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tMobile robots must 
ope with un
ertainty from many sour
es along the path frominterpreting raw sensor inputs to behavior sele
tion to exe
ution of the resultingprimitive a
tions. This arti
le identi�es several su
h sour
es and introdu
es meth-ods for i) redu
ing un
ertainty and ii) making de
isions in the fa
e of un
ertainty. Wepresent a 
omplete vision-based roboti
 system that in
ludes several algorithms forlearning models that are useful and ne
essary for planning, and then pla
e parti
ularemphasis on the planning and de
ision-making 
apabilities of the robot. Spe
i�
ally,we present models for autonomous 
olor 
alibration, autonomous sensor and a
tu-ator modeling, and an adaptation of parti
le �ltering for improved lo
alization onlegged robots. These 
ontributions enable e�e
tive planning under un
ertainty forrobots engaged in goal-oriented behavior within a dynami
, 
ollaborative and ad-versarial environment. Ea
h of our algorithms is fully implemented and tested on a
ommer
ial o�-the-shelf vision-based quadruped robot.Key words: Roboti
s, planning under un
ertainty, robot vision, lo
alization,multi-robot behavior1 Introdu
tionAutonomous robots en
ounter un
ertainty in many forms along the path frominterpreting their raw sensor data to generating exe
utable a
tions. There isun
ertainty manifest in de
oding inevitably noisy sensor readings; there is un-
ertainty in the e�e
ts of the robots' a
tions, both past and future; and (inpart as a result of the former) there is un
ertainty re
e
ted in the robot'stra
king of the world state. In multi-robot settings, there is further un
er-tainty in the world knowledge of the other robots, both with regard to their1 Department of Computer S
ien
es2 Department of Ele
tri
al and Computer EngineeringPreprint submitted to Elsevier S
ien
e 11 February 2006



relative a

ura
ies, and with regard to 
onsisten
y among the robots. How-ever, in a team setting, teammates may be able to mitigate this un
ertaintyby 
ommuni
ating with one another.Robots must plan their a
tions in spite of all this un
ertainty, and in some 
asesmay sele
t a
tions spe
i�
ally to redu
e un
ertainty. This arti
le identi�esmethods for 
oping with un
ertainty towards a
tion planning on a vision-based mobile robot. Spe
i�
ally, on su
h a robot, there is un
ertainty in:� the 
olors of the obje
ts observed by the robot, for example as a result of
hanging illumination 
onditions;� the robot's sensor model, for example mapping the observed height of anobje
t (in pixels) to its distan
e;� the robot's a
tion model, for example determining how qui
kly it moves asa result of its spe
i�
 movement a
tions; and� the robot's lo
ation in its environment.We summarize our novel algorithms for dealing with ea
h of these forms ofun
ertainty, initially on individual robots, and ultimately taking advantageof 
ollaborative multi-robot intera
tions. Spe
i�
ally, we present algorithmsfor autonomous 
olor 
alibration, illumination invarian
e, autonomous sensorand a
tuator modeling, and an adaptation of parti
le �ltering for improvedlo
alization on legged robots. Ea
h of these te
hni
al 
ontributions 
omes froma detailed and independent resear
h thread. This arti
le synthesizes themwithin the 
ontext of 
reating models for robot planning under un
ertainty.Colle
tively, these algorithms produ
e models that are ne
essary for e�e
-tive planning under un
ertainty for robots engaged in goal-oriented behaviorwithin a dynami
, 
ollaborative and adversarial environment. We then pla
eparti
ular emphasis on the ways in whi
h our robots rea
h a
tion de
isionsbased on these models. In parti
ular, we fo
us on the robots' ability to i)interleave planning, a
tion, and information-gathering; ii) exe
ute 
onsistenta
tions over time; iii) behave rea
tively when appropriate and iv) share andmerge lo
al per
eptual information among teammates as a way of a

uratelytra
king the world state.As the 
on
rete substrate for our resear
h, we implement all of our 
ontribu-tions on a team of 
ommer
ial o�-the-shelf robots, namely Sony ERS-7 Aiborobots. Ea
h 
ontribution is validated individually in a 
ontrolled setting.Taken together, some of these 
ontributions enable e�e
tive exe
ution of theRoboCup robot so

er task following the rules of the four-legged so

er league,while the others are forward-looking towards operating in more un
ontrolledenvironments.The remainder of this arti
le is organized as follows. Se
tion 2 provides someba
kground information on the test platform and the appli
ation domain.2



Se
tions 3, 4, and 5 des
ribe our methods for redu
ing the un
ertainty atthe pixel level, in the a
tion and sensor models, and in the robot's position,respe
tively. Then, Se
tion 6 presents the methods in
orporated to a

ount forthe un
ertainty in planning and de
ision-making. Finally, we brie
y dis
usssome related approa
hes in Se
tion 7 and 
on
lude in Se
tion 8.2 Ba
kgroundOur fo
us is on developing eÆ
ient algorithms for reasoning under un
ertaintyin task-oriented s
enarios. One su
h s
enario is the RoboCup Robot So

erLegged League 3 in whi
h teams of fully autonomous roboti
 dogs manufa
-tured by SONY play a game of so

er on an indoor �eld.In our experiments, we used the standard Legged League robot, the Sony AiboERS-7 [1℄. It is equipped with a CMOS 
olor 
amera at the tip of its nose witha horizontal �eld-of-view of 56:9o and a verti
al �eld-of-view of 45:2o, providingthe robot with a limited view of its environment from whi
h it has to extra
tthe information needed for de
ision-making. The images are 
aptured in theYCbCr format at 30Hz and image resolution of 208 � 160 pixels. It has 20degrees of freedom: 3 in its head, 3 in ea
h leg, and 5 more in its mouth,ears and tail. It also has noisy tou
h sensors, IR sensors, and a wireless LAN
ard for inter-robot 
ommuni
ation. All pro
essing { for vision, lo
alization,lo
omotion, and a
tion-sele
tion { is performed on-board the robot, using a576MHz pro
essor.RoboCup Legged League games are played on a 4m � 6m green 
arpet pit
hwith white �eld lines, 
olor-
oded goals, and four 
olor-
oded 
ylindri
al bea-
ons used for lo
alization. Additionally, the robot is able to per
eive the orangeball and red or blue uniforms worn by the robot teams. As a result, some ofthe per
eptual algorithms presented here are spe
i�
 to 
olor-
oded environ-ments. However, their uses for lo
alization and de
ision-making generalize toany per
eptual system 
apable of identifying obje
ts.Currently, RoboCup games are played under 
onstant and reasonably uniformlighting 
onditions, but one resear
h 
hallenge is to enable the robots to playunder varying illumination 
onditions. 4 Our team has parti
ipated in boththe national (US-Open) and the international robot so

