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Abstract. State of the art frameworks for ad hoc teamwork i.e., for
enabling an agent to collaborate with others “on the fly”, pursue a data-
driven approach, using a large labeled dataset of prior observations to
model the behavior of other agents and to determine the ad hoc agent’s
behavior. It is often difficult to pursue such an approach in complex do-
mains due to the lack of sufficient training examples and computational
resources. In addition, the learned models lack transparency and it is
difficult to revise the existing knowledge in response to previously un-
seen changes. Our prior architecture enabled an ad hoc agent to perform
non-monotonic logical reasoning with commonsense domain knowledge
and predictive models of other agents’ behavior that are learned from
limited examples. In this paper, we enable the ad hoc agent to acquire
previously unknown domain knowledge governing actions and change,
and to provide relational descriptions as on-demand explanations of its
decisions in response to different types of questions. We evaluate the ar-
chitecture’s knowledge acquisition and explanation generation abilities in
two simulated benchmark domains: Fort Attack and Half Field Offense.

Keywords: Non-monotonic logical reasoning · Ecological rationality ·
Knowledge acquisition · Explanation generation · Ad hoc teamwork.

1 Introduction

Ad hoc teamwork (AHT) refers to the problem of enabling an agent to collab-
orate with others without any prior coordination [27]. For example, consider
the simulated multiagent domain Fort Attack (FA, Figure 1a), with a team of
guards trying to defend a fort from a team of attackers [8], or Half Field Offense
(HFO, Figure 1b), with a team of offense agents trying to score a goal against
a team of defenders [16]. Agents in these domains have limited knowledge of
each other, no prior experience of working as a team, and have to operate under
partial observability and limited communication; these conditions also exist in
many practical applications such as disaster rescue and surveillance.

The state of the art in AHT has moved from using predetermined policies
for selecting actions in specific states to methods based on a key “data-driven”
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(a) Fort Attack (FA) (b) Half Field Offense (HFO)

Fig. 1: Screenshots from FA and HFO environments.

component [20]. This component uses a long history of prior experiences to build
probabilistic or deep network methods that model the behavior of other agents
(or agent types) and optimize the behavior of the ad hoc agent. However, in
practical domains, it is difficult to gather such large training datasets of dif-
ferent situations and to adapt to unforeseen changes. Also, these methods lack
transparency, and make it difficult to leverage commonsense domain knowledge
to revise existing knowledge over time. Unlike existing work, we follow a cognitive
systems approach, formulating AHT as a joint reasoning and learning problem.
Our prior work developed a knowledge-guided architecture for AHT (KAT),
which combined the principles of refinement and ecological rationality, enabling
an ad hoc agent to determine its actions based on non-monotonic logical rea-
soning with prior domain knowledge and rapidly-learned predictive models of
other agents’ behaviors. In this paper, we significantly extend the architecture,
enabling the ad hoc agent to:

1. Incrementally learn and revise previously unknown axioms and models that
govern the dynamics of the domain; and

2. Provide on-demand relational descriptions of its decisions, and those of other
agents, as explanations in response to different types of questions.

We demonstrate and evaluate these capabilities in the two simulated benchmark
domains (FA, HFO). In particular, we illustrate how the interplay between rep-
resentation, reasoning, and learning leads to incremental, reliable, and efficient
knowledge acquisition and explanation generation.

2 Related Work

AHT has been researched under different names, as described in a recent sur-
vey [20]. Early work encoded specific protocols (or plays) for different scenarios,
with an agent choosing specific protocols in specific states [6]. Subsequent work
used sampling-based methods such as Upper Confidence bounds for Trees (UCT)
to determine the ad hoc agent’s action selection policy [5].

