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Abstract

We describe an adaptive control framework for changing-contact robot manipulation tasks that require the robot to make and break
contacts with objects and surfaces. The piecewise continuous interaction dynamics of such tasks make it difficult to construct and
use a single dynamics model or control strategy. Also, the nonlinear dynamics during contact changes can damage the robot or
the domain objects. Our framework enables the robot to incrementally improve its prediction of contact changes in such tasks,
efficiently learn models for the piecewise continuous interaction dynamics, and to provide smooth and accurate trajectory tracking
based on a task-space variable impedance controller. We experimentally compare the performance of our framework against that
of representative control methods to establish that the adaptive control, prediction, and incremental learning capabilities of our
framework are essential to achieve the desired smooth control of changing-contact robot manipulation tasks.
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1. Introduction

As a motivating example, consider the robot manipulator in
Figure 1a, which has to move its end-effector along a motion
trajectory generated by an external planning system for a given
goal. The target motion trajectory requires the robot to make
and break contact with objects and surfaces. This task’s dynam-
ics, i.e., the relationship between the forces acting on the robot
and the resultant accelerations, vary markedly before and after
contact, e.g., after completing segment ‘1’ and making contact
with the table in Figure 1a. They also vary based on factors
such as type of contact, surface friction (e.g., surface change in
the middle of segments ‘2’ and ‘4’), and applied force. Many
industrial assembly tasks, e.g., peg insertion and stacking, and
many human manipulation tasks are ‘changing-contact’ tasks.
The interaction dynamics of the robot performing these tasks
are discontinuous when a contact is made or broken and contin-
uous elsewhere, making it difficult to construct a single dynam-
ics model and a strategy for smooth control of the robot’s mo-
tion. A two-level model can be designed with separate contin-
uous dynamics and distinct control laws within each of a set of
discrete dynamic modes. The overall dynamics are then piece-
wise continuous, with the robot transitioning between modes as
needed (Kroemer et al., 2019). Even with such a model, the
nonlinear interaction dynamics can cause large discontinuities
in dynamics in the transition regions, and the associated high
forces, jerk, and vibrations can damage the robot and the ob-
jects in the domain.

Given a target motion pattern for a task of interest, we seek
a control framework that enables the robot to accurately follow
the pattern while ensuring that it: (i) uses low stiffness when-
ever possible to support compliance and expend less energy; (ii)

can handle the continuously changing interaction dynamics that
arise when the task requires the robot to be in continuous con-
tact with an object (or environment); (iii) can handle the piece-
wise continuous interaction dynamics resulting from discrete
changes in the environment or from making or breaking con-
tacts; (iv) can quickly adapt to previously unseen interaction dy-
namics by acquiring and using a suitable adaptive controller; (v)
can accurately anticipate collisions and contact changes in the
target task, and switch smoothly to a transition phase controller
that reduces the impact forces and vibrations during these tran-
sitions; and (vi) requires as few trials as possible to learn the
predictive models necessary to perform the task. The associ-
ated measures of performance include trajectory-tracking accu-
racy, variation in controller stiffness, delays in task-completion,
variation in impact forces, and smoothness of motion.

As a step towards the ideal control framework mentioned
above, we present an adaptive framework for smooth control
of changing-contact robot manipulation tasks. It unifies our
work on a variable impedance controller for continuous con-
tact tasks (Mathew et al., 2019), an extension for piecewise-
continuous dynamics due to contact changes (Sidhik et al.,
2020), and a recent approach for predicting contact changes
and handling the associated discontinuities in dynamics (Sid-
hik et al., 2021). We advocate the need for a hybrid framework
with one or more discrete modes, each with a predictive (for-
ward) dynamics model of sensor measurements, a control law,
and a relevance condition. The hybrid framework also includes
transition-phase controllers for handling discontinuities corre-
sponding to contact changes caused by collisions or impact-less
mode transitions. Our choice of representation for model learn-
ing enables efficient adaptation of each mode’s dynamics model
and makes the identification of modes independent of the mo-
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(a) Changing-contact task.

