
In Department of Computer Science Technical Report, Texas Tech University,
Lubbock, Texas, USA, May 19 2010.

A Probabilistic Model for Effective Mutation

Testing

Mohan Sridharan

Department of Computer Science

Texas Tech University

mohan.sridharan@ttu.edu

Akbar Siami Namin

Department of Computer Science

Texas Tech University

akbar.namin@ttu.edu

May 19, 2010

Abstract

Mutation is an expensive fault-based testing technique. Most of the cost of

mutation is due to the compilation and execution costs associated with evaluating

an enormous number of mutants with the entire pool of test cases. The test pool

is typically augmented to account for mutants that remain unexposed after such

an analysis. It can be argued that a test pool capable of detecting certain types

of mutants is also capable of exposing other similar mutants. However, determin-

ing whether the test pool would expose the faulty behavior of a mutant, without

actually evaluating the mutant with the test pool, is an undecidable problem.

There has been considerable research in the probabilistic reasoning community

on identifying the important hypotheses among a set of candidate hypotheses. This

paper applies such a Bayesian approach to mutation testing, in order to identify the

important mutation operators whose mutants tend to remain unexposed after anal-

ysis by the existing test pool. We propose a novel approach that adapts stochastic

sampling techniques to repeatedly select, examine and record the true behavior of a

small proportion of generated mutants. Based on the performance of these selected

mutants, the probabilities of the corresponding mutation operators are updated, and

a proportionately suitable number of mutants of the operators are examined in the

subsequent iterations. Over a few iterations, the process identifies the important

mutation operators. Our exploratory case-study shows that the proposed approach

has significant promise: it identifies over 90% of the important mutation operators

by examining just 20% of the available mutants, while increasing the effectiveness

of mutation testing by ≈ 5.0%.



1 Introduction

Mutation testing, first proposed by DeMillo [7] and Hamlet [10], is a fault-based testing

technique to assess the adequacy of test suites based on their ability to detect syntheti-

cally injected faults (i.e. mutants) generated by well-defined mathematical transforma-

tions (i.e. mutation operators). It has been reported that mutants can act like real faults

[2], making it feasible to measure the adequacy of test suites when there is a short-

age in the number of available real faults. Despite its effectiveness, mutation testing

is a computationally expensive technique, primarily due to the enormous number of

mutants generated by applying a large number of mutation operators. Each generated

mutant requires compilation, execution, and could possibly result in test case augmen-

tation. However, not all mutants make significant contributions to the measurement of

the adequacy of existing test suites. In particular, easy-to-detect mutants are likely to

be exposed by the existing test suites, which may lead to the wrong conclusion that the

existing test suites do not require any further augmentation.

Several mutation operators have been proposed, each representing a category of

possible faults. Though each mutation operator is designed to generate a certain type

of fault, there is no clear understanding of the relationship between mutants generated

by a particular operator. To the best of our knowledge, the only related work is that

by Offutt [17], where the author claimed that the test datasets that detect most of the

simple faults are capable of detecting more complex faults. Further, Offutt claimed that

this coupling effect was true of mutants i.e. the complex mutants are coupled to simple

mutants in such a way that a test dataset that detects all simple mutants of a program

will detect a large percentage of the more complex mutants.

Though the coupling effect may or may not hold true for faults and mutants, it

exploits the idea of reducing the mutation cost by focusing only on single-entry mu-

tated programs. In this paper, we make a more reasonable hypothesis that a test suite

that is capable of detecting some of the mutants generated by a mutation operator is

capable of detecting other similar mutants generated by the same operator. In other

words, we can examine a small set of mutants and limit our attention to those mutation

operators whose mutants remain unexposed by the existing test suites. We describe a

novel Bayesian (i.e. probabilistic) formulation for mutation testing based on stochastic

sampling techniques, in particular importance sampling. The proposed technique iter-

atively selects a small subset of mutants generated by each operator. In each iteration,

the approach then directs its focus towards those mutation operators whose mutants

remain unexposed (i.e. alive) in the previous iteration. The chief contributions of this

paper are hence as follows:

1. It incorporates an importance sampling scheme to iteratively direct attention

towards the important mutation operators whose application to a target program

would require augmentation of the existing test suites.

