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relative auraies, and with regard to onsisteny among the robots. How-ever, in a team setting, teammates may be able to mitigate this unertaintyby ommuniating with one another.Robots must plan their ations in spite of all this unertainty, and in some asesmay selet ations spei�ally to redue unertainty. This artile identi�esmethods for oping with unertainty towards ation planning on a vision-based mobile robot. Spei�ally, on suh a robot, there is unertainty in:� the olors of the objets observed by the robot, for example as a result ofhanging illumination onditions;� the robot's sensor model, for example mapping the observed height of anobjet (in pixels) to its distane;� the robot's ation model, for example determining how quikly it moves asa result of its spei� movement ations; and� the robot's loation in its environment.We summarize our novel algorithms for dealing with eah of these forms ofunertainty, initially on individual robots, and ultimately taking advantageof ollaborative multi-robot interations. Spei�ally, we present algorithmsfor autonomous olor alibration, illumination invariane, autonomous sensorand atuator modeling, and an adaptation of partile �ltering for improvedloalization on legged robots. Eah of these tehnial ontributions omes froma detailed and independent researh thread. This artile synthesizes themwithin the ontext of reating models for robot planning under unertainty.Colletively, these algorithms produe models that are neessary for e�e-tive planning under unertainty for robots engaged in goal-oriented behaviorwithin a dynami, ollaborative and adversarial environment. We then plaepartiular emphasis on the ways in whih our robots reah ation deisionsbased on these models. In partiular, we fous on the robots' ability to i)interleave planning, ation, and information-gathering; ii) exeute onsistentations over time; iii) behave reatively when appropriate and iv) share andmerge loal pereptual information among teammates as a way of auratelytraking the world state.As the onrete substrate for our researh, we implement all of our ontribu-tions on a team of ommerial o�-the-shelf robots, namely Sony ERS-7 Aiborobots. Eah ontribution is validated individually in a ontrolled setting.Taken together, some of these ontributions enable e�etive exeution of theRoboCup robot soer task following the rules of the four-legged soer league,while the others are forward-looking towards operating in more unontrolledenvironments.The remainder of this artile is organized as follows. Setion 2 provides somebakground information on the test platform and the appliation domain.2



Setions 3, 4, and 5 desribe our methods for reduing the unertainty atthe pixel level, in the ation and sensor models, and in the robot's position,respetively. Then, Setion 6 presents the methods inorporated to aount forthe unertainty in planning and deision-making. Finally, we briey disusssome related approahes in Setion 7 and onlude in Setion 8.2 BakgroundOur fous is on developing eÆient algorithms for reasoning under unertaintyin task-oriented senarios. One suh senario is the RoboCup Robot SoerLegged League 3 in whih teams of fully autonomous roboti dogs manufa-tured by SONY play a game of soer on an indoor �eld.In our experiments, we used the standard Legged League robot, the Sony AiboERS-7 [1℄. It is equipped with a CMOS olor amera at the tip of its nose witha horizontal �eld-of-view of 56:9o and a vertial �eld-of-view of 45:2o, providingthe robot with a limited view of its environment from whih it has to extratthe information needed for deision-making. The images are aptured in theYCbCr format at 30Hz and image resolution of 208 � 160 pixels. It has 20degrees of freedom: 3 in its head, 3 in eah leg, and 5 more in its mouth,ears and tail. It also has noisy touh sensors, IR sensors, and a wireless LANard for inter-robot ommuniation. All proessing { for vision, loalization,loomotion, and ation-seletion { is performed on-board the robot, using a576MHz proessor.RoboCup Legged League games are played on a 4m � 6m green arpet pithwith white �eld lines, olor-oded goals, and four olor-oded ylindrial bea-ons used for loalization. Additionally, the robot is able to pereive the orangeball and red or blue uniforms worn by the robot teams. As a result, some ofthe pereptual algorithms presented here are spei� to olor-oded environ-ments. However, their uses for loalization and deision-making generalize toany pereptual system apable of identifying objets.Currently, RoboCup games are played under onstant and reasonably uniformlighting onditions, but one researh hallenge is to enable the robots to playunder varying illumination onditions. 4 Our team has partiipated in boththe national (US-Open) and the international robot soer ompetitions forthe last three years and has onsistently ranked among the top teams.3 http://www.tzi.de/4legged4 The stated ultimate goal of the RoboCup initiative is to reate a team of humanoidrobots that an beat the human soer hampions by the year 2050 on a real, outdoorsoer �eld [2℄. 3



