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Abstract

Robot assisting humans in complex domains can operate
more effectively if they can describe their decisions and be-
liefs. Such transparency is difficult to achieve in integrated
robot systems that include methods for learning from data
and reasoning with incomplete commonsense domain knowl-
edge. The architecture described in this paper seeks to address
the associated challenges by building on a baseline system
that supports non-monotonic logical reasoning with incom-
plete commonsense domain knowledge, data-driven learning
from a limited set of examples, and inductive learning of pre-
viously unknown axioms governing domain dynamics. In the
context of enabling a simulated robot to provide on-demand,
relational descriptions of its decisions and beliefs, we intro-
duce an interactive system that automatically traces beliefs,
and constructs and poses queries to solicit human input and
reduce ambiguity in the robot’s beliefs. We present results
of evaluation in scene understanding and planning tasks to
demonstrate the abilities of our architecture.

Introduction
Consider a robot1 estimating the occlusion of objects and
stability of object structures while arranging objects in de-
sired configurations on a flat table; Figure 1 shows such a
scene. To perform these tasks, the robot extracts information
from on-board camera images, reasons with this information
and incomplete domain knowledge, and executes actions to
achieve desired outcomes. The robot also learns previously
unknown axioms governing domain dynamics, and provides
on-demand explanatory descriptions of its decisions and be-
liefs in the form of relations between domain attributes,
robot attributes, and robot actions. For instance, assume that
the goal in Figure 1 is to have the yellow cylinder on the par-
tially occluded green block, and that the plan is to move the
objects on the yellow cylinder, and the yellow block (on the
green block), to the table before the yellow cylinder on the
green block. When the robot is asked to justify a step in the
plan, e.g., ”why do you want to put the yellow duck on the
table first?”, it correctly answers ”the yellow duck is on the
yellow cylinder that I need to put on the green block”. How-
ever, the question ”why did you pick up the yellow object?”
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1Terms ”robot”, ”agent”, and ”learner” used interchangeably.

Figure 1: An illustrative simulated scene with objects in dif-
ferent configurations. Any reference to a yellow object in
this image is ambiguous.

posed after plan execution is ambiguous both in terms of the
object and time step being referred to. The robot recognizes
this ambiguity, reasons that the human is probably not refer-
ring to the rubber duck, asks ”are you referring to the yellow
cylinder or yellow block?”, and uses the answer to provide
the response to the original query from the human.

Our work seeks to enable such on-demand explanations
of a robot’s decisions and beliefs, and hypothetical situa-
tions, in the form of descriptions of relations between rele-
vant objects, actions, and domain attributes. This ”explain-
ability” can help improve the underlying algorithms and es-
tablish accountability. This is challenging to achieve with
integrated robot systems that include knowledge-based rea-
soning methods (e.g., for planning) and data-driven (deep)
learning algorithms (e.g., for pattern recognition), especially
when the human query is ambiguous. Inspired by research in
cognitive systems that indicates the benefits of coupling dif-
ferent representations and reasoning schemes (Laird 2012;
?), our architecture combines the complementary strengths
of knowledge representation tools and data-driven methods
to provide transparent decision making. It builds on our
prior work that combined non-monotonic logical reasoning
and deep learning for scene understanding in simulated im-
ages, and our proof of concept work on learning previously
unknown state constraints while constructing descriptions
of related decisions and beliefs (Mota and Sridharan 2019;
Mota, Sridharan, and Leonardis 2020). Here, we summarize
these capabilities and describe extensions to:



• Automatically trace the evolution of any given belief, us-
ing knowledge representation tools to infer the application
of a suitable sequence of known or incrementally learned
axioms governing domain dynamics.

• Interactively address ambiguity in human queries by in-
troducing and using heuristic measures of ambiguity, hu-
man confusion, and the relative utility of domain at-
tributes, to construct disambiguation queries.

In our implementation, non-monotonic logical reasoning is
achieved using Answer Set Prolog (Gelfond and Kahl 2014),
and existing network models are adapted for deep learning.
We illustrate our architecture’s capabilities in the context of
a robot (i) computing and executing plans to arrange objects
in desired configurations; and (ii) estimating occlusion of
objects and stability of object configurations.