2. It analyzes the sensitivity to prior distributions to show that the proposed ap-

proach is reasonably robust to different types of prior distributions.

The proposed approach was evaluated through a case-study on a specific subject pro-

gram, and it shows promising results. The stochastic sampling approach increases the

effectiveness of mutation testing by ≈ 5% over the default approach of analyzing a

random subset of mutants. Furthermore, the approach is able to identify ≥ 90% of the



interesting mutation operators by examining just 20% of the available mutants.

The remainder of the paper is organized as follows. Section 2 briefly reviews mu-

tation testing, while Section 3 presents the sampling-based formulation for mutation

testing. Section 4 describes data collection and the subject program used to evaluate

the proposed approach. The experimental results and its ramifications are discussed

in Section 4.3. Section 5 analyzes the effect of certain parameters involved in the

proposed approach and presents the operators identified as being important by the pro-

posed method. Section 6 includes a brief discussion of the threats to validity, followed

by the conclusions in Section 7.

2 Related Work

Testing is a key component of software development, which accounts for 80% of de-

velopment budget. Robust and reliable testing methods are hence a major requirement.

One significant component of software testing methods is the choice of the adequacy

criterion. Examples include code-based and specification-based coverage, where the

adequacy of a given test suite is assessed in terms of its ability to cover certain ele-

ments of the code and specifications respectively. A test suite is adequate if it satisfies

the given adequacy criterion. However, test practitioners are often more interested in

assessing the adequacy of a given test suite in terms of its ability to detect faults in the

given program.

Mutation testing is a fault-based testing technique that is used to assess the ad-

equacy of a given test suite for detecting artificially injected faults [7, 10] that are

automatically generated based on a set of mathematical transformations (i.e. mutation

operators). A test suite kills a mutant if there is at least one test case in the test suite

whose execution on the mutant and the original program (i.e. without the injected fault)

results in different outputs. If no test case in the existing test suite is able to kill the

mutant, the corresponding mutant is said to be alive i.e. running an existing test case

on the mutant and the original program results in identical outputs. The existing test

suite is then augmented by adding test cases in order to kill the unexposed mutants.

This augmentation continues until the test practitioners judge that there does not exist

any test case to detect the remaining alive mutants, which are then labeled equivalent

mutants. The fraction of mutants killed by the existing test suite among the total num-

ber of non-equivalent mutants generated for the program represents the adequacy of

the test suite, and it is denoted by MS (i.e. mutation score) or AM (i.e. adequacy mea-

sure). Analogous to the mutation score AM, we define mutation effectiveness score

EM as the fraction of mutants of a program that remain alive after the application of a

test suite, i.e. EM = 1 − AM .

It has been shown that mutants can act like real faults [2]. In addition, research

has shown the effectiveness of mutation testing in revealing faults [9]. It has been

also reported that mutation testing is more powerful than statement, branch and all-use

coverage criteria [9]. However, the effectiveness of mutation testing depends greatly on

the number of mutation operators designed for representing specific classes of faults.

Several mutation operators have been proposed, each representing a class of faults [1].

The major challenge to the feasibility of mutation testing is the enormous number of



mutants generated by the application of these mutation operators on a reasonable-sized

program. Approaches have therefore been developed to reduce the computational cost

by identifying meta-mutants [16], a selective set of mutants [15], or a sufficient set of

mutation operators via multiple linear regression [20, 21, 22]. In addition to the number

of mutants, identifying equivalent mutants is also a challenge. Since the problem is

essentially undecidable, existing methods identify equivalent mutants through heuristic

methods [3, 13], constraint satisfaction methods [14], and methods that measure the

impact of mutants on invariants [19].

An intuitively appealing approach would be to focus more on operators whose mu-

tants are more likely to remain unexposed with the existing test suites—we consider

such mutation operators to be more important. This definition can be extended to

equivalent mutants i.e. an operator is important if its mutants tend to be equivalent

to the original program. As mentioned above, the assumption is that a test suite that

exposes certain faults is likely to detect similar faults. In terms of mutation testing,

an operator that represents a specific class of faults is likely to generate similar faults,

most of which will either be exposed or remain alive when analyzed with the existing

test suites. This paper presents a novel Bayesian approach that dynamically adapts the

focus towards the important operators, thereby eliminating the computational cost as-

sociated with mutants that are likely to be exposed using existing test suites. We begin

with a brief description of stochastic sampling.