3 Unertain Objet ColorsThe �rst step towards planning on a mobile robot is gathering world state in-formation. On a vision-based robot, interpreting raw sensor data is a formidablehallenge. Furthermore, most of the previous work in mahine vision assumesa stationary amera and/or relatively unonstrained omputational resoures.In ontrast, the algorithms on vision-based robots must work within the on-straints of their on-board proessing apabilities, and be robust to mobileameras.Color is often (though ertainly not always) one of the most informative vi-sual ues in the environment. However, olor segmentation is an inherentlyunertain operation due to the fat that there are more pixel values thanan possibly be labeled manually, thereby requiring error-prone generalizationthat is often brittle. Furthermore, under hanging illumination onditions, thesame pixel values may represent di�erent olors. Finally, �nding the desiredobjets in environments with other objets of similar olors an be partiu-larly hallenging. These diÆulties in vision proessing are addressed in thissetion. We begin with an overview of our baseline vision system, and thenpresent our two approahes to mitigating the vast amount of unertainty invision: autonomous olor alibration and a method aimed at diretly ahievingillumination invariane.Our baseline vision system onsists of two main omponents: olor segmenta-tion and objet reognition.First, in the olor segmentation phase, the robot maps eah pixel in the rawYCbCr input image to a olor lass label (one of nine di�erent olors in ourdomain). To redue the memory requirements, instead of generating this map-ping for all possible (Y,Cb,Cr) ombinations (0{255 along eah dimension),we subsample the olor spae to have values ranging from 0{127 along eahdimension. We represent this mapping as a olor map, reated o�-board byhand-labeling a set of images aptured using the robot's amera. To generalizefrom the hand-labeled data, whih overs roughly 3% of the whole spae, theolor label assigned to eah ell in the olor map is modi�ed to be the weightedaverage of the ells within a ertain Manhattan distane (a form of NearestNeighbor). The resulting olor map (� 2 megabytes) is loaded on the robotto segment its input images.During segmentation, we �nd ontiguous regions of onstant olors by or-ganizing the image pixels into run-lengths [3,4℄. Adjaent run-lengths of thesame olor are merged using the Union-Find algorithm [5℄. We then build ret-angular boundaries around the merged regions, bounding boxes, whih storeproperties orresponding to eah region suh as its dimensions.In the objet-reognition phase, we use these regions along with domain knowl-4



edge to detet the olor-oded objets in the environment. One hallenge ofthis task is distinguishing the objets of interest from other objets surround-ing the �eld that happen to be segmented as the same olor. For instane, aperson standing by the �eld in an orange shirt may be identi�ed as the ball.By using heuristi onstraints on the size, pixel density, and relative loationsof the regions, we an suessfully isolate the objets of interest. These prop-erties are also used to estimate the unertainty in eah objet's distane andangle measurements, based on how well they onform to the expeted values.In addition to olored objets, we also reognize �eld lines by searhing forlinear green-white transitions. Figure 1 shows the results from these proess-ing steps. More images and videos taken by the robot are available online. 5Full details of this baseline vision system are available in [6℄.
Fig. 1. Suessive proessing stages of the baseline vision system.Other researhers working in the RoboCup domain have developed similarvision systems [3,7℄. These systems as well as our own baseline implementationsu�er from two major drawbaks: they require time-onsuming manual oloralibration and are highly sensitive to illumination hanges. In almost all ofthese systems several (� 20� 30) images need to be hand-labeled to generatethe olor map. Beause this tedious proess an take hours to omplete, it isperformed rather infrequently. This infrequent realibration introdues greatunertainty into vision proessing, beause as onditions gradually hange, theolor map beomes inreasingly obsolete.To eliminate the time-onsuming manual olor alibration proess, we devel-oped an algorithm to enable the robot to autonomously learn the desired olorsusing the struture of the environment: known loations, shapes and olors ofthe objets in its world. Eah olor that the robot has to reognize is modeledas a three-dimensional Gaussian with mutually independent olor hannels.This algorithm requires that the robot have both training images and a modelof its world with known loations of uniquely olor-oded objets.The robot starts at a known �xed initial position with an empty olor map andtraverses a spei�ed sequene of positions on the �eld. At eah suh positionit learns about one or more olors by looking for andidate image regions ofunknown olor that math the world model desription of the objets. Notethat the robot does not have any labeled data; it hooses appropriate pixelsto learn the mean and variane of the Gaussians, whih in turn are used to5 http://www.s.utexas.edu/users/AustinVilla/?p=researh/robust_vision 5



generate the �nal olor map using the Bayesian deision rule. The olor learnedat eah stage helps in the detetion of the later olors by inreasing the robot'sability to parse its environment. The e�etiveness of the learned olor map isdemonstrated in Figure 2.This algorithm works under di�erent illumination onditions and di�erent�eld settings. The segmentation performane of this olor map, learned au-tonomously in less than �ve minutes, is omparable to that of the hand-labeledolor map, whih takes an hour or more to reate [8℄. Several sample imagesand a video of the the algorithm in ation, as seen by the robot's amera, anbe found online. 6
(a) (b) () (d) (e) (f)
(g) (h) (i) (j) (k) (l)Fig. 2. Results from the autonomous olor alibration algorithm. (a)-(f) Input,(g)-(l) Segmented with learned olor map.Although this olor learning mehanism provides a means for autonomously re-alibrating the olor map, it does not provide a means for reognizing hangesin illumination onditions. A olor map trained under one illumination on-dition an beome totally useless if the lighting onditions hange, due tothe non-linear shift in olors. To provide robustness to illumination hanges,we hypothesized that di�erent images from the same illumination onditionwould have measurably similar olor spae distributions, as ompared to dis-tributions from di�erent illumination onditions.We onsider three disrete illumination onditions, bright (� 1500lux), dark(� 400lux), and intermediate (� 900). During the training phase, we train aolor map and olleted a set of sample images of the environment for eahillumination ondition. We use the normalized RGB (rgb) olor spae, whihinherently provides some illumination insensitivity [9℄, and store the sampleimage distributions in (r,g). For omparing two distributions we use the KL-divergene measure [10℄.During its normal operation, the robot periodially samples an input imageto generate the (r,g) distribution whih is ompared with the stored sampledistributions. The sample image is assigned an illumination lass label based6 http://www.s.utexas.edu/users/AustinVilla/?p=researh/auto_vis6



