
In The 27th PlanSIG Workshop (PlanSIG 08),
Edinburgh, UK, December 11-12, 2008.

E-HiPPo: Extensions to Hierarchical POMDP-based Visual Planning on a Robot

Mohan Sridharan
Department of Computer Science

Texas Tech University, USA
mohan.sridharan@ttu.edu

Richard Dearden and Jeremy Wyatt
School of Computer Science

University of Birmingham, UK
{rwd,jlw}@cs.bham.ac.uk

Abstract

One major challenge to the widespread deployment of mo-
bile robots is the ability to autonomously tailor the sensory
processing to the task on hand. In our prior work (Sridharan,
Wyatt, and Dearden 2008), we proposed an approach for such
general-purpose processing of visual input in an application
domain where a robot and a human jointly converse about and
manipulate objects on a tabletop by processing the regions of
interest (ROIs) in input images. We posed the visual process-
ing management problem as a partially observable Markov
decision problem (POMDP), and introduced a hierarchical
decomposition to make it tractable to plan with POMDPs. In
this paper we analyze and eliminate some of the limitations
of the existing approach. First, in addition to tackling visual
actions that analyze the state of the world represented by the
image, we show how to incorporate actions that can change
the state. Secondly, we show how policy caching can be used
to speed the planning performance and analyse the tradeoff
between planning speed and plan quality.

Introduction
The availability of high-fidelity sensors such as color cam-
eras at moderate costs has led to the use of robots in a range
of applications (Minten et al. 2001; Pineau et al. 2003;
Thrun 2006), but the ability to accurately sense and inter-
act with the environment is still missing. One major re-
quirement for the widespread deployment of mobile robots
is the ability to autonomously tailor the sensory processing
to the task on hand. Most current robot systems equipped
with visual sensors are designed for specific domains using
a manually chosen set of visual operators/processing rou-
tines. However, visual processing in robot domains is char-
acterized by non-deterministic actions (visual operatorsare
not completely reliable), high computational complexity and
partial observability—the robot cannot observe the true state
of the world, but it can update itsbelief about the state of the
world by applying actions and observing the outcomes. At
the same time the robot has to respond to dynamic environ-
mental changes and operate with a high degree of reliability.

A robot equipped with a visual sensor therefore needs
an efficient strategy to decide which visual processing, on
which image regions, needs to be performed so as to ac-
complish the desired task. We investigate visual process-
ing management as a planning problem where given a task

the robot has to autonomously infer the sequence of in-
formation processing (what to look for?) and sensing ac-
tions (where to look?) that would maximize the reliability
while using the available resources in an optimal manner.
Though planning of visual operators has been extensively
researched (Clouard et al. 1999; Thonnat and Moisan 2000;
Moisan 2003; Li et al. 2003), prior work fails to address all
the requirements of the problem because they typically are
used for single images, require extensive domain knowledge
to perform plan repair, have only been extended to robot sys-
tems in limited ways, and/or pose the problem in an essen-
tially deterministic or observable framework (Li et al. 2003).

In recent work (Sridharan, Wyatt, and Dearden 2008) we
posed the planning problem in a sequential decision making
framework, and more specifically as a partially observable
Markov decision problem (POMDP) (Kaelbling, Littman,
and Cassandra 1998). We explicitly modelled the charac-
teristic features of the problem, including the uncertainty
in the visual operator outcomes. We posed the problem as
one of applying visual operators to images that had already
been segmented into regions of interest (ROIs) that are dis-
tinct from the background and hopefully contain the objects
in the scene. We introduced a hierarchical decomposition
to address the intractability of our POMDP representation.
The resulting hierarchical POMDP planning system, called
HiPPo provided significantly higher reliability in compari-
son to deterministic planners.

An important characteristic of the domain is that often
two or more objects in the images overlap, resulting in vi-
sual operators such as shape detectors returningmultipleas
their outcome, instead of the individual shapes they have
been trained on. In these cases our previous approach would
perform very poorly. We address the problem of overlap-
ping objects by adding an operator that splits a ROI into
a set of sub-regions that hopefully contain distinct objects.
The challenge with splitting a region is that it results in a
change in the size of the state space of the POMDP. In this
paper we extend our existing hierarchical POMDP planning
framework to handle these splitting operators.

The planning time of our hierarchical approach is some-
what slower than the classical planning approach we com-
pared it with, the Continual Planning (CP) approach of
(Brenner and Nebel 2006). This is in part due to the fact
that our hierarchical approach involves solving a POMDP

Figure 1: A picture of the typical table top scenario—
regions-of-interest (ROIs) bounded by rectangular boxes.

for each ROI in the image, plus one additional POMDP. In
this paper we investigate the caching of policies computed
for each ROI, and reusing them to reduce the planning time.
Policy-caching introduces an error in the computed expected
reward for the policy, and we provide a theoretical and em-
pirical evaluation of how much worse than optimal the re-
sulting policy could be.