Related Work
Early work on explanation generation drew on research in
psychology and linguistics to characterize explanations in
terms of generality, objectivity, connectivity, relevance, and
content (Friedman 1974). Studies with human subjects sup-
ported these findings (Read and Marcus-Newhall 1993), and
computational methods were developed for explaining un-
expected outcomes (de Kleer and Williams 1987).

There is much interest in understanding the operation of
AI and machine learning methods, and making automation
more acceptable (Miller 2019). Recent work on explainable
AI/planning can be broadly categorized into two groups.
Methods in one group modify or transform learned mod-
els or reasoning systems to make their decisions more inter-
pretable, e.g., by tracing decisions to inputs (Koh and Liang
2017), learning equivalent interpretable models (Ribeiro,
Singh, and Guestrin 2016), or biasing a planning sys-
tem towards making decisions easier for humans to under-
stand (Zhang et al. 2017). Methods in the other group pro-
vide descriptions that make decisions more transparent, e.g.,
describing planning decisions (Borgo, Cashmore, and Mag-
azzeni 2018), combining logical reasoning with interface
design to help humans understand a plan (Bercher et al.
2014), or using rules associated with monotonic operators
to define proof trees that provide a declarative view (i.e.,
explanation) of computation (Ferrand, Lessaint, and Tessier
2006). There has also been work on describing solutions ob-
tained through non-monotonic logical reasoning (Fandinno
and Schulz 2019). These methods are often agnostic to how
an explanation is structured or assume comprehensive do-
main knowledge. Methods are also being developed to make
the operation of deep networks more interpretable, e.g., by
computing gradients and heat maps of relevant features (As-
saf and Schumann 2019; Samek, Wiegand, and Mller 2017),
or with deep networks trained to answer questions about im-
ages of scenes (Yi et al. 2018).

A key requirement for providing explanations is the abil-
ity to identify and use the information relevant to the query
or request. The robot can address any ambiguity in human
input by formulating effective follow up questions and so-
liciting clarification. AI researchers have evaluated how the
type of question posed by an agent affects the quality of hu-

man responses (Rosenthal, Veloso, and Dey 2012; Gerva-
sio, Yeh, and Myers 2011). Other approaches studied how
the type of questions posed by the agent affects the the
agent’s ability to learn from the answers (Gonzalez-Pacheco
et al. 2018) or the ability to learn from human demonstra-
tion (Cakmak and Thomaz 2012). These methods focused
on measuring the accuracy of the information obtained from
the human or to learn from the human response. There has
also been work on building questions that minimize the po-
tential ambiguity of the human’s response(Myagmarjav and
Sridharan 2015). These methods do not reason effectively
with incomplete domain knowledge to construct questions
or improve the quality of the explanations.

Our work focuses on integrated systems that use a com-
bination of knowledge-based and data-driven algorithms to
represent, reason with, and learn from incomplete common-
sense domain knowledge and noisy observations. We seek to
enable such robots to generate accurate relational descrip-
tions of decisions, beliefs, and hypothetical situations, ca-
pabilities that are not supported by existing systems (An-
jomshoae et al. 2019; Miller 2019). Towards this objective,
this paper describes the automatic tracing of beliefs and the
construction of disambiguation questions.

Architecture
Figure 2 depicts the overall architecture for knowledge rep-
resentation, explainable reasoning, and interactive learning.
This architecture first attempts to use non-monotonic logi-
cal reasoning with incomplete commonsense domain knowl-
edge to complete any given visual scene understanding task.
If it is unable to do so, reasoning automatically identifies
relevant regions of relevant images to inform and guide the
adaptation of deep network models for this task. Also, the
examples processed by the deep network are used to in-
duce previously unknown axioms that are used for subse-
quent reasoning. The program analyzer takes the parsed hu-
man (verbal or text) input, and triggers reasoning and/or con-
structs an explanation of the desired decisions and beliefs. In
this paper, we introduce a component that enables the robot
to trace and reason with beliefs, and to automatically pose
disambiguation questions input. For completeness, we sum-
marize all components below but focus primarily on the dis-
ambiguation module, and recent changes in existing mod-
ules, in the context of the following running example.