on the training sample it is most similar to. If a suÆient number of sampleimages are lassi�ed as belonging to a partiular illumination lass, the robotonsiders itself to be in that illumination ondition and uses the appropriateolor map for subsequent operations.This mehanism involves the experimental estimation of a set of parameters,whih involves a trade-o� between orretly identifying illumination hangesas soon as possible and not interfering with the normal operation of the robot.With this approah, the robot performs eÆiently and detets hanges in il-lumination quikly. In addition, when faed with illumination onditions forwhih it has not been expliitly trained, the robot transitions to the los-est illumination ondition and, empirially, performs as eÆiently as before.Therefore, it does not need to onsider the ontinuous variation of illumina-tion. Videos of this proess [11℄ are available online. 7In this setion, we have summarized three algorithms that enable the robotto deal with the unertainty in its visual input. The baseline vision systemperforms olor segmentation and objet reognition in real-time under rapidamera motions, but it requires manual olor alibration and is sensitive toillumination hanges. The olor learning approah autonomously learns thedesired olor distributions using the environmental struture. Robustness toillumination hanges is ahieved using olor maps and sample image distribu-tions over a few disrete illumination onditions.4 Unertain Sensor and Atuator ModelsThe algorithms desribed in Setion 3 greatly redue the unertainty in therobot's visual output, i.e. the loation and size of objets in the visual �eld.However, another signi�ant soure of unertainty in the robot's proessingomes from translating that visual data into useful information, suh as therobot's atual distane to an objet seen in an image. To aomplish thistranslation, the robot relies on a sensor model whih de�nes the relationshipbetween the objet's properties in the image and its position relative to therobot on the �eld. Another model that the robot uses is an ation model, whihadjusts its estimate of the world state aording to the ations it exeutes.Both the sensor and ation models are inherently noisy. Inauraies in theation and sensor models inevitably lead to inauray in the robot's loationestimate. The resulting unertainty an therefore be redued by ensuring thatthe robot's ation and sensor models are aurately alibrated.Sensor and atuator models are typially alibrated manually: sensor readingsare orrelated with atual measured distanes to objets, and robot atua-tor ommands are measured with a stopwath and a tape measure. Howeverthis type of approah has signi�ant drawbaks. It is labor intensive, and the7 http://www.s.utexas.edu/~AustinVilla/legged/illumination7



model is neessarily tuned to a spei� environment and may not apply moregenerally. A tehnique for autonomously alibrating both models simultane-ously, alled asami (Autonomous Sensor and Atuator Model Indution), ispresented in this setion.asami explores the problem of autonomous model learning in the ontext of aspei�, somewhat simpli�ed, setting. The robot learns a sensor model and anation model, eah represented by a alibration funtion. The sensor modelfuntion maps the various readings of a visual sensor to relative distanesfrom a �xed landmark, and the ation model funtion maps a range of ationommands to the veloities of the orresponding movements. asami is bothautonomous and unsupervised, in that the robot never reeives any feedbakas to its atual loation or veloity. asami's goal is for the robot to learnation and sensor models that aurately reet its distanes and veloities.asami involves the robot performing the following three tasks simultaneously.� Walking forwards and bakwards while its visual sensor faes a �xed target,overing a range of relevant distanes and veloities.� Learning a funtion from ation ommands to atual veloities, assumingthe distane alibration for the visual sensor is aurate.� Learning a funtion from distane observation data to its distanes from thetarget, assuming the robot has an aurate sense of its veloities.This proess suessfully learns ation and sensor models that losely approx-imate measurements made manually with a stopwath and a tape measure.The results reported in this setion make use of the vision proessing moduledesribed in Setion 3 as well as a learned walking module [12℄. To moveforwards and bakwards at di�erent speeds, the robot interpolates betweenparameters for an idle walk, a fast forwards walk, and a fast bakwards walk.As the experiments desribed below demonstrate, the resulting speed is anon-linear funtion of the parameters.Meanwhile, the Aibo's visual sensor is based on its amera, whih, as desribedin Setion 3, is used to reognize objets inluding a olored ylindrial beaonthat the robot an use to help it loalize while on a playing �eld. The height ofthe beaon in the robot's image plane dereases with the robot's distane fromthe beaon; this observed height (in pixels) is the visual sensor reading usedfor the experiments reported in this artile. A video of the Aibo performingits training behavior is available online. 8Beause the robot is trying to learn two arbitrary ontinuous funtions, itmust represent them with a funtion approximator. Polynomial regression is8 http://www.s.utexas.edu/~AustinVilla/?p=researh/simultaneous alibration8