As our experimental testbed, we use the same domain that
was used in our recent work (Sridharan, Wyatt, and Dear-
den 2008), that of a robot and a human jointly conversing
about and manipulating objects on a tabletop, within the
EU funded Cognitive Systems (CoSy) project (Hawes et al.
2007). Consider the scene in Figure 1, and the types of vi-
sual operations that the robot would need to perform to an-
swer a variety of questions about the scene: “is there a blue
triangle in the scene?”, “what is the color of the mug?”. In
order to answer these questions, the robot has at its disposal
a range of information processing functions and sensing ac-
tions. But it is not feasible for the robot to run all available
actions, especially since the cognitive robot system needsto
respond to queries/commands dynamically.

The remainder of the paper is organized as follows: we
begin with an overview of the hierarchical POMDP frame-
work. Then we introduce the changes required to incorpo-
rate region splitting, followed by the evaluation of the ap-
proximation errors incurred by policy-caching in the hierar-
chical decomposition. We conclude with a brief description
of related methods and future research directions.

The Hierarchical POMDP Planner
The robot needs to process input images with the regions-of-
interest (ROIs) extracted from the background. It maintains
a probability distribution (belief state) over the true under-
lying state. For ease of understanding, we use the example
of an input image from the table-top scenario that is pre-
processed to yield two ROIs, i.e. two rectangular regions that
are different from a previously trained background model.

Consider the query: “which objects in the scene are
blue?” The goal is to plan a sequence of visual actions that
would answer the query with high confidence. Without loss
of generality, assume that the robot has the following set of
visual actions/operators at its disposal: acolor operator that
classifies the dominant color of the ROI it is applied on, a

shape operator that classifies the dominant shape within the
ROI, and asift operator, based on the SIFT features devel-
oped by David Lowe (2004), to detect the presence of one of
the previously trained object models. Throughout this paper,
we use the following terms interchangeably: visual process-
ing actions, visual actions, and visual operators.

Belief state maintenance requires a suitable model for the
action outcomes. In our work, each action considers the true
underlying state to be composed of the normal class labels
(e.g. red(R), green(G), blue(B)for color; circle(C), trian-
gle(T), square(S)for shape;picture, mug, boxfor sift), a
label to denote the absence of any object/valid class—empty
(E), and a label to denote the presence ofmultiple classes
(M). The observation model for each action provides a
probability distribution over the set composed of the normal
class labels, the class labelempty(E) that implies that the
match probability corresponding to the normal class labels
is very low, andunknown(U) that means that there is no
single class label to be relied upon and that multiple classes
may therefore be present.U is an observation, whereasM
is part of the underlying state: they are not the same.

Since visual operators only update belief states, we in-
clude “special actions” that answer the query by “saying”
(not to be confused with language-based communication)
which underlying state is most likely to be the true state.
Such actions cause a transition to a terminal state where no
further actions are applied. In the description below, for ease
of explanation (and without loss of generality) we only con-
sider two operators:color andshape, denoting them with
the subscriptsc, s respectively. States and observations are
distinguished by the superscriptsa, o respectively.

For a single ROI in the image, the POMDP is defined by
the tuple〈S,A, T ,Z,O,R〉:
• S : Sc × Ss ∪ term, the set of states, is a carte-

sian product of the state spaces of the individual ac-
tions. It also includes aterminal state (term). Sc :
{Ea

c , Ra
c , Ga

c , Ba
c ,Mc}, Ss : {Ea

s , Ca
s , T a

s , Sa
s ,Ms}

• A : {color, shape,AS} is the set of actions. The first
two entries are the processing actions. The rest are spe-
cial actions (AS = {sRed, sGreen, sBlue}) that repre-
sent query responses such as “say blue”, and lead toterm.
Though we only specify “say” actions for color labels,
others may be added trivially.

• T : S × A × S → [0, 1] represents the state transition
function. For visual processing actions that do not change
the state, such ascolor andshape, it is an identity matrix.
For special actions it represents a transition toterm.

• Z : {Eo
c , Ro

c , G
o
c , B

o
c , Uc, E

o
s , Co

s , T o
s , So

s , Us} is the set
of observations, a concatenation of the observations for
each visual processing action.

• O : S × A × Z → [0, 1] is the observation function. It
is learned by the robot for the visual actions and it is a
uniform distribution for the special actions.