Example Domain 1 [Assistive Robot (AR) Domain] Con-
sider an assistive robot analyzing cluttered scenes of ob-
jects stacked in different configurations on a flat surface.
The objective of the robot is to: (i) rearrange object struc-
tures according to human requirements; and (ii) provide on-
demand, relational descriptions of decisions and beliefs be-
fore, during, or after action execution. The robot’s prior do-
main knowledge includes some object attributes such as size
(small, medium, large), surface (flat, irregular) and shape
(cube, apple, duck), and the spatial relation between ob-
jects (above, below, front, behind, right, left, close). The
agent can visually observe and move the objects to achieve
the desired object configurations. Domain knowledge also
includes axioms governing domain dynamics but some ax-
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Figure 2: Architecture integrates complementary strengths
of non-monotonic logical reasoning, deep learning, and
inductive learning. Disambiguation module automatically
constructs and poses questions to identify relevant informa-
tion and provide responses to human queries and requests.

ioms may be unknown, e.g.:
• Placing an object on top of an object with an irregular

surface causes instability;
• Removing all objects in front of an object causes this ob-

ject to be not occluded.
The previously unknown axioms can be learned, merged
with existing axioms, and used for subsequent reasoning.

Knowledge Representation and Reasoning
To represent and reason with domain knowledge, we use
CR-Prolog, an extension to Answer Set Prolog (ASP); we
use the terms CR-Prolog and ASP interchangeably in this
paper. ASP is a declarative language that can represent re-
cursive definitions, defaults, causal relations, and language
constructs that occur frequently in non-mathematical do-
mains, and are difficult to express in classical logic for-
malisms. ASP is based on the stable model semantics and
supports concepts such as default negation (negation by fail-
ure) and epistemic disjunction, e.g., unlike “¬a”, which im-
plies that “a is believed to be false”, “not a” only implies
“a is not believed to be true” (Gelfond and Kahl 2014). Each
literal can thus be true, false or unknown and the robot only
believes that which it is forced to believe. ASP supports non-
monotonic logical reasoning, i.e., adding a statement can re-
duce the set of inferred consequences, aiding in the recovery
from errors due to reasoning with incomplete knowledge.
ASP and other knowledge-based paradigms are often crit-
icized for requiring considerable prior knowledge, and for
being unwieldy in large, complex domains. However, mod-
ern ASP solvers support efficient reasoning in large knowl-
edge bases with incomplete knowledge, and are used by
an international research community (Erdem, Gelfond, and
Leone 2016; Erdem and Patoglu 2018).

A domain’s description in ASP comprises a system de-
scription D and a history H. D comprises a sorted sig-

nature Σ and axioms. Σ includes sorts arranged hierar-
chically; statics, i.e., domain attributes that do not change
over time; and fluents, i.e., domain attributes whose values
can be changed. In the AR domain, sorts include object,
robot, size, relation, surface, and step for temporal
reasoning. Statics include some object attributes such as
obj size(object, size) and obj surface(obj, surface). The flu-
ents obj relation(relation, object, object) model relations
between objects in terms of their arguments’ sorts, e.g.,
obj relation(above, A, B) implies object A is above object
B—the last argument in these relations is the reference ob-
ject. Since the robot in the AR domain also plans and exe-
cutes actions, the set of fluents also includes relations de-
scribing other aspects of the domain, e.g., in hand(robot,
object). Actions of the AR domain include pickup(robot, ob-
ject) and putdown(robot, object, location), and holds(fluent,
step) is a predicate implying that a particular fluent holds
true at a particular time step.

Given the sorted signature, the domain’s transition dia-
gram is first described using statements in action language
ALd (Gelfond and Inclezan 2013); these statements are then
translated to statements in ASP. For simplicity, we directly
describe the axioms as ASP statements; for the AR domain,
this includes ASP statements such as:

holds(in hand(robot, object), I + 1) ← (1a)
occurs(pickup(robot, object), I)

holds(obj relation(above,A,B), I) ← (1b)
holds(obj relation(below,B,A), I)

¬occurs(pickup(robot, object), I) ← (1c)
holds(in hand(robot, object), I)

where Statement 3(a) is a causal law, 3(b) is a state con-
straint, and 3(c) is an executability condition. The spatial
relations extracted from images (more detail below) are also
converted to ASP statements. In addition, we include axioms
that encode generic (commonsense) knowledge about the
domain, e.g., statements of the form “larger objects placed
on smaller objects are typically unstable”.