used for both funtions. Furthermore, asami learns the ation and sensormodels from eah other in that it is not given any ground truth as to therobot's distane to the beaon or its speed. Therefore, it annot learn the twomodels in any partiular units. However, the learned ation and sensor modelsare onsistent with eah other. Note that this property is suÆient for it toperform domain-spei� tasks, suh as prediting the amount of time a spei�ation ommand will take to yield a ertain visual sensor reading.Spei�ally, as the robot moves towards and away from the beaon, we de-note its (atual) distane from the beaon at time t as x(t). The robot's kthvisual sensor observation ours at time tk and is denoted by obsk. Eah valuereported by the visual sensor orresponds to a spei� distane. This sensormodel funtion is denoted by S, so that x(tk) = S(obsk). The funtion S isone of the two funtions that the robot is trying to learn. At the same time,the robot ontinuously exeutes an ation ommand, C(t), that varies withtime. Eah ation ommand moves the robot at a spei� veloity, and wedenote the funtion from ommand to veloity by A. The robot learns this a-tion model A along with the sensor model S. The ation model also providesinformation about the robot's loation: x(t) = x(0) + R t0 A(C(s)) ds. asamiworks by impliitly performing a ontinual omparison of these two soures ofinformation. The robot knows the values of obsk, tk, and C(t), and its task isto learn the funtions A and S.Note that the sensations and ation e�ets are ontinually perturbed by zero-mean random noise, so that formally S and A represent the average distaneor veloity orresponding to a given sensation or ation seletion. This noiserepresents an unavoidable soure of unertainty for the robot, but by estimat-ing S and A as aurately as possible, the unertainty is minimized.asami learns the ation and sensor models simultaneously. To learn the sensormodel, it assumes the ation model is orret, and uses the resulting stateestimate (the loation estimate based on the ation model), denoted by xa(t),as training data for the sensor model. Similarly, to learn the ation model,asami uses a loation estimate based on the urrent sensor model, xs(t), tolearn the ation model.Both models an be learned simultaneously beause, even though the ation(sensor) model learned from an inaurate sensor (ation) model will be in-aurate, it will be an improvement. As eah model grows more aurate, itsability to help the other model improve grows. As this bootstrapping proessontinues, the two models onverge to funtions that aurately reet whatthey are trying to model. Beause both models grow in auray as time goeson, the regressions should give more weight to the more reent data points.Thus a weighted regression is used, where eah data point has a weight thatdereases over time [13℄. 9



After asami has run for a pre-set amount of time (two and a half minutes), weonsider its best estimates for A and S to be the models that it has learned atthat point. The suess of asami is evaluated by omparing the learned ationand sensor models to those measured with a stopwath and a tape measure. Atypial run is depited in Figure 3a. Over the ourse of a trial, both models getprogressively more aurate. The learning urves are depited in Figure 3b.Both models' errors are shown, ompared to the best possible error for themeasured model and the degree of the polynomial being learned. The data isaveraged over 15 trials [13℄.
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Fig. 3. a) In this example run, the +'s are values of xs(t), and the urve depitsxa(t). Over time, eah model learns how to keep its estimate of the loation lose tothe other model's estimate. b) The error for the ation model is in mm/s, and forthe sensor model in mm. The horizontal lines are at the minimum possible error tothe measured models for a polynomial of the appropriate degree.Inauray in the robot's ation and sensor models leads diretly to uner-tainty in its loation estimates. By learning aurate aounts of its ationand sensor models, the robot an minimize the orresponding unertainty.The tehnique presented in this setion, asami, enables a mobile robot to au-tonomously learn its sensor and ation models in an environment with a �xedlandmark. The following setion disusses how the robot an make use of a-urate ation and sensor models to redue the unertainty generated duringMonte Carlo loalization.5 Unertain Robot LoalizationTypially, on mobile robots, the ation and sensor models feed into a proba-bilisti loalization algorithm that expliitly represents the robot's unertaintyin its own loation in the world. One suh algorithm is partile �ltering, alsoknown as Monte Carlo Loalization (MCL) [14,15℄. MCL has been shown tobe a robust solution for mobile robot loalization, partiularly in the faeof ollisions and large, unexpeted movements (e.g. the \kidnapped robot"problem [15℄). It has been well-studied on wheeled robots with range-�nding10