Many recent studies include a data-driven component that uses probabilistic,
deep-network, and reinforcement learning (RL)-based methods to learn action
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choice policies for the ad hoc agent based on a lengthy history or prior obser-
vations of different types of teammates or situations [4, 22]. For example, a RL
method has been used to learn different policies for different teammate types,
computing and using the best policy among the learned policies for a new team-
mate [4]. Also, attention-based deep neural networks have been used to jointly
learn policies for different agent types [7], and to account for different team com-
positions [22]. Sequential and hierarchical variational auto-encoders have been
used to model beliefs over other agents, and approximate belief inference has
been achieved through meta-learning for a given prior [29]. Other work has com-
bined learned policy methods with adversarial teammate prediction to account
for changes in the agents’ behavior [24], and used Convolutional Neural Networks
to detect and adapt to changing teammate types [23]. Sampling strategies have
also been combined with such learning methods to optimize performance [28].
Such methods based on a data-driven learning component require considerable
computation, memory, and training examples, build opaque models, and make it
difficult to adapt to unexpected changes. Our architecture addresses these limi-
tations by leveraging the complementary strengths of knowledge-based reasoning
and data-driven learning methods.

Given the increasing use of AI methods in different applications, many ar-
chitectures have utilized knowledge-based and data-derived methods to provide
transparency in the operation of such methods [1, 19]. For example, prior work
proposed a theory for explanation generation in human-robot interaction, using
the declarative programming paradigm of Answer Set Prolog (ASP) to represent
and reason with domain knowledge [25]. Other work has adapted this theory to
support transparency in the decisions made by agents in scene understanding
tasks [21]. In addition to transparency, agents operating in complex domains
often need to revise their existing knowledge, and many different methods have
been developed to support this ability. For example, a system based on induc-
tive learning has been developed to learn new knowledge in the form of an ASP
program [18]. Other approaches have used non-monotonic logical reasoning to-
gether with inductive learning and relational reinforcement learning to identify
new rules for answer set programs [26].

The architecture developed in this work draws inspiration from the existing
work to support reliable, efficient, and transparent reasoning and learning in
ad hoc teamwork, enabling the ad hoc agent to adapt to different teammates
and opponents, acquire and revise domain knowledge, and provide on-demand
explanations in response to different types of questions.

3 Architecture

Figure 2 provides an overview of KAT, our architecture for ad hoc teamwork. Our
ad hoc agent performs non-monotonic logical reasoning with prior commonsense
domain knowledge and models of other agents’ behaviors learned and revised
incrementally from limited examples, using heuristic methods to guide reasoning
and learning. At each step, all agents receive observations of the domain state,
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Fig. 2: Architecture combines complementary strengths of knowledge-based and
data-driven reasoning and learning.

and they independently determine and execute their individual actions in the
environment. The axiom learning component enables the ad hoc agent to acquire
and revise its knowledge governing changes in the domain, and the explanation
generator component enables it to provide relational descriptions as explanations
of its decisions in response to questions. Please note that the basic reasoning
components of our architecture were introduced in our conference papers [11,
9]. This paper primarily contributes the components for axiom learning and
explanation generation; for completeness, we describe all components of our
architecture in the following two example domains.

Example Domain 1 [Fort Attack (FA) Domain]
Consider three guards defending a fort from three attackers in the FA domain—
Figure 1a [8]. An episode of the game ends if: (a) guards protect the fort for a
given period of time; (b) all members of a team are terminated; or (c) an attacker
reaches the fort. Each agent can move in one of the four cardinal directions with
a specific velocity, rotate clockwise or anticlockwise, do nothing, or shoot an
opponent within a range. The environment has four kinds of built-in policies for
guards and attackers as described in Section 4.1. In our work, one of the guards
is the ad hoc agent that can adapt to changes in the team and domain.

Example Domain 2 [Half Field Offense (HFO) Domain]
Consider a simulated 2D soccer domain where a team of offense agents are
trying to score a goal against a team of defense agents (including a goalkeeper)—
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Figure 1b [16]. An episode of the game ends if: (a) offense team scores a goal;
(b) ball leaves the field; (c) defense team captures the ball; or (d) maximum
episode length (500) is reached. There are two state space abstractions in HFO:
low and high; we use the high-level features. There are three action abstractions:
primitive, mid-level, and high-level; we use a combination of mid-level and high-
level actions. In our work, our ad hoc agent is one of the offense agents. Similar
to prior AHT methods, agents other than the ad hoc agent are selected from
teams in the 2013 Robocup 2D simulation league competitions; offense agents
are from helios, gliders, cyrus, axiom, aut and defense agents are from agent2D.
The strategies of these agent types were trained using data-driven (probabilistic,
deep, reinforcement) learning methods.