2.1 Sampling Methods

In many practical domains, the exact inference of the true distribution of the variables

characterizing the domain is often intractable. Several prediction tasks hence find it

more efficient to use approximate inference methods that numerically sample from

the underlying distribution [4]. Such sampling methods, also known as Monte Carlo

methods, have been used extensively in research areas such as computer vision and

robotics [8, 23].

Sampling is typically used in domains where there are multiple hypotheses repre-

senting the state of the system that is being analyzed. One popular example in robotics

is to estimate the most likely locations of one or more mobile robots or others objects in

a specific environment. Each “sample” represents a hypothesis, for instance the occur-

rence of a specific event, and it is associated with a probability measure that represents

the likelihood that the corresponding hypothesis is true. Over a series of iterations, the

probabilities are dynamically updated to converge to the most likely hypotheses. Each

such iteration in the sampling process consists of three steps. First, each hypothesis is

modified to account for any dynamic changes in the system being analyzed. Second,

the probability of each hypothesis is updated based on data that is obtained by observ-

ing the system or running specific tests on the system. Third, the samples are replicated

such that there are a relatively larger number of copies of samples with larger proba-

bilities (after the current probability update). Given a fixed number of samples, over a

series of iterations, sampling converges to analyzing only those hypotheses that show

more evidence of being correct. There are several different forms of sampling (e.g.,

Gibbs sampling, rejection sampling, importance sampling and slice sampling) that can

be used to analyze systems with different levels of complexity. See [4] for a description



of the mathematical concepts underlying stochastic sampling techniques.

A sampling-based approach is well-suited for the mutation testing domain, where

the goal is to direct attention towards the operators whose mutants are difficult to ex-

pose with the existing test suites. The next section describes our approach that achieves

this goal reliably and efficiently.

3 Stochastic Analysis

We adapt the general sampling scheme to iteratively sample a subset of the existing

mutants and focus increasingly on operators whose mutants are less likely to be ex-

posed by the existing test suites. The proposed approach begins by selecting a small

subset of mutants generated by each operator (Section 3.2) that are evaluated using the

existing test suites. As with the general sampling scheme described in Section 2.1, the

probabilities of the operators are updated based on the proportion of mutants left alive

(Section 3.3). The updated probabilities are used to determine the number of mutants

(of each operator) to be analyzed in the next iteration (Section 3.4). Over a few iter-

ations, the process converges to looking at the important operators. Throughout this

paper, the terms mutants, samples, and mutant samples are used interchangeably. We

begin with a probabilistic formulation for mutation testing.

3.1 Probabilistic Formulation

Consider a set of mutation operators OP = {µ0, . . . , µN−1}, a program P and a test

suite S containing one or more test cases. Test suite S kills a mutant if at least one test

case in S exposes the faulty behavior of the mutant. We define:

• Nmi(P): the number of mutants generated by µi on P . NM(P) is the total number

of mutants of all operators.

• Emi(P,S) is the mutation effectiveness score of test suite S for program P and

operator µi. It is the fraction of mutants of P generated by µi that are left alive by

S. By extension, Emt
i(P,S) is the mutation effectiveness score for test suite S in

iteration t.
• EM(P,S) is the mutation effectiveness score for P and S over all operators. It is

the fraction of the total number of mutants that are left alive by S. By extension,

EM t(P,S) is the mutation effectiveness score of S (on program P) in iteration t.
The goal is to identify the operators whose mutants are hard to expose using the existing

test suites, so that the test suites can be suitably augmented. In addition, the EM is to

be maximized and the number of mutants examined is to be minimized. In order to do

so, a probability measure is associated with each operator:

< µi, pi > : pi ∝ importance of operator µi (1)

where the probability pi of operator µi would be low if the test suite S kills a large

proportion of the mutants generated by µi on P . Since the mutants are generated by

applying mutation operators on a specific program, and are evaluated using specific test

suites, references to P , S are dropped—for instance Nmi is used instead of Nmi(P).