sensors. This setion summarizes extensions that inrease its robustness andredue unertainty for vision-based legged robots [16℄.In Monte Carlo Loalization, a robot estimates its position using a set of sam-ples alled partiles. Eah partile represents a hypothesis about the robot'spose: its global loation (x; y) and orientation (�). The density of partile prob-abilities represents a probability distribution over the spae of possible poses.Eah operating yle, the robot updates its pose estimate based on its ationand sensor models. In the motion update, eah partile's pose is moved aord-ing to the veloity reported by the ation model. Random noise is added toaount for the model's unertainty. Next, during the observation update, thesensor model is used to update eah partile's probability. The model preditsthe likelihood of the robot's observations given the partile's pose, and adjuststhe partile's probability aordingly.Finally, partiles are resampled in proportion to their probabilities. High prob-ability partiles are dupliated, replaing partiles with low probability. Inaddition, to ope with unexpeted movements, standard MCL approahes usereseeding ; during the resampling step, a few of the partiles with low prob-ability are replaed by estimates obtained by triangulation of the landmarksseen in the urrent frame [17℄.We have shown that a vision-based legged robot, operating in a world withunmodeled movements, enounters some partiularly diÆult types of uner-tainty during loalization. Our improvements on the basi Monte Carlo Loal-ization algorithm allow this theoretially well-grounded approah to be pra-tially deployed in this triky setting. In partiular, we have demonstratedsigni�ant inreases in loalization auray and ertainty by i) overomingbiased distane estimate; ii) improving the robot's ation model; and iii) main-taining landmark histories.In the observation update step of MCL, the likelihood of an observation anbe alulated from the pereived distane and angle to the observed landmark.Distane estimates omputed analytially using geometri methods tend to beinaurate and are hene not used in standard MCL methods, resulting in theexlusive use of angle information for probability updates [18℄.In our approah, a distane funtion is onstruted via ubi regression basedon empirial data relating the size of a landmark in the image to its distanefrom the robot. Inluding the resulting distane estimates in the loalizationupdate dereased loalization error by more than 30% when ompared withusing only angle information, and by almost 50% when ompared with usingan analyti distane model [16℄.Causing the robot to shorten its step as it approahes a target point so asto take advantage of a more preise motion model during the motion update11



redued the loalization error by an additional 40%. Finally, enabling the robotto remember landmark histories did not have any signi�ant e�et duringsmooth, unobstruted motion. But it enabled the robot to reover muh morequikly from unmodeled movements, suh as olliding with another robot orbeing piked up and moved [16℄.After suh unmodeled movements, it is important to quikly triangulate one'spose from �xed landmarks. To do so, either two or three landmarks must beseen, depending on whether or not distane information is used. A shortomingof previous reseeding approahes is that they require the landmarks to be seenin the same amera frame, whih may not our very frequently. We ontributea onrete mehanism to enable reseeding even when two landmarks are neverseen onurrently.Observed distanes and angles to landmarks are stored over suessive framesin a landmark history. These stored values are adjusted eah frame based onthe robot's odometry, omputed by its ation model. Suessive observationsof the same landmark are averaged, weighted by their on�dene, then givenas input for reseeding. Beause the robot's ation model is unertain, theon�dene is deayed eah yle that the reord stays in the history. Therobot's high-level vision module oasionally mistakes one objet for another,resulting in a false observation. To prevent these false observations from havinglong-term onsequenes, reords that have been in the history for too long arethrown out.The robot's �nal pose estimate is represented by the set of partiles in MCL.When a single estimate is required for planning and deision-making, we usethe weighted average of the partiles. The robot's ertainty in its pose is foundby averaging the partile weights. This estimated pose and orresponding er-tainty, ombined with knowledge of the relative positions of movable objets inthe environment, onstitute the robot's world state, upon whih all planningdeisions are made.6 Planning and Deision-Making Under UnertaintyTo this point, we have introdued methods for reduing the unertainty in therobot's world state estimate that results from its vision, motion, and loal-ization proesses. In this setion we plae partiular emphasis on the robot'smethods for dealing with unertainty in planning and deision-making. Weintrodue algorithms by whih our robots an i) interleave planning, ation,and information-gathering so as to redue loalization unertainty; ii) exeuteonsistent ations over time so as to prevent osillations due to unertainty;iii) determine when to use reative behaviors instead of deliberative ones; andiv) share and merge loal pereptual information among teammates as a wayof aurately traking the world state and planning ollaborative ations.12