• R : S × A → ℜ, specifies the reward, mapping from the
state-action space to real numbers. In our case:

∀s ∈ S, R(s, shape) = −1.25 · f(ROI-size) (1)

R(s, color) = −2.5 · f(ROI-size)

R(s, special actions) = ±100 · α

For visual actions, the cost depends on the size of the ROI
and the relative computational complexity (color is twice
as costly asshape). For special actions, a large positive
(negative) reward is assigned for making a right (wrong)
decision for a given query. The variableα trades-off be-
tween computational costs and reliability of response.
Our visual planning task for a single ROI now involves

solving this POMDP to find a policy that maximizes reward
from the initial belief state. Plan execution corresponds to
traversing a policy tree, repeatedly choosing the action with
the highest value at the current belief state, and updating
the belief state after executing that action and getting a par-
ticular observation. But, for a single ROI withm features
(color, shape etc.) each withn values (e.g.R, G for color),
the POMDP has an underlying space ofnm + 1; for k ROIs
the overall space is:nmk + 1, so the problem soon becomes
too large to solve even with state-of-the-art POMDP solvers.

We overcome the exponential state space explosion prob-
lem by imposing an intuitivehierarchical decomposition:
we model each ROI with a lower-level (LL) POMDP as
described above, and use a higher-level (HL) POMDP to
choose, at each step, the ROI whose policy tree (gener-
ated by solving the corresponding LL-POMDP) is to be ex-
ecuted. The overall problem is then decomposed into one
POMDP with state space2k + 1, andk POMDPs with state
spacenm + 1. For the two-ROI example with the goal
of finding the blue objects, the HL-POMDP is given by
〈SH ,AH , T H ,ZH ,OH ,RH〉:
• SH = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2, R1 ∧

R2} ∪ termH is the set of states. It represents the pres-
ence/absence of the object in one or more of the ROIs,
and includes a terminal state (termH).

• AH = {u1, u2,A
H
S } are the actions. The sensing actions

(ui) denote the choice of executing one of the LL ROIs’
policy trees. The special actions (AH

S) represent “saying”
actions, and they lead totermH .

• T H is the state transition function that leads totermH for
special actions and is an identity matrix otherwise.

• ZH = {FR1,¬FR1, FR2,¬FR2} is the set of obser-
vations, which represents finding/not-finding the desired
object when each ROI’s (LL) policy is executed.

• OH : SH × AH × ZH → [0, 1], the observation func-
tion, is an uniform matrix for special actions. For sensing
actions, it is learned from the LL-POMDP policy trees.

• RH is the reward specification. It is a “cost” for each
sensing action, computed from the LL policy trees. For a
special action, it is a large positive value if it predicts the
state correctly, and a large negative value otherwise.
During the creation of the HL-POMDP (and during plan

execution) we control computational complexity by forcing
the LL-POMDP’s policy tree to terminate afterN levels, set
heuristically based on the query complexity. Though the LL
policies are computed until completion (up to the desired
regret bounds), all branches have to take a terminal action
afterN steps in the tree.

The computation of the observation functions and
cost/reward specification for the HL-POMDP, based on the
corresponding LL-POMDP policy trees, is an important part
of the hierarchical decomposition—details and an experi-

mental comparison with Continual Planning (CP) are in our
paper (Sridharan, Wyatt, and Dearden 2008). HiPPo is sig-
nificantly more reliable (91.67%) than CP (76.67%) or no
planning (76.67%) i.e. applying all visual actions on the
scene. Since CP does not explicitly model the uncertainty
of action outcomes, it cannot do any better than naive pro-
cessing in terms of reliability.

Handling Regions with Overlapping Objects
As we said above, we use background subtraction to gener-
ate the initial ROIs for analysis. In practice, this frequently
results in objects that are close together or overlap being
placed in a single ROI. In these cases, the vision algorithms
are likely to returnunknown, indicating that multiple classes
may be present in the ROI. The question we address in this
section is what to do when this occurs.

To handle cases where multiple objects appear in a single
ROI we use “region-splitting” actions that segment the ROI
based on one of the underlying features, for instancecolor
or shape. As an example, consider the splitting action based
on the color feature, i.e.rSplitcolor. This action segments
the input ROI into one or more ROIs based on color. The
difficulty with handling this in our POMDP representation
is that creating new ROIs changes the size of the state space
of the POMDP. This means that we cannot plan to split a
region because we cannot reason about the value of the state
that results from doing the split.