3.2 Prior Distributions

The first iteration can start with a uniform distribution i.e. it can choose the same num-

ber of mutants for each operator that generates a non-zero number of mutants on a

specific program. Another option is to make each operator’s probability proportional

to the relative number of its existing mutants.

numMutantSamps0
i ≃

{

c uniform

∝ Nmi

NM
proportional

(2)

where numMutantSamps0
i is the number of mutants of operator µi selected and

examined in the first iteration and c is an arbitrary integer. The total number of mutants

analyzed in the first iteration is hence a fixed number or a fraction of the total number of

mutants generated by all operators. The performance of these two schemes is compared

empirically in Section 4.

3.3 Probability Update

In each iteration, a small subset of the mutants of each operator are evaluated using

the existing test suite(s). The probability of each operator is updated based on the

proportion of mutants left alive by the existing test suite(s):

pt
i = pt−1

i + δpt
i

k

totalMutantSampst
(3)

δpt
i = −1.0 + 2.0

numAlivet
i

numMutantSampst
i

: ∈ [−1.0, 1.0]

totalMutantSampst =

N−1
∑

i=0

numMutantSampst
i

where numMutantSampst
i is the number of mutants of operator µi examined in it-

eration t, while totalMutantSampst is the total number of mutants analyzed in this

iteration. The probability of µi in iteration t is the sum of the probability in itera-

tion t − 1 (i.e. pt−1

i ) and an incremental factor (δpt
i). This factor is based on the

fraction of chosen mutants of operator µi that are not exposed in the current iteration

(
numAlivet

i

numMutantSampst

i

). It is also inversely proportional to the number of mutants exam-

ined in iteration t. The parameter k (typically set to 1) provides an additional means of

controlling the value being added or subtracted. After the update, the operator proba-

bilities are normalized so that they sum to one1:

pt
i =

pt
i

∑

j pt
j

(4)

The updated probabilities represent the current estimate of the importance of the oper-

ators, which can be used to identify the important operators while examining a small

subset of the mutants, as described below.

1This is a necessary condition for a probability measure.



3.4 Adaptive Sampling

Sampling is typically used to track a set of hypotheses and iteratively identify the most

likely hypotheses. As described in Section 2.1, a larger number of copies are to be

created of samples with high relative probability. In other words, the task is to examine

a proportionately larger number of mutants of the operators whose mutants are more

likely to remain unexposed. The updated and normalized probabilities (Equation 4)

are used to determine the number of mutants of each operator that will be analyzed

in the next iteration. In order to do so, we modify the Stochastic Universal Sampling

method [24], as shown in Algorithm 1.

Algorithm 1Modified sampling algorithm.

Require: Current (iteration t) set of ¡operator, probability¿ vectors of the form: {<
µi, p

t
i >: i ∈ [0, N − 1]} sorted in decreasing order of pt

i. MaxNum: Maximum

number of mutants to be analyzed.

1: Countt+1

i = 0 : i ∈ [0, N − 1], π0 = pt
0.

{Set up the cumulative probability distribution πi.}
2: for i = 1 to N − 1 do

3: πi = πi−1 + pt
i.

4: end for

5: r0 ∼ U ]0, 1/MaxNum ], iterator i = 0
{Compute the sample counts for each operator.}

6: for j = 0 to MaxNum − 1 do

7: while rj > πi do

8: i = i + 1
9: end while

10: Countt+1

i = Countt+1

i + 1
11: rj+1 = rj + 1/MaxNum
12: end for

13: Return {Countt+1

i } : i ∈ [0, N − 1]

The algorithm requires as input the vectors {< µi, p
t
i >: i ∈ [0, N − 1]} that

represent the operators and their probabilities after the iteration t (Equation 4). The

vectors are sorted in decreasing order of probability.

The algorithm begins by initializing the number of mutants of each operator µi that

will be analyzed in the next iteration (Countt+1

i = 0, line 1 of Algorithm 1). The

algorithm then sets up the cumulative probability distribution (lines 2–4) that repre-

sents the contribution of all the operators. In addition, a random real number is chosen

from a uniform distribution (r0 ∼ U ]0, 1/MaxNum ]) based on the total number of

mutant samples that will be analyzed in the next iteration (MaxNum in line 5). The

next step (lines 6–12) forms the core of the sampling process. Intuitively, the idea is

to use the relative probability of each operator to determine the number of its mutants

to be examined in the next iteration. With the operator vectors arranged in decreasing

