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Abstract

Deep learning algorithms represent the state of the
art for many problems in robotics and AI. How-
ever, they require a large labeled dataset, are com-
putationally expensive, and the learned models
are difficult to understand. Our architecture draws
inspiration from research in cognitive systems to
address these limitations. In the context of answer-
ing explanatory questions about scenes and an un-
derlying classification task, our architecture uses
non-monotonic logical reasoning with incomplete
commonsense domain knowledge, and the fea-
tures extracted from input images, to answer the
input queries. Features from images not processed
by such reasoning are mapped to the desired an-
swers using a learned deep network model. In
addition, previously unknown state constraints of
the domain are learned incrementally and used for
subsequent reasoning. Experimental results show
that in comparison with an “end to end” deep ar-
chitecture, our architecture significantly improves
accuracy and efficiency of decision making.

1 Introduction
Deep networks represent the state of the art for many prob-
lems in robotics and AI. However, training these data-driven
models requires many labeled training examples and consid-
erable computational resources, which are not available in
many domains. Also, it is difficult to interpret the behavior
of the learned models, whereas humans may want to un-
derstand the decisions made by an automated reasoning or
learning system. This “explainability” also helps designers
improve the underlying algorithms.

In this paper, we consider Visual Question Answering
(VQA) as a motivating example of a complex task requiring
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explainable reasoning and learning. Given an image of a
scene, the objective is to answer explanatory questions, e.g.,
about objects and their relationships, or the outcomes of
executing actions. Deep networks represent the state of the
art for VQA, but exhibit the limitations described above. To
address these limitations, we draw inspiration from research
in cognitive systems, which indicates that explainable rea-
soning and learning can be achieved by jointly reasoning
with incomplete domain knowledge and learning from ex-
perience. For VQA, our architecture uses Convolutional
Neural Networks (CNNs) to extract concise visual features
from image(s) of any given scene. It first attempts to answer
the questions about the scene and an underlying classifica-
tion problem using non-monotonic logical reasoning with
the extracted features and incomplete commonsense domain
knowledge. Feature vectors not classified by such reasoning
train a decision tree classifier that is then used to answer
questions about the classification. The decision tree’s output
and the feature vectors then train a Recurrent Neural Net-
work (RNN) to answer the questions. Furthermore, feature
vectors that are misclassified (or not classified) are used to
learn constraints for subsequent reasoning.

For evaluation, we consider VQA while: (i) estimating the
stability of configurations of simulated blocks; and (ii) rec-
ognizing traffic signs in a benchmark image dataset. We also
consider a simulated robot computing and executing plans.
We do not consider benchmark datasets and algorithms for
VQA that focus on generalizing across domains, and do not
support our architecture’s capabilities. Our focus is very
different; we want to explore the interplay between com-
monsense reasoning and learning for explainable, reliable,
and efficient scene understanding in any given domain, es-
pecially when a large labeled dataset is not available. Exper-
imental results show a significant improvement in accuracy,
efficiency, and the ability to compute correct plans, in com-
parison with an architecture based only on deep networks.

2 Related work

Although deep networks represent state of the art for
VQA (Malinowski et al., 2017) and other pattern recog-
nition tasks, they are computationally expensive, require
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large, labeled datasets, and make it difficult to understand
the internal representations, transfer knowledge, or identify
bias. Methods have been developed to understand the oper-
ation of deep networks, e.g., by computing the contribution
of each neuron in a CNN to the decision (Selvaraju et al.,
2017), or using captions to explain answers to questions (Li
et al., 2018). Methods have also been developed to under-
stand the predictions of learning algorithms, e.g., by tracing
predictions back to data (Koh & Liang, 2017).

The training data requirements (or data bias) of a deep net-
work can be reduced by focusing on data relevant to the
task(s) at hand. Examples for VQA include a stacked atten-
tion network that prioritizes relevant features (Yang et al.,
2016), or a method that reduces data bias by associating
questions with images that require different answers (Goyal
et al., 2017). Learning for VQA has also been made more
efficient by answering common questions using domain
knowledge (Wang et al., 2017), and using physics engines
that simulate domain knowledge (Wagner et al., 2018).