er 
ompetitions forthe last three years and has 
onsistently ranked among the top teams.3 http://www.tzi.de/4legged4 The stated ultimate goal of the RoboCup initiative is to 
reate a team of humanoidrobots that 
an beat the human so

er 
hampions by the year 2050 on a real, outdoorso

er �eld [2℄. 3



3 Un
ertain Obje
t ColorsThe �rst step towards planning on a mobile robot is gathering world state in-formation. On a vision-based robot, interpreting raw sensor data is a formidable
hallenge. Furthermore, most of the previous work in ma
hine vision assumesa stationary 
amera and/or relatively un
onstrained 
omputational resour
es.In 
ontrast, the algorithms on vision-based robots must work within the 
on-straints of their on-board pro
essing 
apabilities, and be robust to mobile
ameras.Color is often (though 
ertainly not always) one of the most informative vi-sual 
ues in the environment. However, 
olor segmentation is an inherentlyun
ertain operation due to the fa
t that there are more pixel values than
an possibly be labeled manually, thereby requiring error-prone generalizationthat is often brittle. Furthermore, under 
hanging illumination 
onditions, thesame pixel values may represent di�erent 
olors. Finally, �nding the desiredobje
ts in environments with other obje
ts of similar 
olors 
an be parti
u-larly 
hallenging. These diÆ
ulties in vision pro
essing are addressed in thisse
tion. We begin with an overview of our baseline vision system, and thenpresent our two approa
hes to mitigating the vast amount of un
ertainty invision: autonomous 
olor 
alibration and a method aimed at dire
tly a
hievingillumination invarian
e.Our baseline vision system 
onsists of two main 
omponents: 
olor segmenta-tion and obje
t re
ognition.First, in the 
olor segmentation phase, the robot maps ea
h pixel in the rawYCbCr input image to a 
olor 
lass label (one of nine di�erent 
olors in ourdomain). To redu
e the memory requirements, instead of generating this map-ping for all possible (Y,Cb,Cr) 
ombinations (0{255 along ea
h dimension),we subsample the 
olor spa
e to have values ranging from 0{127 along ea
hdimension. We represent this mapping as a 
olor map, 
reated o�-board byhand-labeling a set of images 
aptured using the robot's 
amera. To generalizefrom the hand-labeled data, whi
h 
overs roughly 3% of the whole spa
e, the
olor label assigned to ea
h 
ell in the 
olor map is modi�ed to be the weightedaverage of the 
ells within a 
ertain Manhattan distan
e (a form of NearestNeighbor). The resulting 
olor map (� 2 megabytes) is loaded on the robotto segment its input images.During segmentation, we �nd 
ontiguous regions of 
onstant 
olors by or-ganizing the image pixels into run-lengths [3,4℄. Adja
ent run-lengths of thesame 
olor are merged using the Union-Find algorithm [5℄. We then build re
t-angular boundaries around the merged regions, bounding boxes, whi
h storeproperties 
orresponding to ea
h region su
h as its dimensions.In the obje
t-re
ognition phase, we use these regions along with domain knowl-4



edge to dete
t the 
olor-
oded obje
ts in the environment. One 
hallenge ofthis task is distinguishing the obje
ts of interest from other obje
ts surround-ing the �eld that happen to be segmented as the same 
olor. For instan
e, aperson standing by the �eld in an orange shirt may be identi�ed as the ball.By using heuristi
 
onstraints on the size, pixel density, and relative lo
ationsof the regions, we 
an su

essfully isolate the obje
ts of interest. These prop-erties are also used to estimate the un
ertainty in ea
h obje
t's distan
e andangle measurements, based on how well they 
onform to the expe
ted values.In addition to 
olored obje
ts, we also re
ognize �eld lines by sear
hing forlinear green-white transitions. Figure 1 shows the results from these pro
ess-ing steps. More images and videos taken by the robot are available online. 5Full details of this baseline vision system are available in [6℄.
Fig. 1. Su

essive pro
essing stages of the baseline vision system.Other resear
hers working in the RoboCup domain have developed similarvision systems [3,7℄. These systems as well as our own baseline implementationsu�er from two major drawba
ks: they require time-
onsuming manual 
olor
alibration and are highly sensitive to illumination 
hanges. In almost all ofthese systems several (� 20� 30) images need to be hand-labeled to generatethe 
olor map. Be
ause this tedious pro
ess 
an take hours to 
omplete, it isperformed rather infrequently. This infrequent re
alibration introdu
es greatun
ertainty into vision pro
essing, be
ause as 
onditions gradually 
hange, the
olor map be
omes in
reasingly obsolete.To eliminate the time-
onsuming manual 
olor 
alibration pro
ess, we devel-oped an algorithm to enable the robot to autonomously learn the desired 
olorsusing the stru
ture of the environment: known lo
ations, shapes and 
olors ofthe obje
ts in its world. Ea
h 
olor that the robot has to re
ognize is modeledas a three-dimensional Gaussian with mutually independent 
olor 
hannels.This algorithm requires that the robot have both training images and a modelof its world with known lo
ations of uniquely 
olor-
oded obje
ts.The robot starts at a known �xed initial position with an empty 
olor map andtraverses a spe
i�ed sequen
e of positions on the �eld. At ea
h su
h positionit learns about one or more 
olors by looking for 
andidate image regions ofunknown 
olor that mat
h the world model des
ription of the obje
ts. Notethat the robot does not have any labeled data; it 
hooses appropriate pixelsto learn the mean and varian
e of the Gaussians, whi
h in turn are used to5 http://www.
s.utexas.edu/users/AustinVilla/?p=resear
h/robust_vision 5



