging
environmental conditions for the ring transfer task. We generated 1000 scenarios
by considering all possible combinations of four rings on the peg base, with the
constraint that all rings need to be placed on a peg at the beginning. For each sce-
nario, both sequential and parallel execution of the task were executed; overall, all
available actions in the domain are included in the dataset of executions for proper
validation of all axioms. We set a maximum limit of 200 s for plan computation.
This is because plan computation can take a long time with the manually-encoded
original set of axioms shown in Section 3. The learned axioms provide a better
encoding; once learned, they were used to replace the corresponding axioms from
the original set.

Including the learned axioms discussed in the last few sections does not auto-
matically support the computation of a plan in all the simulated scenarios; some
knowledge may be missing in certain scenarios depending on the learning examples
presented. So, we identified the axioms that affect the plan computation, itera-
tively omitting axioms for each domain fluent (effects of actions) and each action

3 Adding new predicate in Statement 16 to the background knowledge.
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(preconditions and executability constraints). We found that Statements 17c-e-
f were the bottleneck for plan computation. Hence, we ran a new ILASP task
for corresponding fluents, i.e., at(A, O, C) and on(R, C1, P, C2), removing State-
ments 17c-e-f from the search space. This resulted in the following final set of
axioms related to the terminated relation (with the new axioms underlined), which
then allowed plans to be computed for all the simulated scenarios:

terminated(in hand(A, R, C), t) :- release(A, t-1),

in hand(A, R, C, t-1). (18a)

terminated(closed gripper(A), t) :- release(A, t-1). (18b)

terminated(on(R, C1, P, C2), t) :- on(R, C1, P, C2, t-1),

extract(A, R, C1, t-1). (18c)

terminated(at(A, R, C), t) :- extract(A, R, C, t-1). (18d)

terminated(at(A, R, C), t) :- at(A, R, C, t-1), release(A, t-1). (18e)

terminated(at(A, R, C), t) :- at(A, R, C, t-1),

move(A, center, C, t-1). (18f)

terminated(at(A, P, C), t) :- at(A, P, C, t-1), at(A, R, C1, t). (18g)

terminated(at(A1, center), t) :- at(A1, center, ),

move(A2, R, C, t), grasp(A1, R, C, t). (18h)

Tables 2-3 show the learning performances for initiated (Statements 14) and the
new set of terminated axioms. For the closed gripper(A) fluent, the learning time
was the same as that for in hand(A, R, C) because of the semantic equivalency be-
tween them—see discussion of Statement 15. For fluents on(R, C1, P, C2), at(A, O,

C), and at(A, center), the initiating and terminating axioms required most of the
overall learning time because the target hypothesis for these axioms was bigger
than that of the other axioms. Another observation was that the original ASP
encoding for the preconditions, executability conditions, and effects contains more
axioms than learned ones, e.g., the condition for terminating at(A, P, C) is signif-
icantly shorter. In fact, a comparison of Statements 18g and 7f-h indicates that
ILASP finds a single axiom describing the terminated condition, connecting fluents
instead of actions, which is different from the statements encoded by a human
designer.

Figures 4 and 5 show the comparison between learned and original ASP pro-
grams for the sequential and parallel task execution respectively. We specifically
compared the size of the plans returned by the two ASP programs, and the plan
computational time, in the simulated scenarios. To generate these figures, data
collected from these simulated scenarios were processed first. We sorted all scenar-
ios according to the size of the plan generated by the original ASP encoding, with
plan size measured in terms of the number of actions in the plan; this resulted in
several clusters of scenarios. For each scenario, we computed the size of the plan
generated with the learned ASP encoding. Then the mean and standard deviation
of plan length with the learned ASP encoding were computed for each cluster
of scenarios, and compared with the plan length with the original ASP encoding
(top part of Figures 4- 5). We also computed the mean and standard deviation
of planning time for each cluster of scenarios, both for original and learned ASP
encoding, to obtain one pair of points in the bottom part of Figures 4- 5. The
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results indicated that for scenarios that considered only the sequential execution
of actions, plans computed with the learned ASP program are of similar length to
those with the original ASP program. With scenarios that considered the parallel
execution of actions, plans computed with the learned ASP program were slightly
longer than those with the original ASP program.