Cognitive systems research indicates that reliable, efficient,
and explainable reasoning and learning can be achieved by
jointly reasoning with domain knowledge and learning from
experience. Methods that refine first-order logic representa-
tions of action operators do not support commonsense rea-
soning or merging of new, unreliable information Gil (1994).
Non-monotonic logics such as Answer Set Prolog (ASP) ad-
dress these limitations in different applications Erdem et al.
(2016). ASP has been combined with inductive learning
to acquire domain knowledge Law et al. (2018), and com-
bined with probabilistic representations for reasoning Baral
et al. (2009). Approaches based on classical first-order
logic are not expressive enough, e.g., modeling uncertainty
by attaching probabilities to logic statements is not always
meaningful. Logic programming methods, by themselves,
do not support all desired capabilities such as efficient in-
cremental learning of knowledge and real-time reasoning
with large probabilistic components. Frameworks have ben
developed to address these problems using principles of
step-wise refinement, e.g., reasoning with tightly-coupled
transition diagrams at different resolutions Sridharan et al.
(2019), or combining commonsense reasoning with active
learning and relational reinforcement learning to acquire
knowledge Sridharan & Meadows (2018).

Using VQA as a motivating example, and building on work
in cognitive systems and our prior work Riley & Sridha-
ran (2018a), our architecture combines the complementary
strengths of reasoning with commonsense knowledge, in-
ductive learning of knowledge, and deep learning.

3 Architecture

Figure 1 is an overview of our VQA architecture, which
embeds commonsense reasoning with incomplete knowl-
edge, and inductive learning, in a deep network architec-

ture. CNN-based feature extractors are trained to extract
feature vectors from images of scenes. For each feature
vector, an attempt is first made to classify it and explain
the decision using non-monotonic logical reasoning. If this
method fails, a decision tree is trained to classify the fea-
ture vector and explain the outcome. If logical reasoning is
used for classification, it is also used to answer explanatory
questions about the scene. If a decision tree is used for
classification, an RNN is trained to map the decision tree
output, image features, and the query, to the answer. Further-
more, decision-tree induction with training data and existing
knowledge identifies previously unknown state constraints
used for subsequent reasoning. We hypothesize that this
architecture will make learning more time and sample effi-
cient, and make decisions more interpretable. Due to space
limitations, we briefly describe the components below.

We use three domains for evaluation. The Structure Sta-
bility (SS) domain (top left, Figure 2) has 2500 images of
structures of simulated blocks from a physics-based simu-
lator; the objective ois to classify structures as being sta-
ble or unstable, and to answer explanatory questions, e.g.,
“why is this structure unstable?” and “what should be done
to make this structure stable?”. The Traffic Sign (TS) do-
main (bottom left, Figure 2) uses the BelgiumTS benchmark
dataset Timofte et al. (2013) with≈ 7000 real-world images
of 62 traffic signs. The objective is to classify the signs
and answers questions such as “what is the sign’s message?”
and “how should the driver respond to this sign?”. The third
domain (used for planning) is introduced later.

3.1 Feature Extraction using CNNs

Input images are mapped to concise features. The selection
of features is based on domain expertise, e.g., features of the
SS domain include number of blocks in structure, whether
the structure is on a lean etc, and features of the TS domain
include primary and secondary colors and symbols, shape of
the sign etc. For each feature, a simple CNN was trained and
additional layers added until training accuracy converged.
For more complex features, previously trained CNN models
can be fine-tuned. The code for this component is in our
online repository Riley & Sridharan (2018b).

3.2 Classification using Non-monotonic Logical
Reasoning or Decision Trees

A class label is assigned to the extracted feature vector using
one of two methods: (i) non-monotonic logical reasoning;
or (ii) a learned decision tree.

ASP Reasoning with Commonsense Knowledge: ASP
is a declarative language based on stable model seman-
tics. Each literal can be true, false or unknown, and the
agent reasoning with domain knowledge does not believe
anything that it is not forced to believe. ASP can repre-
sent recursive definitions, defaults, causal relations, and
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Figure 1: Overview of our architecture’s components.

Figure 2: Illustrative domains: (top left) blocks in SS do-
main; (bottom left) traffic sign in TS domain; (right) simu-
lated scenario in the RA domain.

language constructs difficult to express in classical logic
formalisms Gelfond & Kahl (2014). ASP supports default
negation, epistemic disjunction, and non-monotonic logical
reasoning, i.e., it can revise previously held conclusions
based on new evidence, which aids in the recovery from
errors made by reasoning with incomplete knowledge.