¬holds(stable(A), I)←
holds(obj relation(above,A,B), I),

size(A, large), size(B, small),

not holds(stable(A), I) (2)
Finally history H includes records of observations received
and actions executed by the robot at particular time steps.
We expand it to represent initial state defaults, i.e., state-
ments that are initially assumed to be true in all but a few
exceptional circumstances. For instance, we encode “a book
is usually in the library; if not there, it is usually found in the
office”, and exceptions, e.g., cookbooks are in the kitchen.

To reason with the incomplete domain knowledge, the
robot automatically constructs the CR-Prolog program
Π(D,H). Planning, diagnostics and inference tasks can then
be reduced to computing answer sets of Π, with each answer
describing a possible world comprising beliefs of the robot
associated with Π. We use the SPARC system (Balai, Gel-
fond, and Zhang 2013) to compute answer set(s) of ASP pro-
grams, and extract literals corresponding to plans as needed.



In other work we have combined such ASP-based non-
monotonic logical reasoning with probabilistic reasoning for
more precise action execution at a finer granularity. For ease
of understanding and to focus on the interplay between rea-
soning, learning, and explainability, we limit ourselves to
logical reasoning at a coarser resolution in this paper.

Features Extraction and Learning
Next we describe the extraction of features from input im-
ages and their use in performing scene understanding tasks.

Feature extraction: The main input to our architecture are
RGB images of simulated scenes, e.g., Figure 1, with dif-
ferent object configurations. For any such image, we first
extract the spatial relations between scene objects using an
existing approach for incrementally revising the grounding
(i.e., meaning in physical world) for spatial relations rep-
resented by prepositional words such as “above”, “behind”,
and “in” (Mota and Sridharan 2018). In addition, we also ex-
tract the other desired object attributes such as color, shape,
and size; these are based on probabilistic algorithms, with
the most likely outcome encoded as ASP statements associ-
ated with complete certainty.

Classification and Learning: The classification block com-
prises three sub-components, and encodes a processing strat-
egy. For any given image, the agent first attempts to ad-
dress the classification task (e.g.,, estimate object occlusion
and stability of object structures) using ASP-based reason-
ing with domain knowledge. If an answer is not found, or
an incorrect answer is found (during training), the robot au-
tomatically extracts relevant regions of interest (ROIs) from
the corresponding image. Information from these ROIs is
used to train and use a deep (convolutional) neural network,
the second sub-component, for the classification task.

Images that need to be processed using deep networks are
considered to contain information that is missing (or incor-
rect) in the existing knowledge. Image features and spatial
relations extracted from the ROIs selected from each such
image, along with the ground truth label for occlusion and
stability, are used by the third sub-component to incremen-
tally learn a decision tree (during training) that summarizes
the corresponding experiences of state transitions. Branches
in this decision tree that have sufficient support among the
training examples are used to induce axioms that are merged
with the existing ASP program and used for reasoning.

Answering Explanatory Questions
Next, we describe the components that provide explanatory
descriptions of decisions and beliefs.

Text and audio interface: To answer explanatory questions,
the robot first needs to interpret the questions correctly. A
human’s verbal input (of such a question) is processed using
existing software. Specifically, verbal input is transcribed
using speech recognition software (Zhang 2017), labeled us-
ing a part-of-speech tagger, and normalized with the lemma
list (Someya 1998) and their synonyms and antonyms re-
trieved from WordNet (Miller 1995). The processed text

helps identify the type of request, which may be the ex-
ecution of a task or an explanation. In the former case,
the related goal is passed to the ASP program for plan-
ning. In the latter case, the “Program Analyzer” module
(described below) automatically infers and extracts the rel-
evant literals to compose a suitable answer. These literals
are placed in generic templates for sentences, resulting in
human-understandable (textual) explanations. If needed, the
response is converted to synthetic speech (Bhat 2018).

Beliefs tracing: A key ability of the “Program Analyzer”
(described below), which constructs the relational (explana-
tory) descriptions, is to infer the sequence of axioms that ex-
plain the evolution of any given belief. Our approach adapts
existing methods for generating “proof trees” (Ferrand, Les-
saint, and Tessier 2006) to our non-monotonic (logical) rea-
soning formulation. For any given belief of interest, which
could be a positive or negative literal of a fluent or an action,
we proceed as follows:

1. Select axioms whose head matches the belief of interest.
2. Ground the literals in the body of each selected axiom and

check whether these are supported by the answer set.
3. Create a new branch in a proof tree (with target belief

as root) for each selected axiom supported by the answer
set, and store the axiom and the related supporting ground
literals in suitable nodes.