(b) 3D simulation setup. (c) 2D test scenario.

Figure 1: (a) Illustrative changing-contact task where the robot experiences
discontinuities in dynamics due to different surface friction in the middle of
motions “2” and “4”, and collisions at the end of “1”, “2” and “4”; (b) Simulated
environment used in the experiments in Section 4.4; robot approaches table
from top, slides end-effector (green) along table until it collides with wall, and
slides along wall and table; (c) 2D multi-spring environment with the robot
lagging behind the target pattern with the AIC method used in Section 4.2.2:
red block is robot end-effector, green lines are springs attached to end-effector.

tion direction and the magnitude of applied forces. Our con-
troller within each mode is inspired by research in human mo-
tor control, which indicates that people learn to adapt arm stiff-
ness to any new task by building and using internal models of
task dynamics with generic (i.e., domain- or task-independent)
and specific (i.e., domain- or task-dependent) representations
in order to predict hand or object configurations and the forces
during task execution (Kawato, 1999).

Our framework’s design is subject to two caveats. First, for
information and feedback, our framework primarily relies on
the poses, velocities, and force-torque measurements at the end-
effector of the robot. We intentionally do not use other sensors
such as cameras, e.g., to provide external estimates of contact
modes or locations, although it is possible to include them in
our framework. This limitation is imposed to thoroughly ex-
plore the control capabilities we can support using these end-
effector measurements; also, the other sensors are not always
available and their use introduces additional uncertainty. Sec-

ond, the target motion pattern, predictive models, and control
laws are defined in the Cartesian space because it helps sim-
plify the control and learning problems of interest and makes
our framework more generalizable and independent of the robot
platform. The main components of our framework are:

1. An adaptive variable impedance control strategy used
within any given continuous contact mode, with the abil-
ity to automatically and incrementally adapt the forward
model of the mode’s dynamics. The forward model is used
to revise the gain parameters (i.e., stiffness and damping)
of the corresponding control law for accurate and compli-
ant motion within that mode.

2. An approach to model the piecewise-continuous dynam-
ics of changing-contact manipulation tasks without prior
knowledge of all its modes or the order in which these
modes appear. The approach also automatically identifies
the modes for any given task, and transitions to appropriate
existing or new modes during the execution of the target
motion trajectory.

3. A contact change handling module that incrementally im-
proves its predictions of contact locations, uses these esti-
mated contact locations to minimize time spent in a transi-
tion phase controller, and achieves smooth motion dynam-
ics during mode transitions by automatically adapting the
velocity profiles and parameters of the controller.

Our related prior conference papers described the control of
continuous-contact mode tasks, including the ability to learn
forward models and adapt the parameters of an impedance con-
troller for each mode (Mathew et al., 2019); the control of
manipulation tasks involving changes in surfaces and types of
contacts (Sidhik et al., 2020); and an initial framework that
explored the use of transition-phase controllers for changing-
contact manipulation tasks (Sidhik et al., 2021). These corre-
spond to the first two components and part of the third com-
ponent listed above. In this paper, we describe all components
of our current framework for completeness, focusing on the key
novel contributions:

(a) Detailed description of the use of transition-phase con-
trollers in our framework to address the discontinuities of
changing-contact manipulation tasks. We also describe
new mechanisms that incrementally predict the contact
changes, achieve the desired smooth transition to/from
these controllers from/to the continuous mode controllers,
and provide the desired smooth velocity (motion) profile.

(b) Extensive experimental evaluation in the context of
changing-contact manipulation tasks—see Figure 1. In
particular, we discuss new results comparing our frame-
work’s capabilities with existing baselines in controlled
simulation environments, establishing the need for incre-
mental learning, and evaluating our framework on a physi-
cal robot performing changing-contact tasks on a tabletop.