order of probability and the selection of r0 as shown in line 5, the count of samples

corresponding to the most probable mutation operator is incremented first. This sam-

ple count for the most important operator continues to be incremented (line 10) until



this operator’s relative contribution to the cumulative probability distribution is taken

into account. Then the selected random number is suitably modified (line 11) and the

focus shifts to the operator that made the second largest contribution to the cumulative

probability distribution (lines 7–9). The process is terminated when the desired count

of samples (MaxNum) is reached. Sampling therefore provides an elegant means of

selecting more mutants corresponding to operators whose probabilities are higher. In

other words, the number of mutants of an operator to be examined in the subsequent

iteration depends on the current estimate of how well the existing test suites can expose

the operator’s mutants.

4 Case Study

This paper presents the results of an initial exploratory case study, wherein the proposed

stochastic method was applied to a subject program developed in the C language. The

results show the validity of the initial hypothesis that mutants from the same family

display similar characteristics.

Our chosen subject program is schedule2, one of the seven program from the

Siemens set [11], which was obtained from the Subject Infrastructure Repository (SIR)

at University of Nebraska-Lincoln. The program is a priority scheduler application

that has 263 net lines of code (excluding comments and blank lines) along with 2710

test cases. Most of the test cases were developed by Siemens researchers [11] and

augmented by Rothermel et al. [18].

4.1 Data Collection

We used Proteum [6], a mutant generator for C language, which implements 108 mu-

tation operators based on the specification designed by Agrawal et al. [1]. The com-

prehensive set of mutation operators implemented by Proteum was the major criterion

for its selection instead of other mutation tools such as MuJava [12] for Java programs.

Proteum generated 6552 mutants from which 2000 mutants were selected randomly for

the case study. To avoid any bias towards particular operators, the sampling procedure

randomly selected the same proportion of mutants for each operator. The selection of

a subset of mutants was necessary in order to make the case study feasible. Performing

the computation over all mutants, including operations such as generation, compilation

and evaluation of the mutants, would have taken a very long time.

We generated one test suite of each size from 1 to 50 test cases, choosing the test

cases randomly from the test pool. Generating more than one test suite for each size

would have been computationally expensive because each test suite would be involved

in a separate iterative analysis to determine the most important operators.

The entire set of test cases was executed for all 2000 mutants as well as for the

original version of the program to determine the list of mutants killed by each test

case. Mutants that were not killed by any test case in the test pool were considered

equivalent. The procedure resulted in 1497 non-equivalent mutants, which were used

for subsequent computation. The equivalent mutants were computed using only the

existing test pool. The relatively large test pool for schedule2 led us to believe that



the test pool was thorough enough to kill all non-equivalent mutants. Below, the terms

“all mutants” or “existing mutants” refer to this set of non-equivalent mutants.

As described in Equation 2 we pursued two different schemes (i.e. uniform and

proportional) for generating the prior distribution of operator probabilities for each

test suite. In the first scheme, the first iteration involved the random selection of the

same small number of mutants generated by each operator (i.e. a uniform probability

distribution)—we set c = 2 in Equation 2. Only those operators whose application

resulted in a non-zero number of mutants were considered. In the second scheme, the

initial probability of each operator was proportional to the number of mutants generated

by the operator i.e. p0
i = Nmi/NM for operator µi. The number of mutants to be

sampled in the first iteration is therefore p0
i ∗ Nmi for operator µi.

For either scheme of generating the prior distribution, the subsequent steps in each

iteration were identical. For each test suite S under consideration, we computed the

number of selected mutants killed by the test suite and the fraction (%) of selected

mutants that were not killed by the test suite (i.e. Emt
i : i ∈ [0, N − 1]). This data

was used to update the probability of the operators and compute the number of samples

to be examined in the next iteration. We performed 5 − 6 such iterations, though (as

we show below) the desired results were typically obtained in the first 3− 4 iterations.

In order to evaluate the performance of our method, we also computed EM,Emi for

each test suite S by examining all non-equivalent mutants of each mutation operator.

4.2 Data Analysis

In order to evaluate the ability of the proposed approach to identify the operators whose

mutants are left unexposed by the existing test suites, we applied different test suites

on mutants of the program schedule2.

Figures 1(a)–1(f) show the evolution of operator probabilities over a few iterations.