generate the �nal 
olor map using the Bayesian de
ision rule. The 
olor learnedat ea
h stage helps in the dete
tion of the later 
olors by in
reasing the robot'sability to parse its environment. The e�e
tiveness of the learned 
olor map isdemonstrated in Figure 2.This algorithm works under di�erent illumination 
onditions and di�erent�eld settings. The segmentation performan
e of this 
olor map, learned au-tonomously in less than �ve minutes, is 
omparable to that of the hand-labeled
olor map, whi
h takes an hour or more to 
reate [8℄. Several sample imagesand a video of the the algorithm in a
tion, as seen by the robot's 
amera, 
anbe found online. 6
(a) (b) (
) (d) (e) (f)
(g) (h) (i) (j) (k) (l)Fig. 2. Results from the autonomous 
olor 
alibration algorithm. (a)-(f) Input,(g)-(l) Segmented with learned 
olor map.Although this 
olor learning me
hanism provides a means for autonomously re-
alibrating the 
olor map, it does not provide a means for re
ognizing 
hangesin illumination 
onditions. A 
olor map trained under one illumination 
on-dition 
an be
ome totally useless if the lighting 
onditions 
hange, due tothe non-linear shift in 
olors. To provide robustness to illumination 
hanges,we hypothesized that di�erent images from the same illumination 
onditionwould have measurably similar 
olor spa
e distributions, as 
ompared to dis-tributions from di�erent illumination 
onditions.We 
onsider three dis
rete illumination 
onditions, bright (� 1500lux), dark(� 400lux), and intermediate (� 900). During the training phase, we train a
olor map and 
olle
ted a set of sample images of the environment for ea
hillumination 
ondition. We use the normalized RGB (rgb) 
olor spa
e, whi
hinherently provides some illumination insensitivity [9℄, and store the sampleimage distributions in (r,g). For 
omparing two distributions we use the KL-divergen
e measure [10℄.During its normal operation, the robot periodi
ally samples an input imageto generate the (r,g) distribution whi
h is 
ompared with the stored sampledistributions. The sample image is assigned an illumination 
lass label based6 http://www.
s.utexas.edu/users/AustinVilla/?p=resear
h/auto_vis6



on the training sample it is most similar to. If a suÆ
ient number of sampleimages are 
lassi�ed as belonging to a parti
ular illumination 
lass, the robot
onsiders itself to be in that illumination 
ondition and uses the appropriate
olor map for subsequent operations.This me
hanism involves the experimental estimation of a set of parameters,whi
h involves a trade-o� between 
orre
tly identifying illumination 
hangesas soon as possible and not interfering with the normal operation of the robot.With this approa
h, the robot performs eÆ
iently and dete
ts 
hanges in il-lumination qui
kly. In addition, when fa
ed with illumination 
onditions forwhi
h it has not been expli
itly trained, the robot transitions to the 
los-est illumination 
ondition and, empiri
ally, performs as eÆ
iently as before.Therefore, it does not need to 
onsider the 
ontinuous variation of illumina-tion. Videos of this pro
ess [11℄ are available online. 7In this se
tion, we have summarized three algorithms that enable the robotto deal with the un
ertainty in its visual input. The baseline vision systemperforms 
olor segmentation and obje
t re
ognition in real-time under rapid
amera motions, but it requires manual 
olor 
alibration and is sensitive toillumination 
hanges. The 
olor learning approa
h autonomously learns thedesired 
olor distributions using the environmental stru
ture. Robustness toillumination 
hanges is a
hieved using 
olor maps and sample image distribu-tions over a few dis
rete illumination 
onditions.4 Un
ertain Sensor and A
tuator ModelsThe algorithms des
ribed in Se
tion 3 greatly redu
e the un
ertainty in therobot's visual output, i.e. the lo
ation and size of obje
ts in the visual �eld.However, another signi�
ant sour
e of un
ertainty in the robot's pro
essing
omes from translating that visual data into useful information, su
h as therobot's a
tual distan
e to an obje
t seen in an image. To a

omplish thistranslation, the robot relies on a sensor model whi
h de�nes the relationshipbetween the obje
t's properties in the image and its position relative to therobot on the �eld. Another model that the robot uses is an a
tion model, whi
hadjusts its estimate of the world state a

ording to the a
tions it exe
utes.Both the sensor and a
tion models are inherently noisy. Ina

ura
ies in thea
tion and sensor models inevitably lead to ina

ura
y in the robot's lo
ationestimate. The resulting un
ertainty 
an therefore be redu
ed by ensuring thatthe robot's a
tion and sensor models are a

urately 
alibrated.Sensor and a
tuator models are typi
ally 
alibrated manually: sensor readingsare 
orrelated with a
tual measured distan
es to obje
ts, and robot a
tua-tor 
ommands are measured with a stopwat
h and a tape measure. Howeverthis type of approa
h has signi�
ant drawba
ks. It is labor intensive, and the7 http://www.
s.utexas.edu/~AustinVilla/legged/illumination7



model is ne
essarily tuned to a spe
i�
 environment and may not apply moregenerally. A te
hnique for autonomously 
alibrating both models simultane-ously, 
alled asami (Autonomous Sensor and A
tuator Model Indu
tion), ispresented in this se
tion.asami explores the problem of autonomous model learning in the 
ontext of aspe
i�
, somewhat simpli�ed, setting. The robot learns a sensor model and ana
tion model, ea
h represented by a 
alibration fun
tion. The sensor modelfun
tion maps the various readings of a visual sensor to relative distan
esfrom a �xed landmark, and the a
tion model fun
tion maps a range of a
tion
ommands to the velo
ities of the 
orresponding movements. asami is bothautonomous and unsupervised, in that the robot never re
eives any feedba
kas to its a
tual lo
ation or velo
ity. asami's goal is for the robot to learna
tion and sensor models that a

