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Abstract

This paper summarizes ongoing work on an architecture for
transparent reasoning and learning in robotics. The architec-
ture combines the complementary strengths of knowledge-
based reasoning and data-driven learning. Specifically, the ar-
chitecture represents and reasons with non-monotonic logic-
based and probabilistic descriptions of incomplete common-
sense domain knowledge at different tightly-coupled abstrac-
tions. Reasoning triggers and guides cumulative learning of
previously unknown domain knowledge when needed based
on deep learning, reinforcement learning, and inductive learn-
ing methods. Furthermore, the interplay between represen-
tation, reasoning, and learning is used to enable the robot
to provide relational descriptions of its decisions and beliefs
during reasoning and learning. The capabilities of the archi-
tecture are demonstrated in the context of a simulated or phys-
ical robot assisting humans in dynamic indoor domains.

1 Motivation
As an illustrative example, consider a robot assistant (RA)
domain in which a robot has to: (a) deliver target objects
to particular people or rooms; and (b) estimate and revise
the occlusion of objects and stability of object configura-
tions in a particular room. There is uncertainty in the robot’s
perception and actuation. The robot’s incomplete domain
knowledge includes commonsense knowledge, e.g., state-
ments such as “books are usually in the study” that hold
in all but a few exceptional circumstances, e.g., cookbooks
are in the kitchen. The robot also extracts information from
noisy sensor inputs, with quantitative measures of uncer-
tainty, e.g., “I am 90% certain I saw the robotics book in
office-1”. In addition, the robot has some prior knowledge of
object attributes such as size, surface, and shape; ground-
ing of some prepositional words such as above and in repre-
senting the spatial relations between objects; and some ax-
ioms governing domain dynamics. Examples of these ax-
ioms include:
• Placing an object on top of another with an irregular sur-

face results in instability.
• An object can only be in one location at a time.
• An object below another object cannot be picked up.
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The robot reasons with the knowledge and observations for
inference, planning, and diagnostics. In any practical do-
main, it will have to revise this knowledge over time; this
is often accomplished by data-driven (e.g., deep, reinforce-
ment) learning methods that process observations, labeled
datasets, and/or human input. Also, enabling the robot to de-
scribe its decisions and the evolution of beliefs at different
levels of abstraction will lead to more effective collabora-
tion with humans. Our architecture seeks to support these
capabilities by exploiting the complementary strengths of
declarative logic programming, probabilistic reasoning, and
data-driven interactive learning (Sridharan et al. 2019; Mota,
Sridharan, and Leonardis 2021). We briefly describe the ar-
chitecture’s components below.

2 Architecture Overview
Our baseline architecture for knowledge representation, ex-
plainable reasoning, and interactive learning, is based on
tightly-coupled transition diagrams at different resolutions.
It may be viewed as a logician, statistician, and a creative
explorer working together; Figure 1 presents an overview
of this architecture. The different transition diagrams are
described using an action language ALd (Gelfond and In-
clezan 2013), which has a sorted signature with statics, flu-
ents, and actions, and supports three types of statements:
causal laws, state constraints, and executability conditions;
the fluents can be non-Boolean and axioms can be non-
deterministic. Depending on the domain and tasks at hand,
the robot chooses to plan and execute actions at two spe-
cific resolutions, but can construct and provide explanations
at other resolutions; for ease of understanding, we limit our
discussion to two resolutions in this paper.

Knowledge representation and reasoning: The coarse
resolution domain description comprises system descrip-
tion Dc of transition diagram τc, a collection of
ALd statements, and history Hc. Dc comprises sorted
signature Σc and axioms. For RA domain, Σc in-
cludes basic sorts such as place, thing, robot, person,
object, cup, size, surface, and step; statics such as
next to(place, place) and obj surface(obj, surface); flu-
ents such as loc(thing, place), obj rel(relation, object, ob-
ject), and in hand(entity, object); and actions such as
move(robot, place), pickup(robot, object), putdown(robot,



Figure 1: Architecture combines strengths of declarative programming, probabilistic reasoning, and interactive learning to
represent, reason, act, and learn at different resolutions.

object, location), and give(robot, object, person). Axioms
in Dc include statements such as:

move(rob1, P ) causes loc(rob1, P )

loc(O,P ) if loc(rob1, P ), in hand(rob1, O)

impossible give(rob1, O, P ) if loc(rob1, L1) 6= loc(P,L2)

that correspond to a causal law, state constraint, and exe-
cutability condition respectively.