A domain description in ASP has a system description D
and a history H . D has a sorted signature Σ and ax-
ioms. Σ has basic sorts, statics, i.e., domain attributes
whose values do not change, fluents, i.e., domain attributes
whose values can change over time, and actions. Ba-
sic sorts include structure, color, and size for SS do-
main; and main color, other color, main symbol etc for
TS domain; both domains have step for temporal rea-
soning. Statics and fluents model domain attributes,
e.g., num blocks(structure,num) and stable(structure) in
SS domain, and primary symbol(sign,main symbol) and
primary color(sign,main color) in TS domain. Axioms of
D govern dynamics; in our domains, they include:

stable(S) ← num blocks(S,2),¬structure type(S, lean)

sign type(T S,no parking) ← primary color(T S,blue),

primary symbol(T S,blank),

cross(T S), shape(T S,circle)

History H is usually a record of fluents observed to be true
or false at a particular time step, and the occurrence of an
action at a particular time step. This notion is expanded
to include default statements that are true in all but certain
exceptional circumstances. e.g., “structures with two blocks
of the same size are usually stable”. For robotics examples,
please see Sridharan et al. (2019).

Reasoning is achieved by translating the domain represen-
tation to a program Π(D ,H ) in CR-Prolog, a variant of
ASP. Each answer set of Π(D ,H ) represents the beliefs of
an agent associated with Π. Planning and diagnostics are
reduced to computing answer sets of ASP programs. ASP
programs for our domains are in our repository Riley & Srid-
haran (2018b). For the classification task in our domains,
relevant literals in the answer set provide the class label and
an explanation for this label. The accuracy of the decisions
made depends on the accuracy and extent of the knowledge
encoded, but encoding comprehensive domain knowledge is
difficult. The decision of what (and how much) knowledge
to encode is made by the designer.

Decision Tree Classifier: If ASP-based inference cannot
assign class labels, the feature vector is mapped to a class
label using a decision tree classifier learned from labeled
data. Non-leaf nodes of the tree split the feature vector
examples based on values of particular features. Each such
node is also associated with samples that satisfy the values
of the features along the path from the root node, with the
leaf nodes representing class labels. We use a standard
implementation of a decision tree classifier based on the
Gini measure of information gain. Note that this tree’s
search space is limited since it only considers samples that
could not be classified by ASP-based reasoning.

3.3 Answering Explanatory Questions

Existing software, controlled vocabulary, and templates of
language models and parts of speech, are used to transcribe



NMR to Guide DL for Explainable VQA

questions to text and a relational representation, and to gen-
erate answers as text that may be converted to speech.

If ASP-based reasoning is able to classify the image fea-
ture vector, it is also used to answer questions about the
underlying scene. To provide such answers, we revise the
signature and axioms of D , e.g., sorts such as query type
and answer type, relations to represent abstract attributes,
and axioms to reason with these attributes and construct
answers. The answer set(s) of the corresponding program
Π(D ,H ) are computed and parsed to extract relevant lit-
erals that form the answer. If the decision tree is used to
classify the image feature vector, an LSTM network-based
RNN is trained to answer the questions based on the feature
vector, class label, and a vector representing the transcribed
query. To build the RNN, we start with one hidden layer
and add more layers until the accuracy converges. In our do-
mains, the RNN had as many as 26−30 hidden layers.The
code used is in our repository Riley & Sridharan (2018b).

3.4 Learning State Constraints

In many domains, the encoded knowledge is incomplete
or changes over time, resulting in incorrect or sub-optimal
decisions, e.g., a traffic sign can be misclassified. Our archi-
tecture supports incremental learning of domain knowledge,
specifically using decision tree induction to learn state con-
straints. In the context of VQA, we first identify training
examples that are not classified or are misclassified based
on existing knowledge, and built a decision tree. Next, we
identify paths in the tree supported by a sufficient number
of examples; these correspond to partial state descriptions
and class labels that occur frequently. These paths are used
to create candidate constraints. We then generalize the can-
didate axioms to remove over-specifications, e.g., the first
two axioms (below) generalize to the third one:

¬stable(S) if num blocks(S,3), base(S,wide),

struc type(S, lean)

¬stable(S) if num blocks(S,3), base(S,narrow),

struc type(S, lean)

¬stable(S) if num blocks(S,3), struc type(S, lean)

The candidate axioms are validated by adding them to the
ASP program and testing that they do not violate any of the
relevant training examples.