urately re
e
t its distan
es and velo
ities.asami involves the robot performing the following three tasks simultaneously.� Walking forwards and ba
kwards while its visual sensor fa
es a �xed target,
overing a range of relevant distan
es and velo
ities.� Learning a fun
tion from a
tion 
ommands to a
tual velo
ities, assumingthe distan
e 
alibration for the visual sensor is a

urate.� Learning a fun
tion from distan
e observation data to its distan
es from thetarget, assuming the robot has an a

urate sense of its velo
ities.This pro
ess su

essfully learns a
tion and sensor models that 
losely approx-imate measurements made manually with a stopwat
h and a tape measure.The results reported in this se
tion make use of the vision pro
essing moduledes
ribed in Se
tion 3 as well as a learned walking module [12℄. To moveforwards and ba
kwards at di�erent speeds, the robot interpolates betweenparameters for an idle walk, a fast forwards walk, and a fast ba
kwards walk.As the experiments des
ribed below demonstrate, the resulting speed is anon-linear fun
tion of the parameters.Meanwhile, the Aibo's visual sensor is based on its 
amera, whi
h, as des
ribedin Se
tion 3, is used to re
ognize obje
ts in
luding a 
olored 
ylindri
al bea
onthat the robot 
an use to help it lo
alize while on a playing �eld. The height ofthe bea
on in the robot's image plane de
reases with the robot's distan
e fromthe bea
on; this observed height (in pixels) is the visual sensor reading usedfor the experiments reported in this arti
le. A video of the Aibo performingits training behavior is available online. 8Be
ause the robot is trying to learn two arbitrary 
ontinuous fun
tions, itmust represent them with a fun
tion approximator. Polynomial regression is8 http://www.
s.utexas.edu/~AustinVilla/?p=resear
h/simultaneous 
alibration8



used for both fun
tions. Furthermore, asami learns the a
tion and sensormodels from ea
h other in that it is not given any ground truth as to therobot's distan
e to the bea
on or its speed. Therefore, it 
annot learn the twomodels in any parti
ular units. However, the learned a
tion and sensor modelsare 
onsistent with ea
h other. Note that this property is suÆ
ient for it toperform domain-spe
i�
 tasks, su
h as predi
ting the amount of time a spe
i�
a
tion 
ommand will take to yield a 
ertain visual sensor reading.Spe
i�
ally, as the robot moves towards and away from the bea
on, we de-note its (a
tual) distan
e from the bea
on at time t as x(t). The robot's kthvisual sensor observation o

urs at time tk and is denoted by obsk. Ea
h valuereported by the visual sensor 
orresponds to a spe
i�
 distan
e. This sensormodel fun
tion is denoted by S, so that x(tk) = S(obsk). The fun
tion S isone of the two fun
tions that the robot is trying to learn. At the same time,the robot 
ontinuously exe
utes an a
tion 
ommand, C(t), that varies withtime. Ea
h a
tion 
ommand moves the robot at a spe
i�
 velo
ity, and wedenote the fun
tion from 
ommand to velo
ity by A. The robot learns this a
-tion model A along with the sensor model S. The a
tion model also providesinformation about the robot's lo
ation: x(t) = x(0) + R t0 A(C(s)) ds. asamiworks by impli
itly performing a 
ontinual 
omparison of these two sour
es ofinformation. The robot knows the values of obsk, tk, and C(t), and its task isto learn the fun
tions A and S.Note that the sensations and a
tion e�e
ts are 
ontinually perturbed by zero-mean random noise, so that formally S and A represent the average distan
eor velo
ity 
orresponding to a given sensation or a
tion sele
tion. This noiserepresents an unavoidable sour
e of un
ertainty for the robot, but by estimat-ing S and A as a

urately as possible, the un
ertainty is minimized.asami learns the a
tion and sensor models simultaneously. To learn the sensormodel, it assumes the a
tion model is 
orre
t, and uses the resulting stateestimate (the lo
ation estimate based on the a
tion model), denoted by xa(t),as training data for the sensor model. Similarly, to learn the a
tion model,asami uses a lo
ation estimate based on the 
urrent sensor model, xs(t), tolearn the a
tion model.Both models 
an be learned simultaneously be
ause, even though the a
tion(sensor) model learned from an ina

urate sensor (a
tion) model will be in-a

urate, it will be an improvement. As ea
h model grows more a

urate, itsability to help the other model improve grows. As this bootstrapping pro
ess
ontinues, the two models 
onverge to fun
tions that a

urately re
e
t whatthey are trying to model. Be
ause both models grow in a

ura
y as time goeson, the regressions should give more weight to the more re
ent data points.Thus a weighted regression is used, where ea
h data point has a weight thatde
reases over time [13℄. 9



After asami has run for a pre-set amount of time (two and a half minutes), we
onsider its best estimates for A and S to be the models that it has learned atthat point. The su

ess of asami is evaluated by 
omparing the learned a
tionand sensor models to those measured with a stopwat
h and a tape measure. Atypi
al run is depi
ted in Figure 3a. Over the 
ourse of a trial, both models getprogressively more a

urate. The learning 
urves are depi
ted in Figure 3b.Both models' errors are shown, 
ompared to the best possible error for themeasured model and the degree of the polynomial being learned. The data isaveraged over 15 trials [13℄.

a) b)
Time (s)

x(t)

Learned Action Model Error

Learned Sensor Model Error

Time (s)