Prior commonsense knowledge in these domains includes relational descriptions
of some domain/agent attributes, e.g., location and shooting range, default state-
ments, and axioms governing change, e.g., an agent can only move to a location
nearby, only shoot others within its shooting range (FA), and only score a goal
from a certain angle (HFO). This knowledge may need to be revised over time.

3.1 Knowledge Representation and Reasoning

In KAT, the transition diagram of any domain is described using an exten-
sion of the action language ALd [13]. KAT’s domain representation comprises
a system description D, a collection of statements of ALd, and a history H. D
has a sorted signature Σ with basic sorts, e.g., x value, y value, ad hoc agent,
external agent, step (for temporal reasoning); actions, e.g., pass(ad hoc agent,
external agent), dribble(ad hoc agent, x value, y value); statics, i.e., domain at-
tributes whose values cannot be changed by actions, e.g., next to(x value, y value,
x value, y value) which describe the relative arrangement of places; and fluents,
i.e., attributes whose values can be changed by actions. Fluents can be inertial,
i.e., obey laws of inertia and changed by actions, e.g. ball loc(x value, y value)
encodes the ball’s location in the field; and defined, i.e., not obey inertia laws
and not directly changed by ad hoc agent’s actions, e.g., an external agent’s
location: agent loc(external agent, x value, y value).

The domain dynamics are described in D using three types of axioms: causal
law, state constraint, and executablility condition. Examples in HFO include:

dribble(R,X, Y ) causes loc(R,X, Y ) (1a)

¬has ball(A1) if has ball(A2), A1 ̸= A2 (1b)

impossible pass(R, T ) if ¬has ball(R) (1c)

Statement 5(a) is a causal law that states that dribbling to a place changes the lo-
cation of the agent to that place. Statement 5(b) is a state constraint that implies
only one agent can control the ball at any time. Statement 5(c) is an executability
condition that prevents the ad hoc agent from considering the action of passing
the ball when it does not control the ball. History H is a record of observations
and action executions, i.e., relations of the form obs(fluent, boolean, step) and
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hpd(action, step) respectively, at specific time steps. It also includes initial state
defaults, i.e., statements initially believed to be true in most circumstances.

To reason with knowledge, the domain description is automatically translated
to a program Π(D,H) in CR-Prolog [3], an extension to Answer Set Program-
ming (ASP) that supports consistency restoring (CR) rules. ASP encodes default
negation and epistemic disjunction, and supports non-monotonic reasoning; the
ability to revise previously held conclusions. This ability is essential in practi-
cal multiagent collaboration domains in which agents often have to reason with
incomplete knowledge and noisy observations. The CR rules allow the agent to
recover from situations when the program Π(D,H) is inconsistent. For example,
consider the situation in which an encoded default states that attackers usually
spread and attack but the ad hoc agent observes an attacker displaying different
behavior, e.g., mounting a frontal attack or staying back away from the shoot-
ing range of the guards. To address such exceptions to defaults, a CR rule is
added to Π(D,H) for every default, allowing the ad hoc agent to assume that
the default’s conclusion is false under exceptional circumstances, as a means of
restoring consistency. For example:

¬spread attack(X)
+←− attacker(X)

allows the ad hoc agent to consider the rare situation of attackers mounting
a frontal attack or display any behavior that does not agree with the default
behavior.

Π(D,H) includes statements from D and H, inertia axioms, reality check ax-
ioms, closed world assumptions for defined fluents and actions, helper relations,
e.g., holds(fluent, step) and occurs(action, step) to imply that a fluent is true
and an action is part of a plan at a time step, and helper axioms that define
goals and drive planning and diagnosis. Once the program Π is constructed,
all reasoning tasks (e.g., planning, diagnostics, and inference) are reduced to
computing answer sets of Π. We use the SPARC system [2] to write and solve
CR-Prolog programs. Example programs for FA and HFO domains are in our
open source repository [10].