To overcome this problem we observe that at most one
of the regions that result from splitting are of interest in an-
swering the query. In our ongoing example of finding the
blue objects in an image, consider what happens when we
split a region based on color, resulting inn new regions.
There are two possibilities: Either one of the new regions
is blue (there cannot be more than one because all the blue
areas of the region are segmented together), or there are no
blue regions. In the first case we can ignore the other regions
for planning purposes and treat this as if a single blue region
was created. In the second case there is no region relevant
to the query and we can pick a region at random and plan
with that. In either case, we can treat the effect of the split-
ting action to be to transform the region being operated on
into a single “interesting” region, so the state space does not
change. However, to make this approach work, we need to
identify the interesting region. To do this we assume that ev-
ery split action on a particular feature is followed by running
the feature detector action on each of the regions that results.
The rSplitcolor action, for instance, is followed by the ap-
plication of color on each resultant ROI. TherSplitcolor

operator can hence be characterized as:
• The number of ROIs created as a result of the split oper-

ation is assumed to be distributed as a geometric distribu-
tion. The maximum number of possible ROIs equals the
number of class labels (excludingmany) provided by the
underlying operator, four forcolor.

• The cost of the operator is the sum of the cost of per-
forming the split operation based on color (i.e. color seg-
menting the ROI), and the cost of applyingcolor on the
expected number of ROIs created by the split.

• The observation function (O) is the same as that of the
underlying operator (color), and it is used to perform the
belief update on each ROI created after the split.

• The transition function is computed as follows: Assume
that the feature being split on hasn possible classes. Each
of the ROIs created by the split has a probability of1

n of
having the class label relevant to the query, and the geo-
metric distribution gives a probability of1/2(i−1) for pro-
ducingi ROIs after the split. The special case ofi = n
has a probability of occurrence of1/2(n−2) so that the ge-
ometric distribution-based probabilities sum to one. The
expected probability that one of the ROIs has the appro-
priate class label is therefore given by:

p =

n−1∑

i=2

1

2i−1

i

n
+

1

2n−2

Then, iff the underlying state is “multiple”, with probabil-
ity p we move to a state where the ROI has the relevant
label, and with probability1 − p we move to a random
state where the ROI has some other label. The transition
matrix for rSplitcolor while looking for blue objects is
given in Table 1.

p(init|fin) φa Ra
c Ga

c Ba
c Mc

φa 1.0 0 0 0 0
Ra

c 0 1.0 0 0 0
Ga

c 0 0 1.0 0 0
Ba

c 0 0 0 1.0 0

Mc
1−p
3

1−p
3

1−p
3 p 0

Table 1: Transition functionT for rSplitcolor with just the
color states under consideration.

The approach we have just described allows us to plan
split operators in the LL-POMDP, but it relies on the as-
sumption that the observations made of each new ROI are
reliable. That is, it assumes that when we split on color and
then apply the color operator to each new region, the opera-
tor reliably returns the true color of the region. Since thisis
not always true, we do not want to discard the regions gen-
erated in the split that did not have the correct class label.
Rather we would like to update our belief about them based
on the observation, but still allow them to be searched in the
future. To do this, we need to add them to the HL-POMDP
and compute policies for all the new regions. Thus, although
the procedure above lets us plan split operators and estimate
their cost, at execution time when a split action is performed,
we need to replan1.

When a split action is executed we now solve LL-
POMDPs for each newly created ROI (these have to be re-
solved because the size of the regions has changed), use our
current beliefs about each region, updated by the observa-
tions from the split actions to estimate the cost and obser-
vation probabilities for executing the policies, and use these
to generate and solve a new HL-POMDP. Figures 2(a)-2(f)

1We are currently investigating whether taking this additional
planning time into account in the cost of the split action produces
better performance.

present the execution cycle, with the region-splitting actions
at the LL, for the query:Where are the Blue Circles?

The image shown in Figure 2(a) has three objects, two of
which overlap, leading to the creation of two ROIs. The task
is to determine the presence and location of one or more
blue circlesin the scene—Fig 2(a). Since both ROIs are
equally likely target locations, the HL-POMDP first chooses
to execute the policy tree of the second ROI—actionu2

in Fig 2(b)—because of the lower processing cost of the
smaller ROI. The corresponding LL-POMDP runs the color
operator on the ROI, leading to the outcome ofgreen. Find-
ing greencauses the likelihood of finding a blue circle to
be reduced significantly, and the dynamic reward specifica-
tion ensures that thebestaction chosen at the next level is
a terminal action associated with the “Green” property—in
this case it issGreenCircle. The HL-POMDP receives the
input that the target object was not found inR2, leading
to a belief update and subsequent action selection—action
u1 in Fig 2(c). The policy tree of the LL-POMDP ofR1

is invoked, causing the color and shape operators to be ap-
plied in turn on the ROI. Both operators come up with out-
comes ofUnknownbecause of the two different colors and
shapes in the ROI. At this point, therSplitshape operator
is chosen as the best action andR1 is split intoR1 andR3