These results correspond to the situation when a test suite of size 35, i.e. a test suite with
35 test cases, is applied on the target program. Figures 1(a)–1(c) show the evolution of

operator probabilities in the first, third and sixth iterations when the initial distribution

of operator probabilities is uniform over the set of operators with a non-zero number of

mutants. Figures 1(d)–1(f) show similar graphs for the case where the initial operator

probabilities are proportional to the relative number of existing mutants of the mutation

operators. The figures show that the proposed approach takes a small number of itera-

tions to quickly converge on a set of important operators whose mutants are difficult to

expose with the corresponding test suite. With either scheme for the assignment of ini-

tial operator probabilities, the most important operators are approximately the same. In

addition, the set of important operators identified with either scheme is a small subset

of the available mutation operators. Similar results were obtained for other test-suite

sizes (from 1 to 50) but we do not show them here because of space limitations.

One significant consequence of the proposed approach is that the important oper-

ators are identified in a small number of iterations—we terminate the iterations when

the operator probabilities do not change substantially between two iterations. For the

test suite sizes used in our experiments, the maximum number of iterations is never

more than six, and a large fraction of the trials terminate within 3 − 4 iterations.
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Iteration 1

(a) Uniform: First Iteration.
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Iteration 3

(b) Uniform: Intermediate Iteration.
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Iteration 6

(c) Uniform: Final Iteration.
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Iteration 1

(d) Proportional: First Iteration.
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Iteration 3

(e) Proportional: Intermediate Iteration.
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Iteration 6

(f) Proportional: Final Iteration.

Figure 1: Evolution of operator probabilities for schedule2 and test suite size 35,
starting with an initial distribution that is: (a)-(c) uniform for all operators with a non-

zero number of mutants; and (d)-(f) proportional to the relative number of existing

mutants of each operator.

4.3 Overall Evaluation

Though the proposed approach converges in a small number of iterations, it is essential

to determine if the mutation operators considered to be important are actually impor-

tant. In addition, we need to quantify the overall performance of the approach over
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Figure 2: Mutation Effectiveness (EM) as a function of test-suite sizes for schedule2

for: (a) uniform initial probability distribution; and (b) initial operator probabilities

proportional to the number of available mutants.

different test suite sizes. In order to do so, we compared the proposed method against

the default method of examining all non-equivalent mutants.

Figures 2(a)–2(b) show the performance of the proposed approach as a function of

the test suite sizes, for the two different schemes for the assignment of initial operator

probabilities. We use mutation effectiveness score (EM) as the performance measure,

i.e. the fraction of existing mutants that are left alive by the corresponding test suite.

Given that the goal is to identify the operators whose mutants are difficult to kill, a

larger EM represents a better performance. The figures show that the sampling-based

approach performs better than the default approach. The performance is all the more

significant because the proposed approach only examines a small fraction of the exist-

ing mutants (≈ 20%).

Prior EM (%) δEM(%)
Uniform 34.05 3.79
Proportional 35.28 5.02

Table 1: Improvement in EM with different initial operator probability distributions.

Table 1 quantifies the EM performance. It shows the improvement in EM obtained

with the different initial distributions of operator probabilities, as compared with the

default approach. The result of a paired t-test showed that the numbers represented in

the table are statistically significant.

Finally, we evaluated the ability of the proposed approach to detect important op-

erators. In order to do so, the Emi of each operator µi, i.e. the effectiveness measure

computed by analyzing all its mutants with a particular test suite S, were sorted in

descending order to obtain the ground-truth list of the operators in decreasing order of

importance. The operator probabilities computed during the sampling iterations were

also sorted to create the observed list of important operators. We then defined the



operator overlap measure as given below:

OpOverlap(P,S, T ) = Overlap(Gt(P,S), Obs(P,S)) (5)

which computes the fraction of top T% operators in the ground-truth list (Gt) that also
exist among the top T% of the observed list (Obs), for a particular P and S. Table 2
summarizes the results for schedule2 over the range of test suite sizes (1 − 50).
The two rows depict results corresponding to the two different schemes for setting the

initial operator probability distributions (Equation 2).

Prior Operator Overlap%

Min Max Average Dynamic

Uniform 0.68 0.91 0.77 ± 0.04 0.89
Proportional 0.66 0.92 0.78 ± 0.05 0.91

Table 2: Operator overlap for different initial operator probability assignment schemes.