3.2 Agent Behavior Models

The ad hoc agent’s decisions must take into account the state of the domain
which is also governed by the actions of other agents. KAT thus also reasons
with models that predict the behavior of the other agents. Our prior work in-
troduced the use of the Ecological Rationality (ER) principle, which is based on
Herb Simon’s definition of Bounded Rationality [14], and the algorithmic theory
of heuristics [14, 15] to rapidly learn and revise these predictive models. The
ER-based approach enables the ad hoc agent to choose relevant attributes and
learn models of the behavior of other agents from limited training data (e.g.,
10000) while supporting rapid, incremental updates. Specifically, KAT enables
the ad hoc agent to learn an ensemble of “fast and frugal” (FF) decision trees
that predict the behavior of each type of other agents; each FF tree provides a
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Fig. 3: FF tree in the ensemble for an attacker in the FA domain.

binary class label and the number of leaves in the tree is limited by number of
attributes [17]. An individual FF tree learned for an attacker agent in the FA
domain is shown in Figure 3.

Note that unlike state of the art AHT methods, KAT enables the predictive
models of the other agents’ behavior to be learned and revised rapidly. Also,
consistent agreement (disagreement) with predictions of an existing model trig-
gers model choice (revision); the ad hoc agent is thus able to quickly adapt to
changes in the domain or in the team composition.

3.3 Axiom Induction

Incrementally learning previously unknown domain knowledge is essential in
complex domains such as ad hoc teamwork. One contribution of this paper is an
approach to learn previously unknown causal laws and executability conditions
governing the domain’s dynamics. Acquiring this knowledge will reduce ambi-
guity and enable the ad hoc agent to make more informed (also more reliable
and efficient) decisions. We do so by adapting work that combined decision tree
induction with knowledge-based reasoning [21], as described below.

For each candidate action, we collect possible state transitions involving this
action and incrementally build a decision tree model by splitting nodes at each
time step based on unused attributes. Every split must meet a minimum require-
ment of samples at each child. Then we build the candidate axioms by exploring
different paths from the root to the leaves of the tree. These axioms are then
validated for identifying further inconsistencies in the system. Specifically we:

1. Select an action and simulate the execution in different initial states to col-
lect state transition information (e.g., start and end states, executed action,
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and presence or absence of inconsistency). If the expected outcome is not
observed after an action execution, that indicates the potential absence of
an executability condition. If additional effects are observed (than what is
expected), that indicates a missing causal law.

2. All fluent literals that exist in the answer set or initial state, and have an
object constant that occurs in the executed action, are then stored as training
data. The ground terms in the literals are further replaced by variables.

3. After data from a few execution traces are available, the decision tree models
are created with relevant fluent literals as leaf nodes and the executed action
as the root node. For executability conditions, the output or class label for
each example is the presence or absence of an inconsistency. For causal laws,
the output or class label for each example is the presence of unexpected
fluent literals observed in the resultant state.

4. The candidate axioms are then generated along the path from the root node
to the leaves in the decision trees. Examples of such path (i.e., part of the
decision tree) are illustrated in Figure 4 for the executability condition and
the causal law below.

¬occurs(shoot(R), I)← ¬holds(has ball(R), I). (2)

occurs(rotate(R,D), I + 1)← holds(face(R,D), I). (3)

The candidate axioms then go through a series of validation checks. In par-
ticular, we only retain axioms that have sufficient support from the samples
collected during the construction of the decision tree model of prior state
transition experiences. In addition, we test the candidate axioms in some
simulated situations similar to those used to collect the training examples
and only retain axioms that do not cause any new inconsistencies. Further-
more, candidate axioms that pass the validation checks are merged with
existing axioms to ensure that the more general version of the axioms (e.g.,
replace individual ground arguments of literals with their sorts) are included
in the ad hoc agent’s knowledge base.