on the basis of the shape contours identified in the ROI—
Fig 2(d). Our system includes other algorithms that can be
invoked, when necessary, to split a ROI on the basis of color
(Felzenswalb and Huttenlocher 2004) or clustering of image
features (Duda, Hart, and Stork 2000). In the current exam-
ple, rSplitshape is followed by the application of the shape
operator on each sub-region, leading to the observationstri-
angleandcircle in R1 andR3 respectively—Fig 2(c). Then
the current HL-POMDP beliefs are used to create and solve
a new HL-POMDP model for three ROIs. The subsequent
action selection in the HL (u3) results in the execution of
the LL-policy ofR3. The ROI’s initial state reflects the pre-
vious application of the shape operator and hence the color
and shape operator are applied just once before the terminal
action (sBlueCircle) is chosen, as shown in Fig 2(e)—since
the shape operator is less reliable than the color operator,
normally it takes two applications on the shape operator on
two different images of the same scene to accumulate suffi-
cient belief. The update of the beliefs at the HL leads to the
processing ofR1 (because the query requires the computa-
tion of all locations of blue circles) leading to the terminal
action ofsRedTrianglein R1 ands(¬R1 ∧ ¬R2 ∧ R3), i.e.
the desired object is found inR3 but not inR1 or R2, at the
HL—Fig 2(f).

Policy Caching
In our previous paper we presented a graph (shown here in
Figure 3) comparing the planning time for HiPPo with using
the CP planner of (Brenner and Nebel 2006). In the figure
we claimed that policy caching made the two approaches
comparable in terms of plan time, but we gave no details of
how caching worked. Here we explain the details of caching
and investigate its properties and performance.

For the caching results in Figure 3 we actually assumed
that we could solve a single LL-POMDP and reuse the pol-

(a) Input image.

HL−POMDP

LL−POMDP 1

u2

Color

Green

sGreenCircle (sNotFound)

(b) Execution Step 1.

HL−POMDP u2

Color

Green

nFR2

u1

LL−POMDP 1 LL−POMDP 2

Shape
Unk

Unk

rSplit−shape

Color

sGreenCircle (sNotFound)

Triangle (R1)
Circle (R3)

(c) Execution Step 2. (d) Execution Step 3.

HL−POMDP

Color

Green

LL−POMDP 2

u3

LL−POMDP 3

sGreenCircle (sNotFound)

sBlueCircle (sFound)

Blue

Color

Shape

Circle

(e) Execution Step 4.

HL−POMDP

Color

Green

LL−POMDP 2LL−POMDP 3

sGreenCircle (sNotFound)

FR3
u3

u1

LL−POMDP 1

sRedTriangle (sNotFound)
sBlueCircle (sFound)

nFR1

snR1nR2R3

Color

Blue

Circle

ShapeShape

Color

Red

Triangle

(f) Execution Step 5.

Figure 2: Example query: “Where is the Blue Circle?” Region-splitting operators allow for the creation of appropriate ROIs to
answer the query.

icy for each ROI. While this is true if all ROIs are the same
size, if they differ then the reward/cost of each visual action
(i.e. not a special action) is a function of the relative time
complexity of the action, and the size of the ROI being op-
erated upon. This dependency on the ROI-size, specified as
f(ROI-size) in Equation 1, is modeled as:

f(r) = a0 +
N∑

k=1

ak · rk (2)

wherer is the ROI-size (in pixels) andN = 3 i.e. we use
a cubic polynomial to approximate the dependency on the
size of the ROI being processed by the visual operators—the
robot estimates the parameters of the polynomial. In order

to make caching possible, we have to discretize the possible
ROI sizes and use a single cost estimate for each ROI within
a particular ranges of sizes. This approximation introduces
an error, which can be estimated and used to perform a trade-
off between the computational effort expended in creating
and solving the LL-POMDPs and the error incurred by not
computing the action costs accurately.

Consider the image shown in Figure 4 with three ROIs
extracted from the background. The individual ROI sizes
for R1, R2, R3 are23400, 11050 and20800 pixels respec-
tively. We have three discretization options here: (1) differ-
ent action costs for each individual ROI, which would re-
quire solving three POMDPs; (2) the same action costs for

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of Regions

T
im

e
(s

ec
on

ds
)

HiPPo vs CP (Planning Time)

HiPPo
CP
HiPPo (cached)

Figure 3: Planning times of HiPPo vs. CP. Policy-caching
makes results comparable.

Figure 4: Image with three ROIs extracted from the back-
ground.