The experimental evaluation includes the comparison of the
adaptive variable impedance control component for continu-
ous dynamics (our base controller) with other adaptive control
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strategies from literature in a custom-built simulated world with
different types of continuously changing environments. Then,
the need for an incremental control and learning strategy for
handling discontinuities in dynamics is demonstrated by com-
paring against a state of the art framework for offline, long-
term prediction in hybrid systems. This baseline is then mod-
ified to show the advantages of the key design and representa-
tional choices of our framework. Furthermore, we report results
of evaluating our framework on a physical robot performing
changing-contact manipulation tasks on a tabletop.

We begin with a review of related work in Section 2. We
then describe our framework and its components in Section 3,
followed by a discussion of the experimental results in Section 4
and the conclusions in Section 5. The novel contributions are
further emphasized in the appropriate sections.

2. Related work

A robot manipulator typically interacts with the environment
through contacts that can be discrete, e.g., making or breaking
contact with objects during assembly, or continuous, e.g., pol-
ishing or deburring surfaces. This section will review related
methods for control of changing-contact manipulation tasks,
including those that seek to model and address the piecewise
continuous interactions and the nonlinearities in the dynamics.

2.1. Forward models in manipulation

Since it is difficult to provide the robot with comprehensive
knowledge of target domain and task, methods have been devel-
oped to enable the robot to learn from experience, e.g., create a
predictive (forward) model of action effects and use it to select
actions (Beetz et al., 2010). Studies in human motor control
also indicate the creation and use of such forward models for
control tasks (Flanagan et al., 2003).

There are three kinds of forward models: (i) analytic models,
which are typically modeled mathematically using Newtonian
physics; (ii) learned models, which are built from data using
machine learning methods; and (iii) hybrid models, which in-
clude a combination of learned and analytic models. Analytic
models make predictions about robot and object motions (Fan
et al., 2017; Liu, 2009) based on knowledge of mechanics and
assumptions such as quasi-static mechanics, zero slippage, and
point contacts (Chatterjee, 1999; Fazeli et al., 2020). Since
these assumptions do not hold for many practical tasks and do-
mains, forward models obtained by analytic methods often re-
sult in inaccurate prediction. In addition, these methods often
require an explicit representation of their intrinsic parameters
such as friction, mass, and coefficients of restitution, which are
non-trivial to estimate (Kopicki et al., 2017).

Building forward models using machine learning methods
involves learning an action-effect correlation using data ob-
tained from expert demonstrations (Kronander and Billard,
2014; Huang et al., 2016) or from multiple trials executed by
the robot (Levine and Koltun, 2013; Kupcsik et al., 2013).
Many such methods have been developed to address the learn-
ing and control problems in robot manipulation (Kroemer et al.,

2019), especially methods that draw on reinforcement learn-
ing (RL) principles (Stulp et al., 2012) and combine deep net-
works and RL for learning flexible behaviors from complex
data (Andrychowicz et al., 2018; Hausman et al., 2018). In re-
cent times, researchers have explored the use of deep neural
networks (DNNs) for end-to-end learning of changing-contact
manipulation tasks without explicitly learning a policy that
models the domain dynamics (Nagabandi et al., 2020; Ajay
et al., 2019). Although these methods reduce the need for
domain models and prior knowledge, they require large la-
beled datasets, pose high-dimensional optimization problems,
and tend to select the smoothest interpolation of the training
data, which conflicts with the discontinuous impact dynamics
of changing-contact manipulation tasks.

Methods that combine analytical and learning methods to
build forward models tend to learn the difference between ana-
lytical models and the true dynamics of the interactions, captur-
ing the improvements needed in the analytical model to match
the observed environment (Gandhi et al., 2017). Despite the
advantage of requiring fewer labeled training examples, these
strategies rely on multiple restrictive assumptions regarding the
type of contacts, friction models, object dynamics, etc.. They
also require significant prior knowledge about the mathematical
models to be used, and require at least a few trials of the possi-
ble scenarios (in the target domain) to be modeled. Even with
state of the art sim-to-real strategies that reduce the amount of
training needed on real robots, it is challenging to model aspects
such as the dynamics of rigid bodies with friction in a real-time
dynamics simulator (Johnson et al., 2016). These methods thus
often require several hundred trials in the real world for fine-
tuning the models acquired in simulation before they can be
used on a physical robot (Ajay et al., 2019).