3.4 Transparency

Unlike methods in the existing literature that seek to make an entire learned
model interpretable, or to explain (or justify) all the choices made by a rea-
soning system, KAT focuses on quickly identifying the relevant information
to construct relational descriptions as explanations in response to causal, con-
trastive, or counterfactual questions about its decisions and beliefs. An auto-
mated decision-making system’s ability to reliably answer such questions about
its decisions and beliefs promotes acceptability [1, 12]; this ability has been shown
to play an important role in human reasoning and learning as well. KAT’s use of
knowledge-based reasoning and simple predictive models provides the foundation
of the approach introduced in this paper to support the desired transparency in
the ad hoc agent’s operation. In addition, KAT’s approach for generating these
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¬shoot(R1) has ball(R1)

Consistent(38/38 samples)

Inconsistent(57/57 samples)

True

False

(a) Part of a tree created for a missing executability condition in the HFO domain.

rotate(R1, D1) −face(R1, D1)

Not observed(38/39 samples)

Observed(56/56 samples)

True

False

(b) Part of a tree created for a missing causal condition in the FA domain.

Fig. 4: Examples of part of trees created for missing axioms.

descriptions on-demand promotes computational efficiency. We build on prior
work that demonstrated the ability to provide on-demand answers by iteratively
and selectively identifying the axioms and literals that influence the desired
action and belief, and have their antecedents satisfied in the relevant answer
sets [21]. Specifically, KAT’s “Explanation Generator” in Figure 2 generates re-
lational descriptions in response to four types of questions identified as being
important in work on explainable planning [12]:

1. (Action justification questions)Why did you do action A at step I? When
asked to justify an executed action, the ad hoc agent will:
• extract actions Aaf that occurred after A.
• identify the axioms with a (∈ Aaf ) in its head.
• extract literals that would have prevented such an action from happening,
e.g., from the body of its executability conditions.
• identify that any such literal that exists in answer set at step I but not in
I+1 was caused by the execution of A and thus enabled subsequent steps.

2. (Contrastive questions) Why did you not do action A at step I? When
asked why an action was not included in the plan, the ad hoc agent will:
• find executability conditions with A as its head to identify preconditions.
• extract corresponding literals and check if they are satisfied by the answer
set; each such literal prevented consideration of A.
• if no preconditions of A are identified, compute cost of adding A to the
computed plan. This will identify reasons for not selecting A.

3. (Justify beliefs) Why did you believe L at step I? To justify a belief at a
specific step, ad hoc agent will:
• find axioms that have given belief in its head.
• extract related literals and check whether they are satisfied by the answer
set. These will be the supporting statements for the belief.
• if there are multiple supporting statements explaining a target belief, select
one to provide the explanation. We leave the ranking of explanations and
multi-step tracing of beliefs to future work that can build on ideas from [21].
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4. (Counterfactual Questions) What action do you think agent R will take
at step I and why? What would be the outcome if you/agent R did action A
instead? When answering questions about the action choices of agents or the
potential future state of the world, the agent will:
• make sure that it starts with the current best estimate of the state of the
world, e.g., answer set at step I.
• perform mental simulation of future steps from the current state using
existing knowledge, including the action choices of other agents based on
their behavior prediction models, and any specific ad hoc agent actions
to be explored. Specifically, create potential next states of the world and
explore the effects of specific actions or observations of interest.
• use the newly acquired information to generate the explanation tailored to
the question posed.

The newly acquired information/experience may also be used to further train the
KAT system, specifically the behaviour prediction models of the other agents,
for specific situations of interest. For all types of questions, the identified literals
are processed with existing software tools and templates to generate textual
descriptions provided as responses (i.e., explanations). We provide an execution
trace in Section 4.3 of this approach, which can be used to answer questions
during both planning and execution.

4 Experimental Setup and Results

Since KAT’s ability to reason with domain knowledge and learn behavior pre-
diction models was already evaluted in our prior work, the work described in
this paper evaluated three hypotheses:

– H1: KAT enables an ad hoc agent to accurately learn previously unknown
causal laws and executability conditions;

– H2: Reasoning with incrementally learned axioms improves the performance
of the ad hoc agent and the team; and

– H3: KAT supports the generation of relational descriptions as explanations
of the ad hoc agent’s decisions and beliefs.

H1 was evaluated in both FA domain and HFO domain, with accuracy deter-
mined by the fraction of literals identified correctly in the learned axioms. As
performance measures for H2, we used the team of guards’ win percentage in
the FA domain, and the fraction of the goals scored by offense team in the HFO
domain. H3 was evaluated in the FA domain, including qualitative evaluation.
Further details of experiments and baselines are provided below.