3.5 Planning with Domain Knowledge

We also extend reasoning to planning in the Robot Assis-
tant (RA) domain, in which a simulated robot observes the
domain, moves to deliver messages to people, and answers
explanatory questions. Figure 2(right) shows a simulated
scenario. In other work, we have coupled ASP-based rea-
soning with probabilistic reasoning to account for the uncer-
tainty in sensing and actuation Sridharan et al. (2019). Here,
we temporarily abstract away the probabilistic models of

uncertainty, focus on the interplay between reasoning and
learning, and evaluate the effect of added noise.

To support planning in the RA domain, we construct a Σ

with sorts such as place, robot, and ob ject; fluents such as
loc(agent, place) and messagestatus(mid, person,status);
statics such as next to(place, place); and
actions such as move(robot, place) and
deliver(robot,message id, person). For ease of ex-
planation, we assume that the locations of people are
determined by external sensors, and the locations of objects
are statics. Axioms of D include:

move(rob1,L) causes loc(rob1,L)

loc(P,L) if work place(P,L), not¬loc(P,L)

impossible move(rob1,L) if loc(rob1,L)

to encode causal laws, constraints, and executability condi-
tions. After adding a goal and helper axioms, answer sets of
Π(D ,H ) include a plan of actions, and missing constraints
can be learned as described in Section 3.4.

4 Experimental Setup and Results
We experimentally evaluated four hypotheses, i.e., that our
architecture (H1) outperforms an architecture based on just
deep networks for classification and VQA with small train-
ing datasets; (H2) provides intuitive answers to explanatory
questions; (H3) uses learned constraints to improve the abil-
ity to answer questions; and (H4) supports planning and
uses learned axioms to improve plan quality. Hypotheses
H1, H2 and H3 are evaluated in the SS and TS domains in
the context of VQA; H4 is evaluated in the RA domain in
the context of planning and VQA. Accuracy was used as
the primary performance measure. Accuracy was measured
by: (a) comparing the assigned labels with the ground truth
labels for classification; and (b) heuristically computing
whether the answer mentions all image attributes relevant
to the question posed (for VQA); relevance was established
by a human expert, one of the authors of this paper. Plan
quality was measured as the ability to compute minimal and
correct plans that achieves the goal on execution. Two-thirds
of the available data is used to train the deep networks and
other models, using the remaining data for testing. For each
image, we randomly chose from the suitable questions for
training and testing, and report the average of multiple such
trials. Also, all claims are statistically significant.

Execution Example 1 [Question Answering, TS domain]
Consider a scenario in the TS Domain with the following
exchange for a particular input (test) image.

• Classification question: “what is the sign’s message?”
• Architecture’s answer: “uneven surfaces ahead”.
• When asked to explain the reason for this answer, the
architecture identifies the features extracted: (i) triangle-
shaped; (ii) main color is white and border color is red;
(iii) no background image; (iv) bumpy-road symbol.
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• ASP-based inference with domain knowledge and liter-
als of image features is unable to classify the sign.
• Extracted features were processed using the trained deci-

sion tree, which only used the sign’s colors to assign class
label. Colors are normally insufficient for classification,
but the decision tree is only trained to classify signs that
cannot be classified using existing knowledge.
• The decision tree output, feature vector, and question,
were processed by trained RNN to provide the answer.

For other examples such as the image of SS domain in
top left of Figure 2, domain knowledge is sufficient for
classification and answering questions.

4.1 Experimental Results: VQA + Learn Axiom

To evaluate H1 and H2, we ran trials in which we varied
the size of the training dataset, and compared the accuracy
of our architecture with a baseline CNN-RNN architecture.
Due to space constraints, we only summarize VQA accuracy
in Figure 3. We observe that our architecture is better than
the baseline architecture based on just deep networks for
small training datasets. Classification accuracy (not shown)
increases with the size of the training set but VQA accuracy
does not because it also depends on the complexity of the
questions. The accuracy improvement is more pronounced
in the more complex (TS) domain.