6.1 Interleaving Planning, Ating, and Information-GatheringWhen planning under unertainty, it may be possible to at expliitly so asto redue unertainty, perhaps at some ost. For example, a lost driver ina new ity an stop to ask for diretions, or an follow signs to a knownlandmark and replan from there. When suh information-gathering ationsare available, the agent an take one of three basi attitudes towards dealingwith unertainty. First, at the most passive extreme, the agent an neglet toexpliitly gather information, instead planning based on whatever informationhappens to be available. Seond, an agent an take a slightly more ative rolein its information-gathering by aquiring missing information on an as-neededbasis. Third, at the most ative extreme, the agent ould treat information-gathering as a �rst lass planning operator and deliberatively maintain itslevel of ertainty in the world state over the ourse of its entire plan. Here,we provide an example of this third form of fully interleaved planning andinformation-gathering.In RoboCup soer, the robot's main fous is on the ball. It must onstantlytrak the ball's position and at deisively as soon as it gains possession.At the same time, it must stay well-loalized to make good planning dei-sions. Beause it is often diÆult for the robot to see landmarks when itshead is pointed down at the ball, there is a trade-o� between traking mov-ing targets (the ball and the opponents) and staying loalized. In this on-text, information-gathering ations inlude ommuniation with teammatesand purposely looking for landmarks to improve loalization auray. In abehavior alled ative loalization, the robot oasionally shifts its fous fromthe ball to atively look for landmarks to improve its loalization estimate.Ative loalization is triggered when the unertainty in the loalization esti-mate beomes too large. If the loalization ertainty falls below a threshold,the robot uses its urrent pose estimate and the known geometry of the worldto predit the relative positions of the various landmarks. It then uses thisknowledge to plan the motion of its head (pan and tilt) that should allow itto see the losest markers. Beause performing ative loalization ould ausethe robot to lose trak of the ball's position, espeially when the ball is nearby,ative loalization is performed only when the robot is a suÆient distane(more than 800mm) away from the ball.The robot's objetive in inluding ative loalization in its ation plan is toarrive at the ball with high ertainty in its loation, so that it does not needto pause to loalize after reahing the ball. To verify that ative loalizationan ahieve this objetive, we performed the following experiment.The robot starts at a �xed point slightly behind the enter of the �eld withthe ball near the edge of the opposite goal box. At the start of a trial, the13



robot initiates its plan of walking to the ball and kiking it into the goal. Twoseonds after the robot begins exeuting its plan, we impede its motion forfour seonds by holding it still. While the robot attempts to walk towards theball, the simulated ollision disrupts the robot's loalization estimate. We thenrelease the robot and allow it to ontinue exeuting its goal-soring behavioruntil it either suessfully sores a goal or fails by kiking the ball out ofbounds.This experiment was performed with and without ative loalization and om-prised 15 trials. For the suessful trials, we reorded the number of attemptedkiks before soring as well as the total time taken. The results, shown in Ta-ble 1, show that ative loalization signi�antly improves the robot's abilityto sore quikly and onsistently. The time results are statistially signi�ant(p-value of 1:385� 10�5 using a one-tailed t-test).Ative Loalization Avg. Time Avg. Attempts Suess RateWithout 26:11 � 5:74 2:7 � 1:16 20%With 15:617 � 6:33 1:2 � 0:42 67%Table 1Time, number of attempts, and suess rate for goal-soring with and without ativeloalization.Without the ative loalization, the robot often ends up with a wrong poseestimate when it it gets to the ball. It kiks the ball in the wrong diretionand then has to make more than one attempt before it gets the ball into thegoal. When using ative loalization the robot almost always kiks the ballinto the goal on its �rst attempt.6.2 The Task HierarhyOne ommon danger of planning under unertainty is that utuations in arobot's estimated world state an ause the robot to vaillate among the be-haviors planned from eah pereived state. To ounter this e�et, the robotmust be equipped with some form of hysteresis that biases it towards pursu-ing onsistent subgoals over time [19℄. This setion presents our novel ationseletion paradigm designed for this purpose.In the absene of unertainty, a purely reative arhiteture suÆes to desribeintelligent agent behaviors. One well-known suh arhiteture is the produtionrule system, whih onsists of if-then rules that are evaluated at eah ationopportunity to map world states to ation hoies. These systems are oftenused to desribe behaviors for agents in the RoboCup Simulated Soer league,where agents have muh better sensors than those that exist in the real worldtoday [20℄. In this simulation environment, the agents an trust their worldstate knowledge to be stable and reliable.14



However, the highly noisy sensors used in the RoboCup Legged League preventany teams known to the authors from using prodution rule systems. Instead,many teams use �nite state mahines (FSMs) to desribe behaviors. Robotsusing this arhiteture swith behaviors only when their observations providestrong enough evidene that the urrent behavior is no longer appropriate.Although FSMs are simple to implement, they an be hard to maintain, re-�ne, and expand. For this reason, we designed a task hierarhy framework [21℄.Instead of representing eah behavior or ativity as an atomi state, we re-ate tasks that may reursively all other tasks. Like a subroutine all, theinvoation of a task may persist for some time (throughout multiple low-levelexeution yles) and maintain loal state information. Unlike typial subrou-tines, eah task in the stak of ative subtasks ontinually monitors the worldstate and may swith to a new subtask in response. The stak thus orrespondsto a onsistent set of ative subgoals, and the robot bene�ts from hysteresisat eah level of the hierarhy. This framework thus provides more exibilitythan FSMs while generalizing their ability to enable hysteresis, whih is soimportant when ating under unertainty.6.3 Opportunisti ReativityAs presented throughout this artile, a large soure of unertainty in planningis the robot's loalization estimate, whih in turn omes from the robot'ssensation and ation histories. However, in ertain irumstanes, there maybe enough information from the robot's instantaneous pereptions to make areative deision. That is, the orret ation to take is the same, regardless ofthe details of the world state.We take advantage of suh opportunisti reativity in our robots by enablingthem to shoot diretly towards the goal whenever it is lose and visible. Whenthe robot aquires the ball in the quarter of the �eld losest to the o�ensivegoal, it �rst turns to the angle where the goal should be loated, assuming itsloalization estimate is orret. However, one it reahes that angle, it makesa small adjustment to fae the enter of the largest region of goal-olor that ithas seen in the last few vision frames. After this adjustment, it kiks the ball.The robot's objetive in this situation is to kik toward the largest openinginto the goal, avoiding all possible obstales (inluding both things that aremodeled by the world state, suh as the position of the opponent goalie orother robots, and things whih are entirely unmodeled, suh as a referee'sleg). Sine the robot annot aurately identify all possible obstales, andsine the robot's estimation of its own loation is itself prone to unertainty,the best information the robot has about the loation of this opening is itsimmediate pereption about regions of goal-olor.Note that this opportunisti reativity ontrasts with ation arhitetures that15