4.1 Experimental Setup

FA domain provides four types of built-in policies for the attacker and guard
agents as described below.
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– Policy220: guards place themselves in front of the fort and shoot continu-
ously; attackers try to approach the fort.

– Policy650: guards try to block the fort; attackers sneak in from all sides.
– Policy1240: guards spread and shoot the attackers; attackers spread and

sneak in from all sides.
– Policy1600: guards are willing to move from the fort; some attackers ap-

proach the fort and shoot to distract guards while others try to sneak in.

For experiments in FA domain our ad hoc agent replaced one of the guard team
members and each other agent in the team(guard/attacker) was assigned a policy
from these built-in policies.

For the experiments in the HFO domain, we used six external agent teams
from 2013 RoboCup simulation competition. The ad hoc agent represented one of
the offense team members and the teammates were selected from helios, gliders,
cyrus, axiom and aut, and the defense agents were based on agent2d team.

To evaluate H1, we used KAT in two sets of experiments; Exp1, in which we
removed three axioms (two causal laws and one executability condition) from
the agent’s knowledge base in the FA domain; Exp2, in which we removed
four axioms (one causal law and three executability condition) from the agent’s
knowledge base in the HFO domain.

FA domain:

holds(face(R,D), I + 1)← occurs(rotate(R,D), I). (4a)

holds(in(R,X, Y ), I + 1)← occurs(move(R,X, Y ), I). (4b)

¬occurs(shoot(R,A), I)← ¬holds(in range(R,A), I). (4c)

HFO domain:

holds(in(R,X, Y ), I + 1)← occurs(dribble(R,X, Y ), I). (5a)

¬occurs(dribble(R,X, Y ), I)← ¬holds(has ball(R), I). (5b)

¬occurs(shoot(R), I)← ¬holds(has ball(R), I). (5c)

¬occurs(pass(R, T1), I)← ¬holds(has ball(R), I). (5d)

We ran the axiom learning algorithm 40 times; 20 times for each domain. Each
time the ad hoc agent selected a different action and simulated its effects in
each domain to incrementally learn all the missing axioms (see Section 3.3). As
the performance measure we recorded the precision and recall of learning the
missing axioms in terms of accurately identifying the literals in the axioms.

Next, in Exp3 and Exp4, we allowed the agent to use the axioms it learned in
Exp1 and Exp2 in the FA domain and HFO domain respectively. We conducted
100 game episodes in each domain with each built-in policy. As the baselines for
these experiments (Base1) we used an ad hoc agent that does not use the learned
axioms in its planning. These experiments were used to evaluate H2.

Finally to evaluate H3, in Exp5 we randomly selected 10 sets of state obser-
vation and agent available domain knowledge from different game episodes in the
FA domain. Then we posed 27 different questions (belonging to the four types
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Table 1: Precision and recall of the learned axioms in FA (Exp1) and HFO
(Exp2) domains.

Domain Precision Recall

FA 1.00 0.43
HFO 0.89 0.47

of questions described in Section 3.4) to the agent from each plan and recorded
the precision and recall of retrieving relevant literals for constructing answers
to these questions as explanations. Next, in Exp6 we removed the axioms the
agent learned in Exp1 from its knowledge base and repeated the experiment.
Additionally, we also provide execution traces as qualitative examples of the
architecture’s performance in the FA domain to support H3.

4.2 Experiment Results

We first discuss the results of evaluating H1. As stated earlier, in Exp1, three
axioms (two causal laws and one executability condition) were removed from the
ad hoc agent’s knowledge in the FA domain, and the axiom learning algorithm
was executed 20 times. In Exp2, four axioms (one causal law and three exe-
cutability conditions) were removed from the ad hoc agent’s knowledge in the
HFO domain, and the axiom learning algorithm was executed 20 times. We then
measured the precision and recall of the agent learning these missing axioms in
each run and summarized the results in Table 1. We observe high precision and
average recall values in Table 1. The lower recall can be explained by the fact
that only axioms with a high degree of support from the observed transitions
were added to the ad hoc agent’s knowledge, i.e., a correct candidate axiom
could be filtered and not added to the ad hoc agent’s knowledge if its addition is
not justified by sufficient experiences of the ad hoc agent. We observed that the
recall values improved with additional experiences. These results support H1.