The “Max”, “Min” and “Average” columns of Table 2 report the maximum, mini-

mum and average OpOverlap (operator overlap) obtained with the proposed approach

over the different test suite sizes. For these results, the top 25% of the operators in the

ground-truth and observed lists were compared (i.e. T = 25). However, in some in-

stances, the top 25% operators in the ground-truth list have low mutation effectiveness

values and those in the observed list do not have significantly higher probabilities than

the less important operators. Experiments were therefore conducted such that only the

operators in the ground-truth list with Emi above a threshold were compared with the

operators in the observed list with probabilities significantly higher than the mean—

the value of T was hence set dynamically for each trial. The corresponding results are

summarized in the columns labeled “Dynamic” in Table 2. We observe that ≈ 90% of

the truly important operators are detected using the sampling-based approach. Further-

more, such high OpOverlap values are obtained in ≈ 4 iterations on average. Based on

all the empirical evaluations described above, we conclude that the proposed technique

identifies the important mutation operators for a range of test suite sizes by analyzing

a small subset of the available mutants over a small number of iterations.

5 Discussion

In this section, we discuss two important issues related to the performance of the

stochastic sampling technique. First, we discuss the effect of the parameters of Al-

gorithm 1 on the performance of the method. Next, we analyze the important operators

identified by the proposed technique.

5.1 Effects of Sampling Parameters

The proposed stochastic technique for identifying important mutation operators has

some parameters, which can be used to improve the performance of the proposed tech-

nique. Among these parameters are: the selection of mutants from the existing set



with/without replacement, the number of iterations (i.e. NumIter), and the number

of mutants selected in each iteration (i.e. MaxNum in Algorithm 1).

Unlike a server where the status of nodes may change, or a mobile robot whose

position and orientation may change over time, mutation testing is essentially a sta-

tionary domain. The mutants will either be killed or remain alive when tested with

the given test suites. No additional information is gained by examining a mutant more

than once with the same test suites. In our work, mutants are therefore sampled without

replacement i.e. mutants that have been examined once are not included in subsequent

iterations. As a result, some operators may not have any un-tested mutants after a few

iterations. Any such operators are not included in the sorted list or the resampling

procedure during subsequent iterations of Algorithm 1. Their probabilities will then

change only as a result of the normalization of operator probabilities in subsequent it-

erations (Equation 4). An interesting situation arises when the desired sample count

(MaxNum) exceeds the number of existing un-tested mutants. One possible solution

that requires further analysis is to distribute the excess “share” of such mutation opera-

tors among other operators that still have unexamined mutants. Such situations did not

arise in the experimental results reported in this paper.

In most cases, the proposed stochastic sampling approach converges to the im-

portant operators within a small number of iterations (NumIter ≈ 4) and subsequent

iterations do not cause a significant change in the relative probabilities of the operators.

However, larger programs with a substantially larger number of mutants may require a

different number of iterations. Instead of the current heuristic approach, the termination

of sampling can be automated by continuing the process until there is no substantial

information gain between two successive iterations. This requirement can be readily

formulated as a information-theoretic problem using the entropy of the probability dis-

tribution over the mutation operators as a measure of information gain [5]—the entropy

would ideally decrease substantially between two successive iterations.

Ideally, the number of mutants examined in each iteration (i.e. MaxNum) should

be as small as possible to avoid unnecessary computation. Though we currently exam-

ine a fixed number of mutants in each iteration, the goal is to determine a bound on

the minimum number of samples required to approximate the underlying probability

distribution of operator importance. Existing research in robotics uses approximated

quantiles of a chi-square distribution to compute such a bound that guarantees that the

distance between the sampling-based estimate and the underlying distribution would

be within specified error bounds [8]. Further research is required to use such methods

to automate the selection of the number of mutants examined in each iteration of the

stochastic sampling process.

5.2 Analysis of Important Operators

We also analyzed the implications of the operators identified as being important, and

evaluated the sensitivity of the proposed stochastic model to different prior distribu-

tions. In order to do so, we looked at the most important operators identified when the

two different prior distributions (i.e. uniform and proportional—Equation 2) are used.