4. Repeats Steps 1-3 with the supporting ground literals in
Step 3 as target beliefs in Step 1, until all branches reach
a leaf node with no further supporting axioms.

The paths from the root to the leaves in these proof trees help
construct the desired explanations.

Program Analyzer: We describe the approach for automati-
cally identifying and reasoning with the relevant information
to construct relational descriptions for four types of explana-
tory questions or requests.The first three were introduced as
question types to be considered by any explainable planning
system (Fox, Long, and Magazzeni 2017); we also consider
a question about the robot’s beliefs at any point in time.

1. Plan description When asked to describe a plan, the
robot parses the related answer set(s) and extract a se-
quence of actions such as occurs(action1, step1), ..., oc-
curs(actionN, stepN) to construct the response.

2. Action justification: Why action X at step I? To jus-
tify the execution of an action at a particular time step:

(a) For each action that occurred after time step I , the
robot examines relevant executability condition(s) and
identifies literal(s) that would prevent the action’s ex-
ecution at step I . For the goal of picking up the
red block in Figure 3, assume that the executed ac-
tions are occurs(pickup(robot, green mug), 0), oc-
curs(putdown(robot, green mug, table), 1), and oc-
curs(pickup(robot, red block), 2). If the focus is on the
first pickup action, an executability condition related to
the second pickup action:

¬occurs(pickup(robot, A), I) ←
holds(obj rel(below,A,B), I)



is ground in the scene to obtain obj rel(below,
red block, green mug) as a literal of interest.

(b) If any identified literal is in the answer set at the time
step of interest (0 in this example) and is absent (or its
negation is present) in the next step, it is a reason for
executing the action under consideration.

(c) The condition modified by the execution of the action
of interest is paired with the subsequent action to con-
struct the answer to the question. The question “Why
did you pick up the green mug at time step 0?”, re-
ceives the answer “I had to pick up the red block, and
the red block was below the green mug”.

A similar approach is used to justify the selection of any
particular action in a plan that has not been executed.

3. Hypothetical actions: Why not action X at step I? For
questions about actions not selected:

(a) The robot identifies executability conditions that have
the hypothetical action in the head, i.e., conditions that
prevent the action from being selected during planning.

(b) For each such executability condition, the robot checks
if literals in the body are satisfied by the corresponding
answer set. If yes, these literals form the answer.

Suppose action putdown(robot, green mug, table) oc-
curred at step 1 in Figure 3. For the question “Why did
you not put the green mug on the yellow duck at time step
1?”, the following executability condition is identified:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed on another
object with an irregular surface. The answer set states that
the yellow duck has an irregular surface and the robot an-
swers “Because the yellow duck has an irregular surface”.
This process uses the belief tracing approach.

4. Belief query: Why belief Y at step I? To explain any
particular belief, the robot uses the belief tracing approach
described earlier. The supporting axioms and relevant lit-
erals identified are used to construct the answer. For in-
stance, to explain the belief that object ob1 is unstable in
step I , the robot finds the support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the current beliefs include that ob1 has a
small base. Tracing this belief identifies the axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)

Asking “why do you believe object ob1 is unstable at step
I?” would provide the answer “Because object ob2 is be-
low object ob1, ob2 is small, and ob1 is big”.

Disambiguation Queries
Questions or requests posed by humans may be ambiguous
in terms of the objects and time that they reference. Here we

Table 1: Example of computing ranks of attributes.

features human preference detection complexity rank
Color 0.5 0.9 0.66
Size 0.3 0.8 0.5

Shape 0.2 0.6 0.36

describe a method for construction of disambiguation ques-
tions that try to address such ambiguity. Consider a number
of attributes that characterize the objects in a scene, and a
robot able to identify part these features. Different disam-
biguation queries can be formed by combining such features.
In our approach, which is inspired by findings in psychology
and cognitive science (Friedman 1974; Read and Marcus-
Newhall 1993), the robot constructs the query most likely
to address the ambiguity based on three heuristic measures
applied in the following sequence:

1. Unambiguity: this measure selects attributes that match
with a minimum number of ambiguous objects in the con-
text of the query and scene under consideration.