Next, we designed an ASP program for the SS domain with
eight axioms related to stability, randomly chose four to be
removed, and examined the ability to learn these axioms and
use them for classification and VQA, with number of labeled
training examples ranging from 100 to 2000. Since the TS
domain has many more axioms and labeled examples, each
experimental trial examines the effect of removing a quarter
of the axioms (randomly), with the number of training ex-
amples varying from 100 to 4000. Results averaged over 30
such trials are summarized in Figure 4; the blue (“Original
KB”) bars represent baseline and the orange (“Learned KB”)
bars show results with the learned axioms. Our approach
incrementally learns previously unknown axioms, and us-
ing axioms improves VQA (and classification) accuracy
significantly; these results support H3.

4.2 Experimental Results: Learn Axiom + Plan

We evaluated the ability to learn axioms and use them for
planning in the RA domain. The robot had to use domain
knowledge to plan, classify, and answer questions. Results
(100 trials) indicate a VQA accuracy of 82% with just 500
labeled images. We first examine an execution trace.

Execution Example 2 [Question Answering, RA Domain]
The robot has to deliver messages from John to Sally, and
return to John to answer questions.

• The robot was initially in John’s office. The computed
plan had the robot move through the library and the

kitchen to Sally’s office, deliver the message to Sally,
and return to John’s office through the same route.
• During plan execution, the robot captures and processes

images of the scenes. After returning to John’s office, the
robot discusses plans, observations, and beliefs with the
humans. Some statements in the exchange:
John’s question: “is Sally’s location cluttered?”
Robot’s answer: “Yes”.
When asked, robot provides an explanation for this deci-
sion: “Sally is in her office. Objects observed are Sally’s
chair, desk, and computer, and a cup, chair, and plate.
The room is cluttered because the cup, chair and plate are
not usually in that room.”

Next, we evaluated the ability to learn and use axioms. In
this domain, there is default knowledge about the initial
locations of people (i.e., their office) and objects, unless the
defaults are negated by other knowledge or observations.
Including such knowledge allows the robot to efficiently
compute minimal and correct plans, e.g., when trying to
deliver messages to a particular person. However, this de-
fault knowledge may not be known in advance and may
change with time. In all our trials, our approach was able to
accurately and efficiently learn unknown information about
such defaults and their exceptions.

Finally, we ran 100 paired trials to explore the impact of
learned axioms on planning. In each trial, we randomly
chose a particular goal and initial conditions, and measured
the ability to computer minimal and correct plans before and
after learning previously unknown axioms. The validity of
a plan is established by executing it in simulation. Results
obtained without the learned axioms were computed as a
ratio of the results with the learned axioms. Before axiom
learning, the robot often explored an incorrect location (e.g.,
for a person) based on other considerations (e.g., distance
to the room) and ended up having to replan. After learn-
ing the axioms, the robot eliminated irrelevant paths in the
transition diagram from further consideration; we observe a
(statistically) significant improvement in performance. For
instance, in the absence of the learned axioms, the robot
computes four times as many plans taking more than six
times as much time in any given trial (on average) as when
the learned axioms were used for reasoning. Even the time
taken to compute each plan is significantly higher in the
absence of the learned axioms.

5 Discussion and Conclusions

For many critical problems in robotics and AI, explainabil-
ity can help identify errors, design better algorithms, and
improve trust in automated reasoning and learning algo-
rithms. In this paper, we considered VQA as a motivating
example of such a problem that requires explainability in
reasoning and learning. Deep networks represent state of
the art for VQA, but they are computationally expensive, re-
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Figure 3: VQA accuracy as a function of the number of training samples in the SS domain (left) and TS domain (right).

Figure 4: Comparison of VQA accuracy with and without axiom learning in the SS domain (left) and TS domain (right).
Reasoning with the learned axioms improves accuracy.

quire large training datasets, and make it difficult to support
explainability. Inspired by research in cognitive systems,
our architecture couples representation, reasoning and inter-
active learning, and exploits the complementary strengths
of deep learning, non-monotonic logical reasoning with
commonsense knowledge, and decision tree induction. Ex-
perimental results on benchmark datasets and simulated
images indicate that in comparison with baseline deep net-
works, our architecture provides: (i) better accuracy, sample
efficiency and time complexity on classification problems;
(ii) more reliable answers to explanatory questions; and (iii)
support for learning unknown state constraints. Future work
will further explore the use of reasoning with commonsense
knowledge to direct and better understand the operation of
deep network architectures, and evaluate our architecture in
more complex domains.
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