Error

Fig. 3. a) In this example run, the +'s are values of xs(t), and the 
urve depi
tsxa(t). Over time, ea
h model learns how to keep its estimate of the lo
ation 
lose tothe other model's estimate. b) The error for the a
tion model is in mm/s, and forthe sensor model in mm. The horizontal lines are at the minimum possible error tothe measured models for a polynomial of the appropriate degree.Ina

ura
y in the robot's a
tion and sensor models leads dire
tly to un
er-tainty in its lo
ation estimates. By learning a

urate a

ounts of its a
tionand sensor models, the robot 
an minimize the 
orresponding un
ertainty.The te
hnique presented in this se
tion, asami, enables a mobile robot to au-tonomously learn its sensor and a
tion models in an environment with a �xedlandmark. The following se
tion dis
usses how the robot 
an make use of a
-
urate a
tion and sensor models to redu
e the un
ertainty generated duringMonte Carlo lo
alization.5 Un
ertain Robot Lo
alizationTypi
ally, on mobile robots, the a
tion and sensor models feed into a proba-bilisti
 lo
alization algorithm that expli
itly represents the robot's un
ertaintyin its own lo
ation in the world. One su
h algorithm is parti
le �ltering, alsoknown as Monte Carlo Lo
alization (MCL) [14,15℄. MCL has been shown tobe a robust solution for mobile robot lo
alization, parti
ularly in the fa
eof 
ollisions and large, unexpe
ted movements (e.g. the \kidnapped robot"problem [15℄). It has been well-studied on wheeled robots with range-�nding10



sensors. This se
tion summarizes extensions that in
rease its robustness andredu
e un
ertainty for vision-based legged robots [16℄.In Monte Carlo Lo
alization, a robot estimates its position using a set of sam-ples 
alled parti
les. Ea
h parti
le represents a hypothesis about the robot'spose: its global lo
ation (x; y) and orientation (�). The density of parti
le prob-abilities represents a probability distribution over the spa
e of possible poses.Ea
h operating 
y
le, the robot updates its pose estimate based on its a
tionand sensor models. In the motion update, ea
h parti
le's pose is moved a

ord-ing to the velo
ity reported by the a
tion model. Random noise is added toa

ount for the model's un
ertainty. Next, during the observation update, thesensor model is used to update ea
h parti
le's probability. The model predi
tsthe likelihood of the robot's observations given the parti
le's pose, and adjuststhe parti
le's probability a

ordingly.Finally, parti
les are resampled in proportion to their probabilities. High prob-ability parti
les are dupli
ated, repla
ing parti
les with low probability. Inaddition, to 
ope with unexpe
ted movements, standard MCL approa
hes usereseeding ; during the resampling step, a few of the parti
les with low prob-ability are repla
ed by estimates obtained by triangulation of the landmarksseen in the 
urrent frame [17℄.We have shown that a vision-based legged robot, operating in a world withunmodeled movements, en
ounters some parti
ularly diÆ
ult types of un
er-tainty during lo
alization. Our improvements on the basi
 Monte Carlo Lo
al-ization algorithm allow this theoreti
ally well-grounded approa
h to be pra
-ti
ally deployed in this tri
ky setting. In parti
ular, we have demonstratedsigni�
ant in
reases in lo
alization a

ura
y and 
ertainty by i) over
omingbiased distan
e estimate; ii) improving the robot's a
tion model; and iii) main-taining landmark histories.In the observation update step of MCL, the likelihood of an observation 
anbe 
al
ulated from the per
eived distan
e and angle to the observed landmark.Distan
e estimates 
omputed analyti
ally using geometri
 methods tend to beina

urate and are hen
e not used in standard MCL methods, resulting in theex
lusive use of angle information for probability updates [18℄.In our approa
h, a distan
e fun
tion is 
onstru
ted via 
ubi
 regression basedon empiri
al data relating the size of a landmark in the image to its distan
efrom the robot. In
luding the resulting distan
e estimates in the lo
alizationupdate de
reased lo
alization error by more than 30% when 
ompared withusing only angle information, and by almost 50% when 
ompared with usingan analyti
 distan
e model [16℄.Causing the robot to shorten its step as it approa
hes a target point so asto take advantage of a more pre
ise motion model during the motion update11



redu
ed the lo
alization error by an additional 40%. Finally, enabling the robotto remember landmark histories did not have any signi�
ant e�e
t duringsmooth, unobstru
ted motion. But it enabled the robot to re
over mu
h morequi
kly from unmodeled movements, su
h as 
olliding with another robot orbeing pi
ked up and moved [16℄.After su
h unmodeled movements, it is important to qui
kly triangulate one'spose from �xed landmarks. To do so, either two or three landmarks must beseen, depending on whether or not distan
e information is used. A short
omingof previous reseeding approa
hes is that they require the landmarks to be seenin the same 
amera frame, whi
h may not o

ur very frequently. We 
ontributea 
on
rete me
hanism to enable reseeding even when two landmarks are neverseen 
on
urrently.Observed distan
es and angles to landmarks are stored over su

essive framesin a landmark history. These stored values are adjusted ea
h frame based onthe robot's odometry, 
omputed by its a
tion model. Su

essive observationsof the same landmark are averaged, weighted by their 
on�den
e, then givenas input for reseeding. Be
ause the robot's a
tion model is un
ertain, the
on�den
e is de
ayed ea
h 
y
le that the re
ord stays in the history. Therobot's high-level vision module o

asionally mistakes one obje
t for another,resulting in a false observation. To prevent these false observations from havinglong-term 
onsequen
es, re
ords that have been in the history for too long arethrown out.The robot's �nal pose estimate is represented by the set of parti
les in MCL.When a single estimate is required for planning and de
ision-making, we usethe weighted average of the parti
les. The robot's 
ertainty in its pose is foundby averaging the parti
le weights. This estimated pose and 
orresponding 
er-tainty, 
ombined with knowledge of the relative positions of movable obje
ts inthe environment, 
onstitute the robot's world state, upon whi
h all planningde
isions are made.6 Planning and De
ision-Making Under Un
ertaintyTo this point, we have introdu
ed methods for redu
ing the un
ertainty in therobot's world state estimate that results from its vision, motion, and lo
al-ization pro
esses. In this se
tion we pla
e parti
ular emphasis on the robot'smethods for dealing with un
ertainty in planning and de
ision-making. Weintrodu
e algorithms by whi
h our robots 
an i) interleave planning, a
tion,and information-gathering so as to redu
e lo
alization un
ertainty; ii) exe
ute
onsistent a
tions over time so as to prevent os
illations due to un
ertainty;iii) determine when to use rea
tive behaviors instead of deliberative ones; andiv) share and merge lo
al per
eptual information among teammates as a wayof a