The piecewise continuous nature of changing-contact manip-
ulation tasks has been used by some methods to build multi-
level models, with a higher-level model identifying the cur-
rent “mode” while the other levels model the dynamics of
that mode (Buşoniu et al., 2018). Planning methods for ma-
nipulation often consider the discontinuities but assume prior
knowledge of the models and modes, and often require many
synthetically-generated training examples (Toussaint et al.,
2018). Our framework, on the other hand, incrementally learns
the dynamics of the robot’s interaction with its environment
without prior knowledge of the dynamics (other than the tar-
get motion trajectory).

2.2. Controllers for continuous contact tasks

The model of the “plant” (system or robot) is nonlinear or
unknown in many robot manipulators and practical control sys-
tems. Obtaining such a model is more challenging for manip-
ulators due to factors such as interactions with other objects,
unknown tools or objects at the end-effector etc. Researchers
have developed many control schemes to address uncertainties
in the system, and to adapt its parameters in response to obser-
vations of the system’s response. These adaptive controllers can
be broadly grouped into model-reference adaptive controllers
(MRAC), self-tuning regulators, and gain scheduling.
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MRAC methods compute control signals that force the sys-
tem’s behavior to match that of a reference model (Zhang and
Wei, 2017). They often employ approximations of the system’s
parameters and revise them using prior/observed data, but an
incorrect reference model can result in instabilities. Self-tuning
regulators typically model the plant as a linear time-varying
system, and adapt or estimate the controller parameters on-
line (Pezzato et al., 2020). They can converge to an optimal
controller under certain conditions and are ’trainable’ for repet-
itive tasks, with the estimate of parameters from a particular
trial used as the initial estimate in the next trial. However,
they struggle to adapt to changing objectives, which is com-
mon in robot manipulation. Gain-scheduling methods learn a
time-indexed sequence of control parameters by repeating the
task to update gains (Kramberger et al., 2018), or by learning
gain profiles from training data (Lee et al., 2015). They in-
clude variable impedance control methods based on reinforce-
ment learning or ’learning from demonstrations’ (Abu-Dakka
et al., 2018; Calinon et al., 2010; Rozo et al., 2016), which pro-
vide a time-varying impedance profile as a function of robot
state or any observation made by the robot. Since these methods
often need large training sets or comprehensive domain knowl-
edge, more recent methods have the agent repeat a task until
a desired level of performance is achieved (Gams et al., 2014;
Kramberger et al., 2018). They try to reduce trajectory tracking
error and periodic disturbances by learning a corrective term
for the control law that is a linear function of tracking error,
measured disturbance, or time.

Our adaptive variable impedance controller (AVIC) for each
mode is similar to the self-tuning regulators, but it builds on
our prior work on control for continuous-contact tasks (Mathew
et al., 2019) and piecewise-continuous interaction dynam-
ics (Sidhik et al., 2020); it uses the prediction error of an in-
crementally learned forward model to guide the adaptation of
control parameters (Section 3.1).

2.3. Control of hybrid systems

Many methods have been developed for the control of hy-
brid systems. For example, stabilizing controllers based on
Lyapunov arguments have been developed for switched sys-
tems (Johansson, 2003; De Schutter et al., 2009), methods
based on optimal control theory have been used for hybrid sys-
tems in manufacturing (De Schutter et al., 2009), and model
predictive control (MPC) methods have been applied to hybrid
systems (De Schutter et al., 2009).

The hybrid system formulation with a set of modes or the
design of the corresponding controller with phases provides
benefits for robot manipulation (Romano et al., 2011). For a
pick-and-place task, these controllers can have distinct objec-
tives and behavior requirements for phases such as ‘approach’,
‘grasp’ and ‘release’. Different strategies for sequencing mo-
tion primitives have also been used to solve manipulation tasks,
but they assume the existence of a library of modes or motion
primitives, or segment a sequence of primitives from human
demonstrations (Niekum et al., 2013). Since these methods do
not consider the interaction dynamics or try to reduce effects

of impact, the learned policy is dependent on the environment,
movements, and the sequence of modes.