The historyHc of a dynamic domain is typically a record
of fluents observed to be true or false at a particular time
step, and the occurrence of actions at a particular time step.
This definition is expanded to represent prioritized defaults
describing the values of fluents in the initial state, i.e., state-
ments such as “books are usually in the library; if not there,
they are in the office” with the exception “cookbooks are in
the kitchen”.

To reason with the domain description, we construct pro-
gram Π(Dc,Hc) in CR-Prolog, a variant of Answer Set
Prolog (ASP) that incorporates consistency restoring (CR)
rules (Gebser et al. 2012). ASP is based on stable model
semantics, and supports default negation and epistemic dis-
junction, e.g., unlike “¬a” that states a is believed to be
false, “not a” only implies a is not believed to be true, i.e.,
each literal can be true, false or “unknown”. ASP represents
constructs difficult to express in classical logic formalisms
and supports non-monotonic logical reasoning. An answer
set of Π represents the beliefs of the robot associated with
Π. Tasks such as computing entailment, planning, and di-
agnostics are then reduced to computing answer sets of the
program Π; we do so using the SPARC system (Balai, Gel-
fond, and Zhang 2013).

For any given goal, reasoning at the coarse-resolution pro-
vides a plan of abstract actions. To implement the abstract
actions, we construct a fine-resolution system description
Df defined as a refinement of Dc. This definition ensures
that for any given abstract transition between two states
∈ τc, there is a path in τf between a refinement of the

two states. In the RA domain, the robot would (for exam-
ple) reason about grid cells in rooms and parts of objects,
attributes that were previously abstracted away by the de-
signer. Since the robot interacts with the physical world at
the finer resolution, we introduce a theory of observation in
Df , specifically knowledge-producing actions and fluents to
sense the value of domain fluents. Next, Df is randomized
to model non-determinism (Dfr). Since reasoning with Dfr

becomes computationally unfeasible for complex domains,
we enable the robot to automatically zoom to Dfr(T ), the
part of Dfr relevant to any given abstract transition T . Rea-
soning with Dfr(T ) provides a sequence of concrete ac-
tions that implement T , incorporating relevant probabilis-
tic models of uncertainty in perception and actuation as ap-
propriate. Fine-resolution outcomes with a high probability
are committed as statements known with complete certainty.
Reasoning with these outcomes provides coarse-resolution
outcomes that are added to Hc for further reasoning. Please
see (Sridharan et al. 2019) for details.

Interactive learning: Reasoning with incomplete domain
knowledge to achieve desired goals (e.g., fetch target ob-
jects) or perform desired estimation tasks (e.g., classifying
occlusion of objects or stability of object structures) can re-
sult in incorrect/suboptimal outcomes. State of the art meth-
ods for learning previously unknown actions and axioms,
or object models for estimation tasks, are based on deep
networks. They often require many labeled examples; it is
difficult to provide such examples in complex domains or
to interpret the decisions of such “end to end” data-driven
methods.

Figure 2 is an overview of the interactive learning and
explainable reasoning components. The main sensor inputs
for these components (and the architecture) are RGB/D im-
ages. These images are processed to extract spatial relations
(based on learned grounding of prepositions (Mota and Srid-
haran 2018)) and other attributes that are encoded as ASP
statements. The robot first attempts to use ASP-based logi-



Inputs: Simulated scenes

Outputs:

Labels
(training phase)

Human query

Features
extraction

Decision tree
induction

Text/Audio
processingASP

program

Classification
block

Program
analyzer

Disambiguation

Baxter

Explanations
(relational description)

Output labels

(occlusion, stability)

Relevant
axioms,
literals

Current state

Answer set

New axioms

Trigger

Ambiguity

Disambiguation query

Answer set,
domain
knowledge

Plan

Processed
text

Goal

Real scenes

Figure 2: Non-monotonic logical reasoning triggers and guides deep (and inductive) learning to complete desired estimation
tasks, learn previously unknown domain knowledge, and to provide relational descriptions of knowledge and beliefs as expla-
nations.

cal reasoning to complete the desired (e.g., planning, estima-
tion) tasks. If this reasoning does not provide any outcome
(e.g., no plan to reach goal), or provides an incorrect out-
come (e.g., incorrect classification label on training image),
this is considered to indicate that the knowledge is incom-
plete or incorrect, which triggers learning.