R1 andR3 and a different set of action costs forR2, lead-
ing to the creation and solving of two LL-POMDPs; (3) the
same set of action costs for all three ROIs, which would im-
ply that the LL models need to be created and solved just
once. In terms of computational costs for creating the LL
models and policies:

ModelCostOption2
=

2

3
× ModelCostOption1

(3)

ModelCostOption3
=

1

3
× ModelCostOption1

On the other hand, the discretization of ROI-sizes results
in an approximation error. We compute a theoretical upper
bound first. The maximum approximation error in the ac-
tion costs, over all visual action under consideration, andfor
ROIs whose sizes fall within the discretization range is:

max a∈A
a/∈AS

|f(ri) − f(ravg)| = δ (4)

For instance, inOption2:

ri = {ROI-size(R1), ROI-size(R3)}

ravg = (ROI-size(R1) + ROI-size(R3))/2

whereas inOption3:

ri = {ROI-size(R1), ROI-size(R2), ROI-size(R3)}

ravg = (ROI-size(R1) + ROI-size(R2) + ROI-size(R3))/3

Then, for a discount factor ofγ in the POMDP models, the

net maximum error due to the ROI-size approximation is:
error = δ + γ · δ + · · · + γN−1 · δ (5)

= δ{
1 − γN

1 − γ
}

whereN represents the number of levels that the LL pol-
icy tree is allowed to grow to. Forγ = 0.9 andN = 8,
error ≈ 6δ. The upper bounds on the estimation errors
in Option2 and Option3, taking into account the actual
ROI-sizes in Figure 4, are0.33 and2.35 respectively. For
Option2, we then compute the actual error, i.e. we estimate
two policies forR1 using models that include actions costs
based onravg and ROI-size(R1) respectively, and then com-
pute the difference in thevaluesof the two policies for the
initial state ofR1. The error value is found to be0.021, and
a similar computation forOption3 with R2 (the ROI where
the maximum error is expected to occur) provides an error of
0.24. We observe that the actual error is significantly smaller
than the upper bound on error.

The error estimation process described above can be per-
formed automatically by the system (i.e. robot) to deter-
mine the ROI-size discretization to use for the given im-
age by trading off the expected error against the reduction
in computational effort to be spent determining the models
and policies. In the current example, for instance,Option2

may be the better thanOption3.
We note in passing that the observation function would

also vary for different ROI sizes. We have not considered
this as yet due to the difficulty of collecting sufficient data
to learn the relationship between ROI sizes and vision algo-
rithm performance.

Related Work
There has been extensive research in the computer vision
community on planning a sequence of visual operations in
order to perform a specific task. Typically, the user spec-
ifies the task/goal, which is used by a classical AI plan-
ner to construct a sequence of image processing opera-
tions. The planners use deterministic models of the action
effects: handling the pre-conditions and the effects of the
operators using propositions that are required to be true a
priori, or are made true by the application of the opera-
tor. Uncertainty is handled by evaluating the output images
using hand-crafted evaluation rules (Clouard et al. 1999;
Chien, Fisher, and Estlin 2000; Thonnat and Moisan 2000;
Moisan 2003). Execution monitoring is used to detect un-
satisfactory performance and repair the plan by re-planning
an action sequence or modifying the parameters of the op-
erators. There has also been some work on perception
for autonomous object detection and avoidance in vehi-
cles (Shekhar, Moisan, and Thonnat 1994) but extensions
to more general computer vision has proven difficult. Re-
cent work by Li et al. 2003 has modeled image interpre-
tation as a MDP (Markov Decision Process), using human-
annotated images to determine the reward structure and ex-
plore the state space to determine dynamic programming-
based value functions that are extrapolated to the entire
state space through the ensemble technique called leverag-
ing. Online image interpretation involves the choice of an

action that maximizes the value of the learned value func-
tions at each step. In real-world applications, the true state of
the system is not directly observable and actions have non-
deteministic outcomes. A POMDP formulation provides an
elegant means of modeling these features.

Within the planning community, there has recently been
some work on relaxing the limiting constraints of classi-
cal planning schemes to make them suitable to practical ap-
plication domains (Petrick and Bacchus 2004; Brenner and
Nebel 2006). Petrick and Bacchus proposed the PKS plan-
ner 2004, which uses actions described in terms of their ef-
fect on the agent’s knowledge, rather than their effect on the
world, using a first order language. Hence the model is non-
deterministic in the sense that the true state of the world may
be determined uniquely by the actions performed, but the
agent’s knowledge of that state is not. For example, drop-
ping a fragile item will break it, but if the agent does not
know that the item is fragile, it will not know if it is broken,
and must use an observational action to determine its sta-
tus. PKS captures the initial state uncertainty and constructs
conditional plans based on the agent’s knowledge. In our do-
main, we could say that the objects in the query are in one of
the ROIs, but that we do not know which one. The planner
will then plan to use the observational actions to examine
each region, branching based on what is discovered.