In a departure from the existing methods, our framework sup-
ports the construction and use of adaptive variable impedance
controllers (AVIC) in the task-space for each identified mode in
the target task. As we show later, this design improves general-
ization and adaptability.

2.4. Modeling impacts and contact changes

Collisions and the associated impact dynamics introduce crit-
ical challenges to motion planning and control of robots in ap-
plications such as locomotion (Wieber et al., 2016) and manip-
ulation (Kemp et al., 2007). Even a single collision is a com-
plex interaction where object interpenetration is prevented by
material deformation, and which often occurs on a scale far be-
low the resolution of practical sensors (Halm and Posa, 2021).
Predicting the dynamics of collisions accurately is challenging
even with precise knowledge of the material and geometry of
the objects and initial conditions, and it is impractical to provide
the necessary knowledge in most domains (Chatterjee, 1997). It
is thus common for robotics researchers to make coarse approx-
imations of the contact dynamics, e.g., rigid-body assumption,
to make the problem more tractable; for background informa-
tion, please see (Brogliato, 2019). When impacts occur, rigid-
body models approximate the event as an instantaneous change
in velocity due to an impulsive force. However, seemingly mi-
nor changes in the mathematical models can result in signif-
icantly different predictions under identical initial conditions,
and existing methods are often unable to capture real-world be-
haviors with available models (Fazeli et al., 2020; Stoianovici
and Hurmuzlu, 1996).

Unrealistic contact models are an important reason for
the gap between simulated and real-world performance in
robotics (Parmar et al., 2021). In addition, velocity measure-
ments are extremely sensitive to time, as they change almost
instantaneously during impact, and sensor measurements are
noisy in the real world. The smoothing effect of deep neural net-
works, which are increasingly becoming the state of the art for
many robotics problems, is particularly harmful for modeling
impacts and collisions. There is a sparsity of reliable data points
that can be collected during and around the time of impact, and
regular sensors are not very reliable during impact. For a good
discussion of the main challenges in using deep learning or an-
alytical methods to model contact dynamics, please see Parmar
et al. (2021); these challenges include the degradation of model
performance with increasing stiffness.

The challenges in modeling contact dynamics can be de-
coupled by first predicting the position of contact points and
then using a ‘safer’ controller in the predicted contact regions.
Static contact properties such as contact positions and direc-
tion of impact can be estimated reliably, particularly if the plan
(i.e., motion trajectory) is known beforehand, using either tac-
tile (e.g., force-torque) sensors or coarse depth images (e.g.,
point clouds) of the objects. Acquiring training samples for
such measurements are also usually easier than an analytical
analysis of the interaction.
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Existing work has demonstrated a robot’s ability to acquire
the labels of training samples by interacting with the domain
objects and learning high-level rules that can be used for plan-
ning (Ugur and Piater, 2015). Such interactive perception meth-
ods have also been used to estimate constraints or the physical
properties of objects (Katz and Brock, 2011; Barragän et al.,
2014). These methods do not need extensive pre-training; also,
they help disambiguate between scenarios and to observe oth-
erwise latent properties (Kroemer et al., 2019). For instance, a
robot can figure out if an object is movable by pushing it. How-
ever, such methods require the robot to perform the target task
multiple times to build models or optimize model parameters,
especially when modeling the dynamics of the interaction. In
our contact-anticipation model (Section 3.3), we focus on in-
teractively improving the the robot’s estimate of the location of
the contacts involved in the task under consideration; we adapt
and use a Kalman-filter for this task. These estimated contact
regions are then used to define ‘transition’ regions in the robot’s
workspace, where it can use a safer control strategy because it
expects contact changes to occur.