Tables 2-3 summarize the results of Exp3 and Exp4 respectively. Compared
with Base1, which corresponds to not using the learned axioms from Exp1
and Exp2, i.e., reasoning without some key axioms, there was a significant
improvement in the number of games/episodes in which the guards won in the
FA domain, particularly with policies 220, 650 and 1240. Similar performance
was observed in the HFO domain, with a substantial improvement in the fraction
of goals scored by the offense team when the ad hoc agent included the learned
axioms during reasoning and the other agents used the policies helios, gliders,
cyrus and axiom. With both the built-in policy 1600 in the FA domain and the
aut policy in the HFO domain the results are comparable with and without the
learned axioms; note that the learned axioms are not necessarily used in each
episode. This is a good outcome and supports H2.

Next, we discuss the results of evaluating H3. Specifically, Table 4 summa-
rizes the precision and recall values corresponding to Exp5 that evaluated the
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Table 2: Win(%) of the team of guards
in the FA domain with and without the
learned axioms (Exp3).

Policy Without(%) With(%)

220 81 86
650 38 46
1240 47 56
1600 21 21

Table 3: Fraction of goals scored by the
offense team in HFO with and without
the learned axioms (Exp4).

Policy Without(%) With(%)

Helios 30 35
Gliders 25 29
Cyrus 32 38
Axiom 14 24
Aut 19 19

Table 4: Precision and recall of retriev-
ing relevant literals for constructing
explanations in the FA domain with
the learned axioms (Exp5).

Question type Precision Recall

Action justification 1.00 1.00
Contrastive 0.96 0.94
Belief justification 0.95 0.85
Counterfactual 1.00 1.00

Table 5: Precision and recall of retriev-
ing relevant literals for constructing
explanations in the FA domain with-
out the learned axioms (Exp6).

Question type Precision Recall

Action justification 1.00 0.34
Contrastive 0.90 0.90
Belief justification 0.88 0.63
Counterfactual 1.00 1.00

ability to generate relational descriptions as explanations of the agents decisions
and beliefs. In these experiments, the learned axioms were included in the knowl-
edge used by the ad hoc agent for reasoning. Table 5 summarizes the precision
and recall values from Exp6, where the ad hoc agent generated the explanations
for different queries while the learned axioms were removed from the knowledge
base. The observed higher values of precision and recall in Table 4 compared with
the values in Table 5, i.e., the observed improvement in retrieving the relevant
literals needed to construct the (correct) responses to the questions, provides
strong support for hypothesis H3.

4.3 Execution Trace

This section provides some execution traces illustrating some of the capabilities
of our architecture. Consider, for example, the scenario in Figure 5, in which an
ad hoc agent in grid (3,13) at time step 0, has the goal of shooting an attacker
in grid (9,8). The plan generated by the ad hoc agent was:

occurs(move(learner, 4, 13), 1),

occurs(move(learner, 5, 13), 2),

occurs(move(learner, 6, 13), 3),

occurs(move(learner, 7, 13), 4),

occurs(shoot(learner, attacker1), 5)
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Fig. 5: Part of the domain showing the ad hoc guard agent (green) moving to
track and shoot an attacker (red).

As an example of providing relational descriptions of decisions and beliefs, con-
sider an exchange with the ad hoc agent after it executed this plan successfully;

– Human: “Why did you move to (7,13) in step 4 ?”

– Ad hoc Agent: “Because attacker1 was not in range for shooting and my
goal was to shoot the attacker1 in step 5”.

This response was generated using the approach in Section 3.4. For example,
since the shoot action occurred immediately after move, the relevant axiom
identified included:

¬occurs(shoot(R,A), I)← ¬holds(in range(R,A), I) (7)

Next, the ad hoc agent explored the related answer sets and identified that
ground literal in range(learner , attacker1 ) was present in step 5 but not
in step 4. This literal was then selected to construct the answer (above)
justifying the action execution.

– Human: “Why did you not shoot attacker1 in step 2? ”

– Ad hoc Agent: “Because attacker1 was not in the shooting range at step
2 since it had moved towards fort in step 0 and step 1.”