There were 50 mutation operators that did not generate any mutants, and these oper-

ators were soon excluded from the probability updates and sampling procedure. The



remaining 58 operators participated in all the iterations of the sampling procedure. Ta-

ble 3 represents the top ten mutation operators whose mutants were identified as being

the most difficult to expose with the existing test suites at the end of five iterations.

Table 3 also shows the number of test suites (among the 50 available suites) for which

these operators were considered important. These results show that there is significant

overlap between the results obtained with the different initial probability assignment

schemes. In addition, it shows that the proposed stochastic procedure is reasonably

robust to the choice of the prior distributions.

Operator Uniform Proportional

-u-OCOR 50 50

Cast Operator by cast Operator

-u-OLBN 50 44

Logical Operator by Bitwise Operator

-I-RetStaRep 50 39

Replace Return Statement

-u-VDTR 39 50

Domain Traps

-u-OASN 40 39

Replace Arithmetic Operator by Shift Operator

-I-IndVarRepReq 24 50

Replace Non Interface Variables by Required Constants

-u-OLSN 47 27

Logical Operator by Shift Operator

-I-IndVarRepGlo 41 28

Replace Non Interface Variables by Global Variables

-u-OLLN 42 26

Logical Operator Mutation

-u-OABN 40 23

Arithmetic by Bitwise Operator

Table 3: Top ten mutation operators considered important for the two different schemes

for initial operator probability assignment. Numbers in the second and third columns

represent the count of test suites for which these operators are considered important.

In terms of software testing, the results reported in Table 3 state that replacing

logical operators, cast operators or return statements produce hard-to-detect mutants.

These conclusions make sense from a software testing perspective. More importantly,

the results show that the proposed stochastic sampling-based approach significantly

improves the effectiveness, reliability and efficiency of mutation testing.

6 Threats to Validity

Threats to external validity include the use of only one C program (schedule2). The

results reported in this paper for this program supports our initial assumption that a



test suite that detects a certain type of fault is likely to detect other faults of the same

type. Larger programs may have more complex structure and possibly more mutants,

which may lead to different results. Object-oriented programs need to be investigated,

since they contain features that may lead to results different from those reported here.

In particular, using a mutant generator for object-oriented programs (such as MuJava

[12]) that implements class mutation operators may behave differently.

Threats to construct validity include the random selection of 2000 mutants from the

program. This was necessary to make the study feasible. Performing the computation

over all possible mutants would have taken a very long time. However, bias for a

specific operator was avoided by randomly selecting the same proportion of mutants

for each operator. Finally, threats to internal validity include the correctness of the

mutation tool, scripts, and data collection processes. We developed our own C script

for implementing importance sampling. Each author (separately) monitored the results

at intermediate steps of the processes to ensure correctness.

7 Conclusion and Future Work

In this paper, we reported the results of an exploratory case study on a Bayesian formu-

lation for mutation testing. The goal is to determine the important mutation operators

i.e. operators whose mutants cannot be detected with existing test suites and need fur-

ther augmentation of the existing test suites. We viewed the problem as an instance of

stochastic sampling, where mutants of each operator that shows a likelihood of being

important are examined further over a set of iterations. The focus is incrementally di-

rected towards the important mutation operators. The preliminary empirical evaluation

conducted on a representative subject program (schedule2) shows that the proposed

approach can detect over 90% of the important operators, while examining only 20%
of the mutants examined by the default approach that analyzes all non-equivalent mu-

tants. In addition, there is an improvement of ≈ 5% in the mutation effectiveness

scores. Furthermore, the results support our initial assumption that a test suite capable

of detecting a certain category of faults is likely to detect other similar faults.

The work reported in this paper opens up a new and exciting direction of research.

Though we have only applied the technique so far to a single program (schedule2),

the results are significantly promising. In the future, we will conduct a more extensive

case study with several other (and larger) programs, beginning with an empirical eval-

uation based on all seven Siemens programs. In addition, we will investigate the use of

other mutation tools for object-oriented programming languages (e.g. MuJava [12] for

Java). We aim to incorporate the proposed stochastic technique in existing mutation

tools in order to make mutation testing more effective and yet computationally less

expensive. The long-term goal is to construct Bayesian formulations for a wide variety

of challenges that are of interest to the software testing community.
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