2.5. Transition-phase controllers
Using a set of ’special’ controllers is a common strategy for

handling contact changes. Methods that use a transition-phase
controller for changing-contact robot manipulation tasks focus
on minimizing the discontinuities in the dynamics such that the
controller is stable and the desired motion pattern is followed
accurately after transition (Mills and Lokhorst, 1993; Marth
et al., 1993; Sidhik et al., 2020). However, most methods switch
to a different controller only after a contact is detected, which
can result in significant disruptions in the dynamics when the
switch is made. These disruptions can significantly increase
the energy intake, cause sudden spikes in force and accelera-
tion, and potentially damage the robot or domain objects. Other
work reduces the effects of impact in the guard regions of ma-
nipulation tasks using a transition-phase controller with a con-
stant low velocity (Hyde et al., 1997). Unlike existing methods,
our approach for handling contact changes predicts the position
of contacts, modifies the velocity and stiffness to reduce im-
pact and vibration during transitions to/from a transition-phase
controller, and automatically revises the approach velocity to
obtain the desired force on impact (Section 3.5.2).

To minimize delays and deviation from the target motion pat-
tern, the approach velocity of the transition-phase controller
should come into effect only when the robot is about to make
a contact. Modifying the velocity requires changes to the time-
line of the motion pattern, causing deviations and potentially
sacrificing tracking accuracy. For kinematic time-optimal mo-
tion, different variants of trapezoidal velocity profiles are typ-
ically used (Biagiotti and Melchiorri, 2008). Motion smooth-
ness (at least up to jerk) can be guaranteed by making the tran-
sition trajectory continuous. To make the motion smooth in
acceleration and jerk, the motion profile needs to be at least
C4 smooth. Many methods exist to create C4 smooth trajecto-
ries using multiple trajectory segments (Ahn et al., 2004; Nam
and Yang, 2004). There are also many minimum-jerk motion
profiles in literature (Piazzi and Visioli, 2000; Freeman, 2012).

For example, a trapezoidal C4-smooth motion profile for point-
to-point motion has been described using a seventh-order C3

polynomial function as the velocity profile (Grassmann et al.,
2018). Such methods have many hyper-parameters that need to
be tuned for the target task, and requires knowledge of the lim-
its of the system’s jerk and higher order motion derivatives. Our
framework, on the other hand, uses a novel velocity profile (for
switching to the transition-phase controller) that is simpler in
formulation, has no additional hyper-parameters, and has con-
tinuous derivatives of all orders at every point of the function,
making it C∞ smooth (see Section 3.5.2).

3. Framework description

Figure 2 is an overview of our framework which seeks to
model the piecewise-continuous interaction dynamics and ad-
dress the discontinuities during changing-contact manipulation
tasks. The framework’s base controller is a hybrid force-
motion, adaptive, variable impedance controller for tasks in-
volving continuous contact and contact changes without im-
pact, as described in Sections 3.1 and 3.2. For any particular
contact mode, this controller enables the robot to incrementally
model and revise a forward model that predicts the sensor mea-
surements. The measured prediction error is used to revise the
forward model and the gain (i.e., stiffness) parameters of the
control law for accurate and compliant motion in that mode.
Also, the robot is able to automatically detect known modes or
previously unknown modes; for the former (i.e., known mode),
the robot uses the corresponding forward model and control
law, whereas it acquires a new forward model for the latter.

Since the base controller does not address the discontinuities
experienced during contact mode changes, our framework in-
cludes a contact change handling module. This module incre-
mentally revises its task-space predictions of contact locations,
i.e., the anticipated mode transition regions, using a Kalman
filter (Section 3.3). The other innovation is the use of these pre-
dictions to minimize the time spent in the transition phase, and
to adaptively set the parameters of a transition phase controller
that is used to achieve a smooth motion profile and a desired
impact force (if collisions are expected), as described in Sec-
tions 3.4 and 3.5. Once the mode transition is completed, the
robot uses the corresponding forward model and controller for
the resultant model.