2. Human confusion: based on the understanding that
queries with many attributes are more likely to confuse a
human, this measure is biased towards selecting questions
with the minimum number of features in it.

3. Attribute/feature rank: this measure seeks to select
candidate questions comprising more ”useful” attributes.
This measure is a linear combination of human prefer-
ence and the detection complexity of each feature, which
are determined by the robot’s domain interactions and al-
gorithms, and is calculated as follows:

Feature rank =α× (human preference) +

β × (detection complexity).

where the values of α and β are dynamically updated to re-
flect the relative importance assigned to the two measures.
Here, human preference expresses the degree of predilec-
tion humans towards using certain attributes for describing
certain objects, whereas the detection complexity reflects
the level of difficulty a robot has in detecting the specific fea-
ture. These are domain-specific measures whose values are
determined from statistics collected during an initial semi-
supervised training phase. For instance, suppose a robot is
able to detect color, size and shape of objects, and the cur-
rent optimal values for α and β are 0.6 and 0.4, respectively.
Illustrative examples of the values of human preference
and detection complexity, computed experimentally, and
the resulting rank, are summarized in Table 1. Although we
use the values computed in the training phase for our exper-
iments, these can be revised over time based on the robot’s
experiences. values of this metrics were fixed for the ex-
periments. We are considering to incrementally update them
based on the agent’s experiences.

A crude method for constructing disambiguating queries
would consider all possible combinations of attributes (not
included in the human input) to construct candidate queries.
It would apply the three measures, and stop when only one
candidate query remains or all three measures have been
applied. Such an approach would construct and consider a



large number of queries in a complex domain. To address
this problem, our architecture introduces a notion of rele-
vance (different from that used to identify ROIs for deep
learning) to identify and use contextual knowledge to con-
struct relevant queries. To do so, the robot uses the belief
tracing algorithm (Section ) to identify information that can
be used to address the current ambiguity.

As described earlier, any human query or request is trans-
lated to literals compatible with the information in the
knowledge base using the text and audio interface and the
program analyzer components. For ease of understanding,
assume that the human query maps to a single literal; this
is grounded for as many each entity that matches the query
in the current scene. The negation of such literals are used
as the initial beliefs in the beliefs tracing algorithm. The
negated literals not supported by the knowledge base receive
higher attention. For instance, in the scene depicted in Fig-
ure 3, suppose the human request is “Put the green mug on
the top of the yellow object”. Since there are three yellow
objects in the scene, the request is ambiguous. The follow-
ing negated action literals are then used as input to the be-
liefs tracing algorithm:
¬occurs(putdown(rob1,mug, yellow duck), I)

¬occurs(putdown(rob1,mug, yellow cylinder), I)

¬occurs(putdown(rob1,mug, yellow block), I)

The first two literals are supported by the knowledge base,
i.e., the robot knows these actions cannot be executed in the
current state given the axioms encoded by the human. So the
robot prioritizes the yellow cube as being the object of inter-
est and the disambiguation question is biased towards con-
firming this intuition, with the candidate query being: “Do
you want the mug on top of the yellow block?”. Section
includes an example of the use of this algorithm.

Experimental Setup and Results
Section first describes the the setup for evaluating the ability
to construct relational descriptions of decisions, beliefs, and
hypothetical events. Next, Section describes some execution
traces and Section discusses quantitative results.

Experimental Setup
The reasoning and learning capabilities of our baselines
architecture have been described in our priir work (Mota
and Sridharan 2019; Mota, Sridharan, and Leonardis 2020).
Here we focus on belief tracing and generation of disam-
biguation queries, and evaluate the following hypotheses:

H1 : The proposed disambiguation approach reduces the
number of queries posed (i.e., interactions initiated) by the
robot and the features used in the queries, and increases
the accuracy of the robot’s explanatory responses after the
first disambiguation question.; and

H2 : The contextual information retrieved by belief tracing
enables the robot to construct queries better suited to ad-
dress the ambiguity in the human query or request.