urately tra
king the world state and planning 
ollaborative a
tions.12



6.1 Interleaving Planning, A
ting, and Information-GatheringWhen planning under un
ertainty, it may be possible to a
t expli
itly so asto redu
e un
ertainty, perhaps at some 
ost. For example, a lost driver ina new 
ity 
an stop to ask for dire
tions, or 
an follow signs to a knownlandmark and replan from there. When su
h information-gathering a
tionsare available, the agent 
an take one of three basi
 attitudes towards dealingwith un
ertainty. First, at the most passive extreme, the agent 
an negle
t toexpli
itly gather information, instead planning based on whatever informationhappens to be available. Se
ond, an agent 
an take a slightly more a
tive rolein its information-gathering by a
quiring missing information on an as-neededbasis. Third, at the most a
tive extreme, the agent 
ould treat information-gathering as a �rst 
lass planning operator and deliberatively maintain itslevel of 
ertainty in the world state over the 
ourse of its entire plan. Here,we provide an example of this third form of fully interleaved planning andinformation-gathering.In RoboCup so

er, the robot's main fo
us is on the ball. It must 
onstantlytra
k the ball's position and a
t de
isively as soon as it gains possession.At the same time, it must stay well-lo
alized to make good planning de
i-sions. Be
ause it is often diÆ
ult for the robot to see landmarks when itshead is pointed down at the ball, there is a trade-o� between tra
king mov-ing targets (the ball and the opponents) and staying lo
alized. In this 
on-text, information-gathering a
tions in
lude 
ommuni
ation with teammatesand purposely looking for landmarks to improve lo
alization a

ura
y. In abehavior 
alled a
tive lo
alization, the robot o

asionally shifts its fo
us fromthe ball to a
tively look for landmarks to improve its lo
alization estimate.A
tive lo
alization is triggered when the un
ertainty in the lo
alization esti-mate be
omes too large. If the lo
alization 
ertainty falls below a threshold,the robot uses its 
urrent pose estimate and the known geometry of the worldto predi
t the relative positions of the various landmarks. It then uses thisknowledge to plan the motion of its head (pan and tilt) that should allow itto see the 
losest markers. Be
ause performing a
tive lo
alization 
ould 
ausethe robot to lose tra
k of the ball's position, espe
ially when the ball is nearby,a
tive lo
alization is performed only when the robot is a suÆ
ient distan
e(more than 800mm) away from the ball.The robot's obje
tive in in
luding a
tive lo
alization in its a
tion plan is toarrive at the ball with high 
ertainty in its lo
ation, so that it does not needto pause to lo
alize after rea
hing the ball. To verify that a
tive lo
alization
an a
hieve this obje
tive, we performed the following experiment.The robot starts at a �xed point slightly behind the 
enter of the �eld withthe ball near the edge of the opposite goal box. At the start of a trial, the13



robot initiates its plan of walking to the ball and ki
king it into the goal. Twose
onds after the robot begins exe
uting its plan, we impede its motion forfour se
onds by holding it still. While the robot attempts to walk towards theball, the simulated 
ollision disrupts the robot's lo
alization estimate. We thenrelease the robot and allow it to 
ontinue exe
uting its goal-s
oring behavioruntil it either su

essfully s
ores a goal or fails by ki
king the ball out ofbounds.This experiment was performed with and without a
tive lo
alization and 
om-prised 15 trials. For the su

essful trials, we re
orded the number of attemptedki
ks before s
oring as well as the total time taken. The results, shown in Ta-ble 1, show that a
tive lo
alization signi�
antly improves the robot's abilityto s
ore qui
kly and 
onsistently. The time results are statisti
ally signi�
ant(p-value of 1:385� 10�5 using a one-tailed t-test).A
tive Lo
alization Avg. Time Avg. Attempts Su

ess RateWithout 26:11 � 5:74 2:7 � 1:16 20%With 15:617 � 6:33 1:2 � 0:42 67%Table 1Time, number of attempts, and su

ess rate for goal-s
oring with and without a
tivelo
alization.Without the a
tive lo
alization, the robot often ends up with a wrong poseestimate when it it gets to the ball. It ki
ks the ball in the wrong dire
tionand then has to make more than one attempt before it gets the ball into thegoal. When using a
tive lo
alization the robot almost always ki
ks the ballinto the goal on its �rst attempt.6.2 The Task Hierar
hyOne 
ommon danger of planning under un
ertainty is that 
u
tuations in arobot's estimated world state 
an 
ause the robot to va
illate among the be-haviors planned from ea
h per
eived state. To 
ounter this e�e
t, the robotmust be equipped with some form of hysteresis that biases it towards pursu-ing 
onsistent subgoals over time [19℄. This se
tion presents our novel a
tionsele
tion paradigm designed for this purpose.In the absen
e of un
ertainty, a purely rea
tive ar
hite
ture suÆ
es to des
ribeintelligent agent behaviors. One well-known su
h ar
hite
ture is the produ
tionrule system, whi
h 
onsists of if-then rules that are evaluated at ea
h a
tionopportunity to map world states to a
tion 
hoi
es. These systems are oftenused to des
ribe behaviors for agents in the RoboCup Simulated So

er league,where agents have mu
h better sensors than those that exist in the real worldtoday [20℄. In this simulation environment, the agents 
an trust their worldstate knowledge to be stable and reliable.14