The architecture has two schemes for learning and knowl-
edge revision. The first scheme is used in the context of plan-
ning; relational reinforcement learning and decision-tree in-
duction are used to learn actions and axioms from human
descriptions of desired behavior, or observations obtained
through active exploration or reactive action execution in
response to the unexpected outcomes. Reasoning automat-
ically limits this learning to states, actions, and observations
relevant to the task(s) and goal(s) at hand; see (Sridharan and
Meadows 2018) for details. The second scheme is used in
the context of estimation tasks on input images. Reasoning
with domain knowledge helps the robot automatically iden-
tify relevant regions of interest (ROIs) from the correspond-
ing images, using information from these ROIs to efficiently
train a deep neural network for the estimation tasks. This in-
formation is also used to incrementally learn decision trees
summarizing the robot’s experiences, with axioms induced
from branches of these trees being merged with existing
axioms for reasoning; see (Mota, Sridharan, and Leonardis
2021) for details.

Explainable reasoning: We consider an “explanation” to
be a relational description of the robot’s decisions or be-
liefs in terms of the domain attributes and robot actions.
The explainable reasoning component of our architecture is
based on a theory of explanations that comprises (i) claims

about representing, reasoning with, and learning knowledge
to support explanations; (ii) a characterization of explana-
tions along three axes based on abstraction, specificity, and
verbosity; and (iii) a methodology for constructing explana-
tions (Sridharan and Meadows 2019).

The robot first processes human verbal or textual input us-
ing existing natural language processing tools and an under-
lying controlled vocabulary to identify the type of query pro-
vided by the human. This includes simple commands (e.g.,
that provide goals or actions for the robot to achieve), de-
scriptive statements or questions (e.g.,“please describe the
executed plan”, “why did you pick up the robotics book
from the table?”, “why did not believe the AI book was
in the study at step 3 of the plan?”), contrastive questions,
and counterfactual questions (e.g., “why did not not use the
shorter corridor to the library?”). Commands are used to
set goals that are passed on to the ASP-based reasoner for
planning. To answer the other questions, our architecture
enables the robot to automatically identifies relevant beliefs
and axioms, and traces the evolution of appropriate beliefs
(through the application of relevant axioms) to identify lit-
erals relevant to answering the query. These literals are then
used to construct the answer that is presented to the human
user. The human can interactively obtain the answer at the
desired level of abstraction (Sridharan and Meadows 2019;
Mota, Sridharan, and Leonardis 2021).

The query posed by the human can often be ambigu-
ous in terms of the object, event, or time step being refer-
enced, e.g., “why do you want to pick up the yellow object?”
when the computed plan requires the robot to pick up two
different yellow objects at different time steps. Our archi-
tecture introduces relevant heuristic measures of ambiguity,



Figure 3: (Top) Example images of simulated scenes for exe-
cution traces; (Bottom) Setup for physical robot experiments
and example image.

human confusion, and the relative utility of attributes, en-
abling the robot to use reasoning to automatically construct
and pose questions based on attributes likely to provide dis-
ambiguation in the fewest number of interactions with hu-
man participants. Once the human response to the selected
disambiguation question resolves the ambiguities, the robot
then proceeds as before to answer the original human query.
For more details about the disambiguation approach, please
see (Mota and Sridharan 2021).

3 Execution Traces
Consider the following execution traces of our architecture.

Execution Example 1. [Planning and Learning]
The robot in the RA domain is in the study; it is asked
to bring a cup to the study, i.e., the goal state contains:
loc(C, study), not in hand(rob1, C), where C is a cup.

• The computed plan of abstract actions is:

move(rob1, kitchen), pickup(rob1, C),

move(rob1, study), putdown(rob1, C)

where C is a cup. This plan uses the default knowledge
that cups are usually in the kitchen that is next to study.

• To implement each abstract transition T , the robot zooms
to Dfr(T ). For instance, only cells in the study and the
kitchen are relevant to the first move action; irrelevant
objects and locations are ignored.

• The zoomed description is used to obtain a probabilistic
policy that is invoked repeatedly to execute a sequence of
concrete actions that implements the abstract action, e.g.,
robot is in a cell in the kitchen after first move. Other
actions are executed in a similar manner.

• Suppose that the robot’s attempt to pick up a cup in the
kitchen failed. The robot observes that the cup is heavy
while its arm is light. The robot can then learn the exe-
cutability condition:

impossible pickup(rob1, C) if arm(rob1, light),

obj weight(C, heavy)

It is also possible to learn and merge other kinds of axioms
with the existing knowledge.

Next, consider the robot’s ability to provide explanations in
simulated scenes and the real world. For ease of understand-
ing, we omit some parts of the explanations.
Execution Example 2. [Explain plans and beliefs]
Consider a robot that starts with objects as shown in Fig-
ure 3(bottom, right). The robot is assigned the goal of
achieving a state in which the red cube is on top of the or-
ange cube. The following interaction takes place after the
robot has executed a plan and successfully achieved the as-
signed goal.
• Human: ”Please describe the plan.”