fully integrate reative and deliberative reasoning [22,23℄. Our robot ats en-tirely based on its world model exept for during suh exeptional irum-stanes when the immediate pereptions provide all the information neessaryto at.6.4 World State Representation and CommuniationTo this point, we have foused on how an individual robot an plan its ationsin the fae of unertainty. A multi-robot environment introdues new oppor-tunities and additional hallenges with regard to ating under unertainty.For instane, robots may share their own world state information with theirteammates to improve the auray of eah other's estimates. However, whenthere are large disrepanies in world state estimates between teammates, o-ordinating behaviors an be a hallenge.In our multiagent senario, eah robot maintains its own world state estimate.The robot traks the ball and opponent positions using a Kalman �lter-likerepresentation [24℄. When the robot sees the ball, the ball's relative distaneand angle are represented as a two-dimensional Gaussian with varianes om-puted from the unertainty of the observation [21℄. Eah ball observation ismerged with the previous estimate, whih is �rst adjusted in aordane withthe robot's motion. The merging proess gives more weight to observationswith lower varianes. If the ball is not seen, the urrent estimate's ertaintyis degraded by inreasing its variane. Opponent position estimates are main-tained similarly. We also maintain an estimate of the relative veloity of theball, based on the hange in ball position estimates over a few frames. Veloityinformation an be used to update the ball's position estimate even when theball is not seen, for example when performing ative loalization (Setion 6.1).Using this probabilisti framework to represent the various movable objetsin the world, the robots are able to inorporate information ommuniated byteammates. To reliably merge teammate information with its own estimate, arobot must know that teammate's unertainty in the information provided.When eah robot broadasts its state information to its teammates, it mustonvert its egoentri representation to the global oordinate system using therobot's estimate of its own position. The unertainties of the ommuniatedinformation are therefore a funtion of the relative objet unertainty and therobot's own position unertainty. A robot must be suÆiently ertain of bothestimates before it will ommuniate information about that objet.When merging the ball estimates from teammates, a robot primarily trustswhat it sees over what is ommuniated, i.e. it onsiders the teammates' esti-mates of the ball only when the ertainty of its own ball loation estimate islow. It then merges the teammates' estimates and uses the result to deide thediretion in whih to start searhing for the ball. Without the ommuniated16



information, the robot typially spends muh of its time reovering after losingsight of the ball, espeially after sudden ball movements suh as kiks. Withommuniation. however, if one robot sees the ball, its teammates are able toturn in the most probable diretion to reover the ball's position quikly.To empirially test the advantage of information sharing between robots, weperformed the following experiment. Two robots are plaed on the �eld, one inthe goalkeeper position at the enter of the goal, the other near the far ornerof the opposite goal. We plae the ball diretly in front of the �rst robot. Inthis position, the ball is in lear sight of the �rst robot but too far away to beseen by the seond robot.The seond robot's goal is to �nd and approah the ball, whih it initiallyannot see. Our hypothesis was that the robot would perform best when se-letively merging information from its teammate. That is, it ould improveperformane by listening to its teammate's ball information when it was un-ertain itself. At the same time, we expeted that if the robot ontinued to usethe merged estimate even when the ball was in plain sight, its performanewould degrade. The reasoning behind this hypothesis is that the robots' loal,relative ball estimates are muh more aurate than their global estimates,whih must rely on both robots' estimates of their own poses. Thus for arobot that sees the ball, inorporating a teammate's global ball estimate ismore likely to degrade the estimate quality.Results verifying these e�ets over 15 trials are shown in Table 2. A suessfultrial is one in whih the robot is able to touh the ball in less than one minute.The average time is alulated for suessful trials only.Merged Estimates Average Time (s) Suess RateNever 28:72 � 11:9 67%When needed 15:87 � 1:7 100%Always 38:73 � 11:86 60%Table 2Time taken to �nd the ball using di�erent ommuniation paradigms.All timing results are statistially signi�ant aording to a one-tailed t-test.The standard deviation is higher when merged estimates are never used be-ause the robot takes random walks aross the �eld and manages to �nd theball faster in some trials. Similarly, when information from teammates is al-ways taken into aount, the improper merging an ause the robot to wandero� in random diretions. Note that with exessive merging the robot atuallyperforms worse than in the ase with no ommuniation.In other work done on information sharing in this domain [25℄, only the ballestimates bene�ted from the ombination of sensory and ommuniated infor-17