However, the highly noisy sensors used in the RoboCup Legged League preventany teams known to the authors from using produ
tion rule systems. Instead,many teams use �nite state ma
hines (FSMs) to des
ribe behaviors. Robotsusing this ar
hite
ture swit
h behaviors only when their observations providestrong enough eviden
e that the 
urrent behavior is no longer appropriate.Although FSMs are simple to implement, they 
an be hard to maintain, re-�ne, and expand. For this reason, we designed a task hierar
hy framework [21℄.Instead of representing ea
h behavior or a
tivity as an atomi
 state, we 
re-ate tasks that may re
ursively 
all other tasks. Like a subroutine 
all, theinvo
ation of a task may persist for some time (throughout multiple low-levelexe
ution 
y
les) and maintain lo
al state information. Unlike typi
al subrou-tines, ea
h task in the sta
k of a
tive subtasks 
ontinually monitors the worldstate and may swit
h to a new subtask in response. The sta
k thus 
orrespondsto a 
onsistent set of a
tive subgoals, and the robot bene�ts from hysteresisat ea
h level of the hierar
hy. This framework thus provides more 
exibilitythan FSMs while generalizing their ability to enable hysteresis, whi
h is soimportant when a
ting under un
ertainty.6.3 Opportunisti
 Rea
tivityAs presented throughout this arti
le, a large sour
e of un
ertainty in planningis the robot's lo
alization estimate, whi
h in turn 
omes from the robot'ssensation and a
tion histories. However, in 
ertain 
ir
umstan
es, there maybe enough information from the robot's instantaneous per
eptions to make area
tive de
ision. That is, the 
orre
t a
tion to take is the same, regardless ofthe details of the world state.We take advantage of su
h opportunisti
 rea
tivity in our robots by enablingthem to shoot dire
tly towards the goal whenever it is 
lose and visible. Whenthe robot a
quires the ball in the quarter of the �eld 
losest to the o�ensivegoal, it �rst turns to the angle where the goal should be lo
ated, assuming itslo
alization estimate is 
orre
t. However, on
e it rea
hes that angle, it makesa small adjustment to fa
e the 
enter of the largest region of goal-
olor that ithas seen in the last few vision frames. After this adjustment, it ki
ks the ball.The robot's obje
tive in this situation is to ki
k toward the largest openinginto the goal, avoiding all possible obsta
les (in
luding both things that aremodeled by the world state, su
h as the position of the opponent goalie orother robots, and things whi
h are entirely unmodeled, su
h as a referee'sleg). Sin
e the robot 
annot a

urately identify all possible obsta
les, andsin
e the robot's estimation of its own lo
ation is itself prone to un
ertainty,the best information the robot has about the lo
ation of this opening is itsimmediate per
eption about regions of goal-
olor.Note that this opportunisti
 rea
tivity 
ontrasts with a
tion ar
hite
tures that15



fully integrate rea
tive and deliberative reasoning [22,23℄. Our robot a
ts en-tirely based on its world model ex
ept for during su
h ex
eptional 
ir
um-stan
es when the immediate per
eptions provide all the information ne
essaryto a
t.6.4 World State Representation and Communi
ationTo this point, we have fo
used on how an individual robot 
an plan its a
tionsin the fa
e of un
ertainty. A multi-robot environment introdu
es new oppor-tunities and additional 
hallenges with regard to a
ting under un
ertainty.For instan
e, robots may share their own world state information with theirteammates to improve the a

ura
y of ea
h other's estimates. However, whenthere are large dis
repan
ies in world state estimates between teammates, 
o-ordinating behaviors 
an be a 
hallenge.In our multiagent s
enario, ea
h robot maintains its own world state estimate.The robot tra
ks the ball and opponent positions using a Kalman �lter-likerepresentation [24℄. When the robot sees the ball, the ball's relative distan
eand angle are represented as a two-dimensional Gaussian with varian
es 
om-puted from the un
ertainty of the observation [21℄. Ea
h ball observation ismerged with the previous estimate, whi
h is �rst adjusted in a

ordan
e withthe robot's motion. The merging pro
ess gives more weight to observationswith lower varian
es. If the ball is not seen, the 
urrent estimate's 
ertaintyis degraded by in
reasing its varian
e. Opponent position estimates are main-tained similarly. We also maintain an estimate of the relative velo
ity of theball, based on the 
hange in ball position estimates over a few frames. Velo
ityinformation 
an be used to update the ball's position estimate even when theball is not seen, for example when performing a
tive lo
alization (Se
tion 6.1).Using this probabilisti
 framework to represent the various movable obje
tsin the world, the robots are able to in
orporate information 
ommuni
ated byteammates. To reliably merge teammate information with its own estimate, arobot must know that teammate's un
ertainty in the information provided.When ea
h robot broad
asts its state information to its teammates, it must
onvert its ego
entri
 representation to the global 
oordinate system using therobot's estimate of its own position. The un
ertainties of the 
ommuni
atedinformation are therefore a fun
tion of the relative obje
t un
ertainty and therobot's own position un
ertainty. A robot must be suÆ
iently 
ertain of bothestimates before it will 
ommuni
ate information about that obje
t.When merging the ball estimates from teammates, a robot primarily trustswhat it sees over what is 
ommuni
ated, i.e. it 
onsiders the teammates' esti-mates of the ball only when the 
ertainty of its own ball lo
ation estimate islow. It then merges the teammates' estimates and uses the result to de
ide thedire
tion in whi
h to start sear
hing for the ball. Without the 
ommuni
ated16



information, the robot typi
ally spends mu
h of its time re
overing after losingsight of the ball, espe
ially after sudden ball movements su
h as ki
ks. With
ommuni
ation. however, if one robot sees the ball, its teammates are able toturn in the most probable dire
tion to re
over the ball's position qui
kly.To empiri
ally test the advantage of information sharing between robots, weperformed the following experiment. Two robots are pla
ed on the �eld, one inthe goalkeeper position at the 
enter of the goal, the other near the far 
ornerof the opposite goal. We pla
e the ball dire
tly in front of the �rst robot. Inthis position, the ball is in 
lear sight of the �rst robot but too far away to beseen by the se
ond robot.The se
ond robot's goal is to �nd and approa
h the ball, whi
h it initially
annot see. Our hypothesis was that the robot would perform best when se-le
tively merging information from its teammate. That is, it 
ould improveperforman
e by listening to its teammate's ball information when it was un-
ertain itself. At the same time, we expe
ted that if the robot 
ontinued to usethe merged estimate even when the ball was in plain sight, its performan
ewould degrade. The reasoning behind this hypothesis is that the robots' lo
al,relative ball estimates are mu
h more a