Experimental trials considered simulated images of the AR
domain. We used a real-time physics engine (Bullet) to cre-
ate 200 simulated images, each with 7− 15 objects (stacked

Figure 3: Example a a simulated scene used in the experi-
mental evaluation.

or spread on a flat surface). Objects included cylinders,
spheres, cubes/blocks, a duck, and five household objects
from the Yale-CMU-Berkeley dataset (apple, pitcher, mus-
tard bottle, mug, and box of crackers). We considered ques-
tions containing 2 − 10 ambiguous objects, with 2 − 10 at-
tributes/features available for disambiguation. One hundred
images containing up to 10 objects were used for questions
containing up to six ambiguous entities whereas the other
100 were used for question with more than six ambiguous
entities. We registered the number of features and interac-
tions required, and the accuracy in the robot’s responses
after posing the disambiguation queries, for each ambigu-
ous question. We compared the proposed algorithm with the
baseline algorithm that randomly and incrementally selects
features for disambiguation until there in no more ambigu-
ity or no more features available to use in a disambiguation
query. The baseline initially uses the same number of fea-
tures as the proposed algorithm, and then adds one feature
at a time. Each extra feature explored in a disambiguation
query is considered as an additional interaction.

Execution Trace
The following execution traces illustrate our architecture’s
ability to construct and use disambiguation queries, and to
provide relational descriptions in response to the human
queries and requests.

Execution Example 1 [Disambiguation example 1]
Consider the scenario shown in Figure 3, and assume that
objects are characterized by color, shape, and size. A human
may pose the following request to the robot:

• Human: ”Please pick up the yellow object.”
This is an ambiguous request because it is unclear which
yellow object the human is referring to.

• The baseline disambiguation strategy would randomly
choose and use one of the two unused attributes to ask
a follow up question. This could take the form of:
Robot: ”What is the size of the yellow object?”
In this case, the three yellow objects are of comparable
size (medium), so the robot would need at least one more
question for disambiguation.



• As stated earlier, our approach uses the three measures
to choose the best attributes to construct the queries. As-
sume that the algorithm considers all possible combina-
tions of the two unused features (size and shape) to con-
struct candidate disambiguation queries, i.e., it considers
size, shape, and size and shape respectively.

• Using the unambiguity measure, the robot chooses at-
tribute(s) resulting in the least number of matching enti-
ties. Since yellow objects are of a similar size (medium),
no candidate query is constructed based just on size.

• Based on the human confusion measure, the robot seeks
to construct queries based on the minimum number of at-
tributes. In our example, the candidate query containing
only the shape attribute is preferred over the other com-
bining size and shape. As a result, only one disambigua-
tion question is constructed:
Robot: ”What is the shape of the yellow object?”

• Note that only two measures were used for constructing
a disambiguation query in this example. However, when
two or more queries are constructed in more complex situ-
ations, the third measure Attribute/feature rank measure
will be applied to select the most useful candidate query
to be posed to the human.

Execution Example 2 [Disambiguation and Axioms trace]
Continuing with the previous example, assume that the hu-
man now requests:
• Human: ”Please move mug on top of the yellow object.”

This request is also ambiguous because similar to Exe-
cution Example 1, the robot is unsure which of the three
yellow objects the human is referring to.

• Unlike Execution Example 1, we now consider the exist-
ing axioms in the ASP program to provide contextual in-
formation that reduces the ambiguity and the search space
during the construction of the disambiguation queries.

• Assume that that robot knows the following axioms:

¬holds(stable(Ob1), I) ← (3a)
holds(obj relation(above,Ob1, Ob2), I),

has surface(Ob2, irregular)

¬occurs(putdown(rob1, Ob1, Obj2), I) ← (3b)
holds(obj relation(below,Ob2, Ob3), I)

Statement 3(a) eliminates the duck as a possible place
for the mug since it is known to have an irregular sur-
face. This reduces the number of ambiguous entities to
two. Statement 3(b) favors the yellow block (on top of the
green block) as the possible supporting place for the mug.

• It is possible to place the mug on top of the yellow cylin-
der after removing the red block, but the yellow block of-
fer a simpler solution (for the unambiguity measure) and
is thus preferred. The following disambiguation query is
thus constructed:
Robot: ”Should I move mug on top of the yellow block?”

Execution Example 3 [Disambiguation and Explanation]
For the same scenario above, consider now that the human
wants the robot to move the yellow cylinder to the top of the
green cube. The human may request:

• Human: ”Please move the yellow object on top of the
green cube.”
This request is ambiguous because similar to Execution
Example 1, the robot is unsure which of the three yellow
objects the human is referring to. As the yellow cube is
already in the desired position, and the yellow cylinder is
below other objects, the yellow duck would be the simpler
solution for the ambiguity. As a result, the robot could for-
mulate the following disambiguating query:
Robot: ”Should I move the yellow duck on top of the
green cube?”
Human: ”No. Please move the yellow cylinder on top of
the green cube.”