The Continual Planning (CP) approach of Brenner and
Nebel 2006 interleaves planning, plan execution and plan
monitoring. Unlike classical planning approaches that re-
quire prior knowledge of state, action outcomes, and all
contingencies, an agent in CP postpones reasoning about
unknowable or uncertain states until more information is
available. It achieves this by allowing actions to assert that
the preconditions for the action will be met when the agent
reaches that point in the execution of the plan, and if those
preconditions are not met during execution (or are met ear-
lier), replanning is triggered. But there isno representation
of the uncertainty/noise in the observation/actions. CP is
hence quite similar to PKS in its representation, but works
by replanning rather than constructing conditional plans.In
applications where observations are noisy, the optimal be-
haviour may be to take several images of a scene and run the
operators more than once to reduce uncertainty. This cannot
be represented in either PKS or CP.

The POMDP formulation (Kaelbling, Littman, and Cas-
sandra 1998) is appropriate for domains where the state is
not directly observable, and the agent’s actions update its
belief distribution over the states. But, in any practical prob-
lem domain, the state space quickly grows too large to be
solved by conventional POMDP solvers. Pineau and Thrun
2002 cope with large state spaces in POMDPs, for a nursing
assistant robot, through a hierarchical approach similar to
the MAXQ decomposition for MDPs of (Dietterich 1998).
They impose an action hierarchy, with the top level action
being a collection of simpler actions that are represented by
smaller POMDPs and solved completely; planning happens
in a bottom-up manner. Individual policies are combined to
provide the total policy. When the policy at the top-level task
is invoked, it recursively traverses the hierarchy invoking se-
quence of local policies until a primitive action is reached.

All model parameters at all levels are defined over the same
state-action-observation space, but the relevant space isab-
stracted for each POMDP using a dynamic belief network.
In the actual application, a significant amount of data for the
hierarchy and model creation is hand-coded.

Hansen et al. 2003 propose a manually specified task hi-
erarchy for POMDP planning. Though similar to Pineau’s
work in terms of the bottom-up planning scheme, each pol-
icy is represented as a finite-state controller (FSC), and each
POMDP in the hierarchy is an indefinite-horizon POMDP
that allows FSC termination without recognition of the un-
derlying terminal state. In addition, they use policy iteration
instead of value iteration to solve POMDPs. They show that
this representation guarantees policy quality. More recent
work by (Toussaint, Charlin, and Poupart 2008) proposes
maximum likelihood estimation for hierarchy discovery in
POMDPs, using a mixture of dynamic Bayesian networks
and EM-based parameter estimation.

Instead of manually specifying the abstractions at several
levels, we propose a simple two-level POMDP hierarchy,
where the reward and observation models can be learned au-
tonomously (Sridharan, Wyatt, and Dearden 2008). At the
lower level (LL), each ROI is assigned a POMDP, whose
state and action space depends on the query posed. The vi-
sual processing actions are applied in the LL. The approxi-
mate (policy) solutions of the LL-POMDPs are used to pop-
ulate a higher level (HL) POMDP with completely differ-
ent state, action and observation spaces. The HL POMDP
maintains the belief over the entire image and chooses the
best ROI for further processing, so as to answer the queries
posed. This hierarchy structure can be used unmodified for
a range of queries in our application domain.

Conclusions and Future Work
Robots operating in real-world application domains need to
function autonomously, modifying their sensory processing
based on the task to be performed. In a recent paper (Sridha-
ran, Wyatt, and Dearden 2008) we proposed a hierarchical
POMDP planning method (HiPPo) that enables a robot to
plan a sequence of visual operators so as to accomplish the
desired goal with high reliability while still optimizing the
computational resources. In a domain where a robot and a
human have to jointly converse about and manipulate ob-
jects on a tabletop, our probabilistic approach enables the
robot to exploit learned models of the uncertainty in the ac-
tion outcomes to accumulate belief and hence answer user
queries with significantly higher reliability than a represen-
tative modern planning framework that is non-deterministic.

In this paper we have extended the HiPPo framework to
handle overlapping objects in the scene by splitting the re-
gion to allow recognition of the individual objects. In the
future, we aim to include other visual operators in the anal-
ysis, such as a viewpoint change to get a better view of the
scene objects. In addition, we aim to tackle the interest-
ing problem of learning object affordances. These additions
may require a range of hierarchies in the state and action
spaces (Pineau and Thrun 2002), though we would like to
learn this hierarchy (Toussaint, Charlin, and Poupart 2008).