urate than their global estimates,whi
h must rely on both robots' estimates of their own poses. Thus for arobot that sees the ball, in
orporating a teammate's global ball estimate ismore likely to degrade the estimate quality.Results verifying these e�e
ts over 15 trials are shown in Table 2. A su

essfultrial is one in whi
h the robot is able to tou
h the ball in less than one minute.The average time is 
al
ulated for su

essful trials only.Merged Estimates Average Time (s) Su

ess RateNever 28:72 � 11:9 67%When needed 15:87 � 1:7 100%Always 38:73 � 11:86 60%Table 2Time taken to �nd the ball using di�erent 
ommuni
ation paradigms.All timing results are statisti
ally signi�
ant a

ording to a one-tailed t-test.The standard deviation is higher when merged estimates are never used be-
ause the robot takes random walks a
ross the �eld and manages to �nd theball faster in some trials. Similarly, when information from teammates is al-ways taken into a

ount, the improper merging 
an 
ause the robot to wandero� in random dire
tions. Note that with ex
essive merging the robot a
tuallyperforms worse than in the 
ase with no 
ommuni
ation.In other work done on information sharing in this domain [25℄, only the ballestimates bene�ted from the 
ombination of sensory and 
ommuni
ated infor-17



mation. However, we found that it is better for the robot to know the likelylo
ations on the �eld where it might be obstru
ted. Therefore, in our 
ase,robots always merge 
ommuni
ated opponent estimates. On
e again, the esti-mates with higher 
ertainty are given proportionately more importan
e. Thisinformation is used mainly to avoid the opponents. We observe that using themerged opponent estimates provides a signi�
ant improvement in the robot'sbehavior. For example, when the robot is 
lose to an opponent (even one it
annot see), it is able to determine that it is ne
essary to 
lear the ball qui
kly.Although all of the behaviors des
ribed above are planned based on a singleaveraged pose estimate derived from the lo
alization algorithm, it would bepossible to 
hoose the a
tion that is most e�e
tive for the range of possible lo-
ations in whi
h the robot might be [26℄. But overall, these behaviors are quitee�e
tive, as eviden
ed by our 
umulative s
ore of 22{1 in 5 games (and 3rd-pla
e �nish) at the 2005 RoboCup US Open tournament 9 , and quarter�naliststatus at RoboCup 2005.7 Related WorkIn the early se
tions of this arti
le, we have referred to some of the relevant re-sear
h related to ea
h of the model-building subtopi
s 
overed. In this se
tion,we fo
us on the most related work pertaining to planning under un
ertainty.One family of approa
hes to planning under un
ertainty 
omes from the 
lassi-
al planning 
ommunity. Using a STRIPS-like representation of states and a
-tions (operators), systems su
h as Weaver and Buridan take de
ision-theoreti
approa
hes to sear
hing for plans with maximum expe
ted utility [27℄. How-ever the symboli
 representations of the world state assumed by these ap-proa
hes are often hard to 
ome by in roboti
 appli
ations.In roboti
s, di�erent te
hniques have been implemented for dealing with un-
ertainty in the robots' inputs and a
tions, depending on the appli
ation. Simet al. [28℄ present an approa
h to SLAM and robot exploration that generatesan optimized online 
ontrol poli
y su
h that the robot 
an explore new pla
esqui
kly while obtaining data that leads to the most a

urate map of the world.A similar idea is presented by Whaite and Ferrie [29℄. Roy et. al [30℄ look atthe problem of un
ertainty for health 
are robots where the robot has to �ndand assist residents of a health-
are fa
ility. Work has also been done on plan-ning robot a
tions in partially observable environments using POMDPs [31℄.POMDPs have been used to 
ontrol robot medi
al assistants, whi
h keep tra
kof patients and dete
t missing people [32℄. In multiagent s
enarios, 
oordina-tion graphs have been used to a
hieve 
ooperative behavior among agents,9 The top three teams were quite evenly mat
hed as eviden
ed by the fa
t that webeat the eventual 
hampion in an exhibition mat
h and lost to the 2nd-pla
e teamby only 1 goal. 18



even in the absen
e of 
ommuni
ation between them [33℄.Though several su
h approa
hes exist for 
ontrol, 
oordination and a
tionsele
tion, espe
ially for multiagent teams, very few approa
hes address un-
ertainty simultaneously at di�erent levels, from the low-level sensors to thehigh-level de
ision-making and ba
k to the low-level a
tuators. In our domain,we have presented te
hniques that enable a group of four robots to do so whilee�e
tively sharing information and fun
tioning eÆ
iently as a team.8 Con
lusionMobile robots en
ounter un
ertainty from many di�erent sour
es. Comparedto wheeled robots with distan
e-based sensors, legged robots with vision-basedsensing must 
ope with extreme un
ertainty. This arti
le identi�es sour
es of,and proposes methods for mitigating, un
ertainty 
oming from pixel segmen-tation, sensor modeling, a
tion modeling, and lo
alization. It then fo
uses onthe me
hanisms for planning and de
ision-making in the fa
e of the resultingun
ertainty. We report methods for enabling the robots to i) interleave plan-ning, a
tion, and information-gathering; ii) exe
ute 
onsistent a
tions overtime; iii) behave rea
tively when appropriate and iv) share and merge lo
alper
eptual information among teammates as a way of a

urately tra
king theworld state.All the experiments were 
ondu
ted on a 
ommer
ial, o�-the-shelf robot andevaluated using the roboti
 so

er test-bed environment. Our ongoing resear
hagenda in
ludes generalizing to multiple platforms and testing these algo-rithms in more un
ontrolled (e.g. outdoor) environments.A
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