• To attend to this request, the robot may compute and exe-
cute the plan: pick up the mug; put down the mug on the
table; pick up the red cube; put down the red cube on the
table; pick up the yellow cube; put down the yellow cube
on the table; pick up the yellow cylinder; put down the
yellow cylinder on the top of the green cube.

• The human may now require an explanation related to
such a plan:
Human: ”Why did you put down the cube on the table?”
This is an ambiguous question because the robot has
moved the red and yellow cubes to the table in different
time steps. Since these two cubes have similar size and
shape, the disambiguation algorithm would use color for
disambiguating as follows:
Robot: ”What is the color of the cube?”
Human: ”Yellow.”

• The explanation approach then provides the following an-
swer to the initial question that is no longer ambiguous:
Robot: ”I had to put the yellow cylinder on top of the
green cube. The green cube was below the yellow cube.

Experimental Results
In this section, we discuss quantitative results of evaluating
the hypotheses listed in Section . The first set of experiments
was designed as follows to evaluate hypothesis H1:

1. A hundred initial object configurations were constructed
randomly (similar to that in Figure 3). The information
extracted from each such image (e.g., object attributes,
spatial relations) was encoded in the corresponding ASP
program as the initial state.

2. For each initial state, we considered questions in which
2−10 objects were ambiguous, and 2−10 attributes were
available for the construction of disambiguation queries.

3. The total number of attributes used for disambiguation
was registered for the baseline algorithm and for the pro-
posed algorithm. When a sufficient number of attributes
were not available for disambiguation, the number of at-
tributes used was considered to be the same as the number
of attributes available.

4. We ran the baseline for the same 100 scenes mentioned
above, and considered any extra feature needed in addi-
tion to the number of features required by the disambigua-
tion algorithm as an extra interaction.



Figure 4: Percentage of features used in disambiguation
queries over a number of objects.

Figure 5: Average number of interactions required by the
baseline for disambiguation.

The average values of the measures as a function of the num-
ber of ambiguous objects, are shown in Figure 4. The av-
erage number of interactions as a function of the number
of ambiguous objects is plotted in Figure 5. Figure 4 indi-
cates that using the proposed method reduces the number
of features required for disambiguation. Figure 5 shows that
the baseline approach requires at least two interactions to
achieve the expected response whereas the proposed method
requires only one. These results support H1.

The second set of experiments was designed as follows to
evaluate hypotheses H1 and H2:

1. A hundred initial object configurations were constructed
randomly (similar to that in Figure 3). The information
extracted from each such image (e.g., object attributes,
spatial relations) was encoded in the corresponding ASP
program as the initial state.

2. For each initial state, we considered questions in which
2−10 objects were ambiguous, and 2−10 attributes were

Figure 6: Accuracy in disambiguating for the agent using
the baseline, the proposed algorithm with and without con-
textual knowledge.

available for the construction of disambiguation queries.

3. The accuracy for the answers provided by the robot af-
ter asking the disambiguation question is computed for
the baseline methods, and the proposed algorithm with
and without contextual knowledge. The results plotted
in Figure 6 as baseline, proposed approach, and ap-
proach+context, respectively.

Figure 6 indicates that the use of the proposed algorithm im-
proves accuracy of the potential responses provided, which
provides further support to H1. The figure also shows that
the related information extract from the knowledge base
helps improve accuracy of human responses to disambiguat-
ing queries, which supports H2.

Conclusion
The architecture described in this paper is a step towards
explainable reasoning and learning for integrated robot sys-
tems that include methods for learning from data and rea-
soning with incomplete commonsense domain knowledge.
The architecture supports non-monotonic logical reasoning,
data-driven deep learning from a limited set of examples,
and inductive learning of previously unknown axioms gov-
erning domain dynamics. We also described a simple inter-
active strategy that traces beliefs, and constructs and poses
suitable disambiguation queries to result in more accurate
relational descriptions of decisions, beliefs, and hypothet-
ical events. Future work will further explore the interplay
between reasoning and learning in the context of explaining
decisions and beliefs in more complex domains.
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