Next, when we compared the planning time, the mean and standard deviation
were significantly lower with the learned ASP program (and sequential action
execution) in comparison with the original ASP program. This was mainly due
to the shorter axioms found by ILASP. For example, the average planning time
for the sixth, ninth and twelfth clusters was reduced by 100 s; such a reduction
is important for practical use of logic programming to surgery scenarios. Such a
reduction was not observed in the scenarios with parallel execution of actions.
We think this may be because the planning time (with parallel execution) was
significantly lower than with sequential execution of actions, both for the learned
and original ASP programs—see the relaxed choice encoded by Statement 2. Also,
the computational time was similar for the original and learned ASP programs in
this case. Note that one cluster of six scenarios had null (i.e., empty) plan size
with sequential action execution and the original ASP program; this was because
it was not possible to compute a plan within the maximum allowed time; the
corresponding planning time was set to a maximum value of 600 s, which was
higher than the maximum allowed planning time, for visualization convenience.
With the learned program, the plan could not be found in only one execution; the
corresponding average planning time in the bottom part of Figure 4-bottom is thus
high but not as high as that with the original ASP program. The starting cluster of
the failed attempts to compute the plan determines the initial apparent decrease
in the plan computation time for sequential action execution. For the scenarios
involving parallel action execution, the computational time rose with the plan size
after the first cluster. This is reasonable since longer plans are generated in more
complex conditions (e.g., colored pegs are occupied or more transfer of rings).

6 Conclusion

In this paper, we have presented an ILP-based approach for surgical task knowl-
edge learning. Our method can cope with multiple issues of interest in surgical
scenarios, such as the unavailability of large training datasets and the need for
explainable surgical task description. We have used a benchmark task for training
surgeons, the ring transfer executed with the da Vinci® robot, as the illustrative
task. Given a set of only four incomplete executions of the task from the human
and the robot, we have shown that it is possible to fast learn the axioms in ASP
syntax encoding actions and their relations with the environment, using inductive
learning based on the ILASP tool. In addition, we have separated the learning
tasks for different parts of the ASP encoding, and proposed a systematic learning
approach that can be extended to other robot tasks. This separation of parts of
the encoding supports incremental refinement of the knowledge (i.e., axioms) and
the associated search space.

We evaluated our approach in the context of simulated scenarios of challenging
conditions for the ring transfer task; we considered both sequential and parallel
action execution. With the learned ASP encoding, performance is comparable or
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Fig. 4: Comparison between learned and original axioms in simulation for scenarios
that involve sequential execution of actions.

Fig. 5: Comparison between learned and original axioms in simulation for scenarios
that involve parallel execution of actions.

only slightly worse than that with the original ASP encoding in terms of the size
of the plans found. We also examined the plan computation time, which affects the
real-time execution on a physical robot in the surgery domain. The experimental
results indicated the ability to discover semantic relations (between atoms) that
were not in the original ASP encoding provided by the human designer; this re-
sults in shorter axioms and also significantly reduces the planning time in certain
scenarios. There are some differences in performance between scenarios that in-
volve sequential action execution and those that involve parallel action execution;
these differences will be explored further in future work. The validation on an
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extensive set of simulated scenarios has also evidenced the need for refinement
of initially learned axioms. This shows that initially provided examples were not
“good” enough to learn adequate ASP axioms for complex instances of the ring
transfer task.

A disadvantage of our method is the need for labeled executions of the target
task, which may limit the scalability of this approach to more complex surgical
procedures. Our ongoing research is focused on the unsupervised segmentation of
actions and fluents from videos and kinematic recordings [33], which is an open
problem in the surgical domain [25, 2]. We are also integrating the framework
for automated task execution presented in [18] with our ILASP-based framework,
following an approach similar to [7]. This will allow an expert human to supervise
the learning system, defining the positive and negative examples in real-time for
online refinement of ASP task knowledge.
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