mation. However, we found that it is better for the robot to know the likelyloations on the �eld where it might be obstruted. Therefore, in our ase,robots always merge ommuniated opponent estimates. One again, the esti-mates with higher ertainty are given proportionately more importane. Thisinformation is used mainly to avoid the opponents. We observe that using themerged opponent estimates provides a signi�ant improvement in the robot'sbehavior. For example, when the robot is lose to an opponent (even one itannot see), it is able to determine that it is neessary to lear the ball quikly.Although all of the behaviors desribed above are planned based on a singleaveraged pose estimate derived from the loalization algorithm, it would bepossible to hoose the ation that is most e�etive for the range of possible lo-ations in whih the robot might be [26℄. But overall, these behaviors are quitee�etive, as evidened by our umulative sore of 22{1 in 5 games (and 3rd-plae �nish) at the 2005 RoboCup US Open tournament 9 , and quarter�naliststatus at RoboCup 2005.7 Related WorkIn the early setions of this artile, we have referred to some of the relevant re-searh related to eah of the model-building subtopis overed. In this setion,we fous on the most related work pertaining to planning under unertainty.One family of approahes to planning under unertainty omes from the lassi-al planning ommunity. Using a STRIPS-like representation of states and a-tions (operators), systems suh as Weaver and Buridan take deision-theoretiapproahes to searhing for plans with maximum expeted utility [27℄. How-ever the symboli representations of the world state assumed by these ap-proahes are often hard to ome by in roboti appliations.In robotis, di�erent tehniques have been implemented for dealing with un-ertainty in the robots' inputs and ations, depending on the appliation. Simet al. [28℄ present an approah to SLAM and robot exploration that generatesan optimized online ontrol poliy suh that the robot an explore new plaesquikly while obtaining data that leads to the most aurate map of the world.A similar idea is presented by Whaite and Ferrie [29℄. Roy et. al [30℄ look atthe problem of unertainty for health are robots where the robot has to �ndand assist residents of a health-are faility. Work has also been done on plan-ning robot ations in partially observable environments using POMDPs [31℄.POMDPs have been used to ontrol robot medial assistants, whih keep trakof patients and detet missing people [32℄. In multiagent senarios, oordina-tion graphs have been used to ahieve ooperative behavior among agents,9 The top three teams were quite evenly mathed as evidened by the fat that webeat the eventual hampion in an exhibition math and lost to the 2nd-plae teamby only 1 goal. 18



even in the absene of ommuniation between them [33℄.Though several suh approahes exist for ontrol, oordination and ationseletion, espeially for multiagent teams, very few approahes address un-ertainty simultaneously at di�erent levels, from the low-level sensors to thehigh-level deision-making and bak to the low-level atuators. In our domain,we have presented tehniques that enable a group of four robots to do so whilee�etively sharing information and funtioning eÆiently as a team.8 ConlusionMobile robots enounter unertainty from many di�erent soures. Comparedto wheeled robots with distane-based sensors, legged robots with vision-basedsensing must ope with extreme unertainty. This artile identi�es soures of,and proposes methods for mitigating, unertainty oming from pixel segmen-tation, sensor modeling, ation modeling, and loalization. It then fouses onthe mehanisms for planning and deision-making in the fae of the resultingunertainty. We report methods for enabling the robots to i) interleave plan-ning, ation, and information-gathering; ii) exeute onsistent ations overtime; iii) behave reatively when appropriate and iv) share and merge loalpereptual information among teammates as a way of aurately traking theworld state.All the experiments were onduted on a ommerial, o�-the-shelf robot andevaluated using the roboti soer test-bed environment. Our ongoing researhagenda inludes generalizing to multiple platforms and testing these algo-rithms in more unontrolled (e.g. outdoor) environments.AknowledgmentsThis researh is supported in part by NSF CAREER award IIS-0237699, ONR YIPaward N00014-04-1-0545, and DARPA grant HR0011-04-1-0035.Referenes[1℄ The Sony Aibo robots, http://www.sonystyle.om (2004).[2℄ H. Kitano, M. Asada, I. Noda, H. Matsubara, Roboup: Robot world up, IEEERobotis and Automation Magazine 5 (3) (1998) 30{36.[3℄ W. Uther, S. Lenser, J. Brue, M. Hok, M. Veloso, Cm-pak'01: Fastlegged robot walking, robust loalization, and team behaviors, in: The FifthInternational RoboCup Symposium, Seattle, USA, 2001.[4℄ R. C. Gonzalez, R. E. Woods, Digital Image Proessing, Prentie Hall, 2002.[5℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introdution toAlgorithms (Seond Edition), MIT Press, September, 2001.19
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