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1 Motivation
Robots collaborating with humans in complex domains have
to reason with different descriptions of incomplete domain
knowledge and uncertainty. These descriptions include com-
monsense knowledge, e.g., default statements such as “text-
books are usually in the library” and “cereal boxes are typ-
ically in the kitchen”, which hold true in all but a few ex-
ceptional circumstances. At the same time, information ex-
tracted by processing noisy inputs from sensors is often
associated with quantitative measures of uncertainty, e.g.,
statements such as “I am 90% certain I saw the robotics book
in the office”. In addition, any robot operating in dynamic
domains will have to augment or revise its existing knowl-
edge over time. Furthermore, for effective collaboration with
humans, robots should be able to explain their decisions, the
underlying knowledge and beliefs, and the experiences that
informed these beliefs. We have developed an architecture,
REBA, which supports these capabilities by exploiting the
complementary strengths of declarative programming, prob-
abilistic planning, and interactive learning.

2 Architecture Overview
REBA, our refinement-based architecture for knowledge
representation, explainable reasoning and interactive learn-
ing, is based on tightly-coupled transition diagrams at dif-
ferent resolutions. It may be viewed as a logician and statis-
tician working together. Figure 1 shows an overview of the
architecture. The different transition diagrams are described
using an action language ALd (Gelfond and Inclezan 2013),
which has a sorted signature with statics, fluents and actions,
and supports three types of statements, i.e., causal laws, state
constraints, and executability conditions. We extend ALd

to support non-Boolean fluents and non-deterministic causal
laws. We also expand the notion of the history of a dynamic
domain to support prioritized defaults and define a model of
such a history. Depending on the domain and tasks at hand,
the robot chooses to plan and execute actions at two specific
resolutions, but constructs explanations at other resolutions
as needed. For ease of explanation, we will focus on two
resolutions in our description here.
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Figure 1: Architecture supports representation and reasoning
with tightly-coupled transition diagrams at different resolu-
tions. It combines the strengths of declarative programming,
probabilistic reasoning, and interactive learning.

Knowledge representation and reasoning: In the coarse-
resolution, the robot represents and reasons with domain
knowledge, including commonsense knowledge, at an ab-
stract level. For example, a robot fetching objects in an of-
fice building would reason about places, objects, and de-
fault locations of objects. The fine-resolution transition dia-
gram is then obtained by formally defining it as a refinement
of the coarse-resolution transition diagram. This definition
includes a theory of observations that models and reasons
about the robot’s ability to sense the values of domain flu-
ents using knowledge-producing actions. In the context of
fetching objects in an office building, the robot would (for
example) now reason about grid cells in rooms and parts
of objects, attributes that were previously abstracted away
by the designer. Also, our definition of refinement ensures
that for any given state transition in the coarse-resolution di-
agram, there is a path in the corresponding fine-resolution
diagram between states that are refinements of the coarse-
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resolution states. In addition, the refined diagram is ran-
domized to model non-determinism in action outcomes. For
any given goal, the robot first performs non-monotonic log-
ical reasoning at the coarse-resolution to compute a plan
of abstract actions. In our architecture, this reasoning is
achieved using Answer Set Prolog, a declarative program-
ming paradigm (Gebser et al. 2012). Each abstract transi-
tion is then implemented as a sequence of concrete actions
by automatically identifying and zooming to, and reasoning
with, only the part of the fine-resolution transition diagram
relevant to this coarse-resolution transition. Each concrete
action is then executed by automatically generating relevant
representations of probabilistic models of the uncertainty in
perception and actuation. The outcomes of the action execu-
tion are added to the fine-resolution history, resulting in suit-
able entries being added to the coarse-resolution history. For
more details about the representation and reasoning compo-
nent, please see (Sridharan et al. 2019).

Interactive learning: Reasoning with incomplete domain
knowledge can result in incorrect or suboptimal outcomes.
It is possible to learn previously unknown actions and re-
lated axioms, but doing so in the most generic form may
require many labeled examples in complex domains. It is
difficult to provide such labeled examples in robot domains
characterized by dynamic changes. Also, humans may not
have the time and expertise to provide labeled examples or
extensive feedback, and an action’s effects may be immedi-
ate or delayed. Our architecture includes two schemes for in-
teractive acquisition of labeled examples and knowledge: (i)
active learning of actions and causal laws from human verbal
descriptions of actions of other robots; and (ii) cumulative
learning of action capabilities (i.e., affordances) and axioms
using relational reinforcement learning and decision tree in-
duction, based on observations from active exploration or
reactive action execution. The key attribute of this learn-
ing approach is that reasoning with the existing knowledge
informs and automatically limits interactive learning to the
states, actions, and observations relevant to the task(s) and
goal(s) at hand. For more details about the interactive learn-
ing component, please see (Sridharan and Meadows 2018).

Explainable reasoning: Our approach for explainable rea-
soning is based on a theory of explanations for human-robot
collaboration. This theory comprises (i) claims about rep-
resenting, reasoning with, and learning knowledge to sup-
port explanations; (ii) a characterization of explanations
along three axes based on abstraction of representation, ex-
planation specificity, and explanation verbosity; and (iii) a
methodology for constructing explanations. This theory is
implemented in our architecture by coupling the construc-
tion of explanations to the representation, reasoning and
learning components summarized above. The robot receives
explanatory questions in the form of verbal input from a hu-
man. This input is parsed using natural language processing
tools and an underlying controlled vocabulary for human-
robot interaction. The human user is then able to interac-
tively obtain explanations at the desired level of abstraction,
specificity, and verbosity. For more details about the theory
of explanations and its implementation, please see (Sridha-

ran and Meadows 2019).

Summary: Our architecture explores and exploits the inter-
play between knowledge representation, explainable reason-
ing, and learning, to address the corresponding challenges in
human-robot collaboration. We have evaluated the capabili-
ties of this architecture in simulation and on physical robots
assisting humans in different tasks and domains. Experimen-
tal results indicate that our architecture supports reliable and
scalable reasoning, learning, and explanations, in the pres-
ence of incomplete knowledge, violation of defaults, noisy
observations, and unreliable actions.
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