Here we have analyzed the approximation error involved
in policy-caching, which involves a trade-off between the
computational effort involved in creating and solving the
LL-POMDPs, and the accuracy of the computation of ac-
tion costs for each image region being analyzed. We have
shown that the experimental error incurred by the approxi-
mation is significantly smaller than the theoretical estimate,
and that the error incurred is not a problem in our current
scenario. However, in more general scenes the approxima-
tion error may grow unacceptably and less caching may pro-
vide significantly better performance. Ultimately this should
be evaluated by including planning time in the performance
metric. A direction of further research is to compute the ob-
servation functions at different ROI sizes so that thevalue
and cost of each action can be computed more accurately.

There are still several interesting challenges to address,
such as the extension of the planning framework to more
complex “relationship queries” (e.g. Is the red triangle to
the left of the blue circle?), and “action queries” (e.g. Can
the red mug be grasped from above?) that would require
reasoning about action affordances. Eventually the aim is to
enable robots to use a combination of learning and planning
to respond autonomously and efficiently to a range of tasks.

Acknowledgements
This work was supported by the Leverhulme Trust Research
Fellowship Award Leverhulme RF/2006/0235 and the EU
FP7 IST Project CogX FP7-IST-215181.

References
Brenner, M., and Nebel, B. 2006. Continual Planning and
Acting in Dynamic Multiagent Environments. InThe In-
ternational Symposium of Practical Cognitive Agents and
Robots.

Chien, S.; Fisher, F.; and Estlin, T. 2000. Automated
software module reconfiguration through the use of arti-
ficial intelligence planning techniques.IEE Proc. Software
147(5):186–192.

Clouard, R.; Elmoataz, A.; Porquet, C.; and Revenu, M.
1999. Borg: A knowledge-based system for automatic gen-
eration of image processing programs.IEEE Trans. on Pat-
tern Analysis and Machine Intelligence21(2):128–144.

Dietterich, T. 1998. The MAXQ Method for Hierarchical
Reinforcement Learning. InInternational Conference on
Machine Learning (ICML).

Duda, R. O.; Hart, P. E.; and Stork, D. G. 2000.Pattern
Classification. Wiley Publishers, 2nd edition.

Felzenswalb, P. F., and Huttenlocher, D. P. 2004. Efficient
Graph-Based Image Segmentation.International Journal
of Computer Vision59(2).

Hansen, E. A., and Zhou, R. 2003. Synthesis of Hier-
archical Finite-State Controllers for POMDPs. InICAPS,
113–122.

Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson,
H.; Kruiff, G.-J.; Brenner, M.; Berginc, G.; and Skocaj, D.

2007. Towards an Integrated Robot with Multiple Cogni-
tive Functions. InThe Twenty-second National Conference
on Artificial Intelligence (AAAI).
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Do-
mains.Artificial Intelligence101:99–134.
Li, L.; Bulitko, V.; Greiner, R.; and Levner, I. 2003.
Improving an Adaptive Image Interpretation System by
Leveraging. InAustralian and New Zealand Conference
on Intelligent Information Systems.
Lowe, D. 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer
Vision (IJCV)60(2):91–110.
Minten, B. W.; Murphy, R. R.; Hyams, J.; and Micire,
M. 2001. Low-Order-Complexity Vision-Based Dock-
ing. IEEE Transactions on Robotics and Automation
17(6):922–930.
Moisan, S. 2003. Program supervision: Yakl and pegase+
reference and user manual. Rapport de Recherche 5066,
INRIA, Sophia Antipolis, France.
Petrick, R., and Bacchus, F. 2004. Extending the
Knowledge-Based approach to Planning with Incomplete
Information and Sensing. InInternational Conference on
Automated Planning and Scheduling (ICAPS), 2–11.
Pineau, J., and Thrun, S. 2002. High-level Robot Behavior
Control using POMDPs. InThe National Conference on
Artificial Intelligence (AAAI).
Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and
Thrun, S. 2003. Towards Robotic Assistants in Nurs-
ing Homes: Challenges and Results.Robotics and Au-
tonomous Systems, Special Issue on Socially Interactive
Robots42(3-4):271–281.
Shekhar, C.; Moisan, S.; and Thonnat, M. 1994. Use of
a real-time perception program supervisor in a driving sce-
nario. InIntelligent Vehicle Symposium ’94.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2008. HiPPo:
Hierarchical POMDPs for Planning Information Process-
ing and Sensing Actions on a Robot. InInternational Con-
ference on Automated Planning and Scheduling (ICAPS).
Thonnat, M., and Moisan, S. 2000. What can program
supervision do for program reuse?IEE Proc. Software
147(5):179–185.
Thrun, S. 2006. Stanley: The Robot that Won the DARPA
Grand Challenge.Journal of Field Robotics23(9):661–
692.
Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hierarchi-
cal POMDP Controller Optimization by Likelihood Maxi-
mization. InUncertainty in AI (UAI).