Baxter: ”I picked up the blue cube. I put the blue cube
on the table. I picked up the orange cube. I put the orange
cube on the table. I picked up the red cube. I put the red
cube on the orange cube.”

• The human may ask the robot to justify a particular action
in the executed plan.
Human: ”Why did you pick up the blue cube at step 0?”
Baxter: ”Because I had to pick up the red cube, and it was
below the blue cube.”
The answer constructed in response to the question is also
used to automatically highlight the relevant image regions
that influenced this answer.

• The human now may ask about particular actions that
were not considered.
Human: ”Why did you not put down the orange cube on
the blue cube?”
Baxter: ”Because the blue cube is small.” In the absence
of any reference to a particular time step, the robot an-
swers the question based on the single instance (in the ex-
ecuted plan) of putting the orange cube on another cube
or surface. The answer is also based on learned default
knowledge that any large object with a small base, i.e.,
when placed on a small object, is typically unstable.

• The human may also ask the robot to justify particular
beliefs.
Human: ”Why did you believe that the red cube was be-
low the blue cube in the initial state?”
Baxter: ”Because I observed the red cube below the blue
cube in step 0.”

Next, consider an example involving explanation generation
and disambiguation.
Execution Example 3. [Explanation and Disambiguation]
Consider a robot that has executed the plan from the pre-
vious example. When asked to provide a more detailed de-
scription, the robot revises the abstraction level, e.g., uses
the fine-resolution description.



• Human: “Please describe the executed plan in detail.”
Robot: “I moved to cell c2 in the kitchen. I picked the
large cup by its handle from the counter [...] I moved to
cell c4 of the study. I put the cup down on the red table.”

As another example, consider the robot in the simulated sce-
nario in Figure 3(top right).
• Human: “Move the yellow object on to the green cube.”

There is ambiguity in the reference to an yellow object.
Since the yellow cube is already on the green cube, and
the yellow cylinder is below other objects, the robot poses
the clarification question.
Robot: “Should I move the yellow duck on top of the
green cube?”
Human: “No. Please move the yellow cylinder on top of
the green cube.”

• The robot computes the plan: pick up the green mug; put
the green mug on the table; pick up the red cube; put the
red cube on the table; pick up the yellow cube; put the
yellow cube on the table; pick up the yellow cylinder; put
the yellow cylinder on the green cube.
Human: “Why do you want to pick up the green mug?”
Robot: “I have to place the yellow cylinder on the green
cube, and the yellow cylinder is below the green mug.”

The robot can also trace the evolution of particular beliefs
and the application of relevant axioms to answer questions
after plan execution.
• Human: “Why did you not pick up the red cube at step1?”

Robot: “Because the red cube is below the green mug.”
Human: “Why did you move the yellow cube on to the
table?”
Robot: “I had to put the yellow cylinder on top of the
green cube. The green cube was below the yellow cube.”

Additional experimental results in simulation and on phys-
ical robots, are described in (Gomez, Sridharan, and Ri-
ley 2021; Mota and Sridharan 2019; Mota, Sridharan, and
Leonardis 2021; Sridharan and Meadows 2018, 2019; Srid-
haran et al. 2019).

4 Discussion
The examples described above illustrate some key capabili-
ties and advantages of our architecture.
• First, once the designer has provided the domain-specific

information (e.g., for refinement), planning, diagnostics,
and plan execution can be automated. The formal cou-
pling between the resolutions allows us to introduce more
complex theories in the coarse-resolution, and to exploit
the complementary strengths of non-monotonic logical
reasoning and probabilistic reasoning.

• Second, exploiting the interplay between knowledge-
based reasoning and data-driven learning provides a clear
separation of concerns, helps focus attention automati-
cally to the relevant knowledge at the appropriate resolu-
tion, thus improving the reliability and efficiency of rea-
soning and learning.

• Third, it is easier to understand and modify the observed
behavior than with architectures that consider all the

available knowledge or only support probabilistic reason-
ing. The robot is able to provide relational descriptions
of its decisions and the evolution of its beliefs, automat-
ically resolving any ambiguities in the human query by
constructing suitable clarification questions.

• Fourth, there is smooth transfer of control and relevant
knowledge between components of the architecture, and
confidence in the correctness of the robot’s behavior.
Also, the underlying methodology can be used with dif-
ferent robots and in different application domains.

Future work will further explore the interplay between rep-
resentation, reasoning, control, and learning in the context of
one or more robots assisting humans in dynamic domains.
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