The agent first tried to identify axioms with action shoot in the head,
e.g., Statement 7 in this scenario. Next the agent ground the body of the
axiom and verified whether it was included in the answer set. Since the
¬in range(learner , attacker1 ) was valid in step 2, the agent identified it as a
literal that prevented it from considering the shooting action at step 2. Since
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the location of attacker1 is also a key factor here, the agent also included the
immediate actions of the attacker1 when generating its response (above).

In a scenario where the agent does not find any preconditions that prevents
it from executing an action mentioned in a contrastive question, recall that it
will still compare the cost of its plans including and excluding that particular
action. An example for such a scenario is shown below.

– Human: “Why did you not move to (3,13) in step 2? ”

– Ad hoc Agent: “Because that action increases the cost of the plan; new
plan cost = 8, old plan cost = 7.”

In this scenario, the ad hoc agent tried to create a plan with the suggested
action. Then it computed the cost for the new plan and compared it with
the cost of its original plan. Since the new plan’s cost was higher than that
of the original plan, this information was used to justify its action choice
and to generate the answer (above) to the question posed.

– Human: “Why did you believe attacker1 was in shooting range at step 5?
”

– Ad hoc Agent: “Because I observed that the attacker1 was located in 9,9
in step 5 and I was in 7,13 facing south.”

When probed to expand on this answer, the ad hoc agent also mentioned
that ”This further satisfied the conditions Y 2 − Y 1 <= 5, Y 2 − Y 1 >=
4, X2− 2 <= X1, X1 <= X2 + 2.”

When posed with a question about its beliefs, the ad hoc agent first identified
the valid axioms (e.g., state constraints) that could influence the belief:

holds(in range(L,A), I)←
holds(in(L,X2, Y 2), I),

holds(agent in(A,X1, Y 1), I),

holds(face(L, south), I),

Y 2− Y 1 <= 5, Y 2− Y 1 >= 4,

X2− 2 <= X1, X1 <= X2 + 2.

By grounding and verifying that the relevant literals are available in the
answer set, the ad hoc agent generated the explanation described above.
This answer demonstrates the agent’s ability to answer questions regarding
its beliefs. A similar process can be used to trace the evolution of beliefs over
multiple time steps. The ad hoc agent can also be asked about hypothetical
situations, including those involving other agents, through counterfactual
questions.

– Human: “What do you think the attacker will do in step 2? ”

– Ad hoc Agent: “Attacker will move up in step 2.”

– Human: “Why do you think the attacker will move up in step 2? ”

– Ad hoc Agent: “Attacker will decide to move up since all the attackers are
alive and attacker is in front of the fort.”
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In this scenario the agent retrieved the current state estimate stored and
initialized a new FA environment. Then it simulated the environment for
the desired future time steps while using the agent behaviour models to
predict the actions of the other agents. Next, it went through the FF tree
model predicting the attacker’s behavior, and identified rules that caused
it to believe the attacker agent will ‘move up’ in step 2. This information
was used to generate the responses (above) to the questions posed. A similar
approach was followed to generate the explanations to queries such as:

– Human: “What will happened if guard1 shoots in step 2 ?”
– Ad hoc Agent: “If guard1 shoots in step 2, the number of alive attackers

will be reduced to 1 in step 3. There will be 3 guards alive, and the nearest
attacker to the fort will be attacker3.”

These results support hypothesis H3.

5 Conclusions

This paper described KAT, a knowledge-driven AHT architecture that supports
non-monotonic logical reasoning with prior commonsense domain knowledge and
predictive models of other agents’ behaviors that are learned and revised rapidly
using heuristic methods. In this paper, we focused on describing KAT’s ability
to incrementally learn and revise previously unknown axioms that govern action
and change in the domain, enabling an ad hoc agent to better adapt to the
environment. Moreover, we described KAT’s ability to provide transparency by
generating on-demand relational descriptions of the ad hoc agent’s (and other
agents) decisions in response to different types of questions. In the future, we
will explore scenarios with multiple ad hoc agents, investigate scalability of our
architecture to more complex domains, and use our architecture on physical
robots in AHT settings.
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