As stated earlier, our framework takes as input the task-space
target motion pattern and the corresponding force control target
profile for the robot to follow. The target trajectory P is pro-
vided as a sequence of mappings from time to the end-effector
pose and force (for force control). It is obtained through a single
demonstration of the task by a human moving the manipulator.
Since our framework’s controllers operate in the Cartesian (i.e.,
task) space, the trajectory is in the form of segments that are
(each) assumed to be smooth, continuous, and jerk-free. Tran-
sition between segments is accompanied by a change in the
direction of (force, motion) control, and P does not explicitly
account for any collisions, i.e., contact points are not labeled.

The framework’s inputs also include sensor measurements
of the forces, torques, and position at the end-effector. In the
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Figure 2: Overview of the framework for smooth control of changing-contact
manipulation tasks. Framework’s components are: (i) an adaptive variable
impedance control strategy based on an incrementally updated predictive model
for each of a set of discrete continuous-contact modes; (ii) an incremental ap-
proach to automatically model the piecewise-continuous dynamics of changing-
contact manipulation tasks without prior knowledge of the modes; and (iii) a
contact anticipation model that incrementally estimates contact change loca-
tions, and handles discontinuities by adapting velocity profiles and parameters
of suitable transition-phase controllers.

absence of our framework, the robot would use a position con-
troller to follow the provided motion pattern without compen-
sating for the changing interaction dynamics as the task pro-
gresses. The robot would thus have to use a high-stiffness con-
troller within a contact mode to counter the continuously vary-
ing environment dynamics. There would still be significant dis-
continuities in the motion dynamics when the contact modes
change, i.e., when the robot makes or breaks contact, or when
the environmental factors (e.g., surface friction) change signif-
icantly. High-impact collisions could also damage the robot or
objects involved. We begin the description of our framework’s
components and capabilities with the description of the forward
model and controller used in any particular mode.

3.1. Forward model and controller for a mode

The basic controller in our framework follows the standard
impedance control formulation with a force control term, mak-

ing it a hybrid force-motion impedance controller:

ut = Ht +Kp
t ∆xt +Kd

t ∆ẋt + ufc
t + ufft (1)

where ut is the robot’s control command (i.e., task space force)
at time t; H denotes the other dynamics compensation terms
(inertia, Coriolis and gravity); Kp

t and Kd
t are the (positive def-

inite) stiffness and damping matrices of the feedback controller
for motion; ufc

t is force feedback control command to achieve
orthogonal force targets if desired; and ∆xt and ∆ẋt are the er-
rors in the end-effector position and velocity at each instant. In
the absence of external disturbances, the feed-forward term ufft
can be zero. However, if there are external wrenches acting on
the end-effector, a good forward model could be used to pro-
vide appropriate values for ufft that can help the robot follow P
accurately without being affected by those disturbances.

In our formulation, the forward model of each contact mode
is learned as the robot attempts to follow P for the given task. To
avoid explicit dependence on time, a Gaussian Mixture Model
(GMM) is fit over points of the form [St−1, Dt], where St can be
any combination of features that uniquely represent the robot’s
state for the task, and Dt denotes that interaction effects expe-
rienced by the robot’s end-effector at time t. St can contain in-
formation about end-effector pose (xt), velocity (ẋt), and forces
(Fee

t ), while Dt can denote measurable interaction effects such
as end-effector forces (Fee

t ) and torques (τee
t ).

In our framework, we aim to predict the end-effector forces
and torques from previous measurements of end-effector veloc-
ities and wrenches. However, instead of their 3D vector rep-
resentations we use the magnitudes of force, torque, and end-
effector velocity (linear and angular separately) for modeling
and prediction. Since the magnitudes of frictional forces and
torques are independent of the direction of motion (for objects
having consistent friction properties) and depend only on the
relative speed of motion of the objects, such a simplified rep-
resentation is sufficient to model and predict the end-effector
forces and torques along the direction of motion. This reduced
representation of forces and torques makes the process of ac-
quiring the forward models computationally efficient and inde-
pendent of the direction of motion. Any forward model pre-
dicts the forces and torques along (or against) the direction of
motion. Since the end-effector’s direction of motion is always
known, the components of force and torques along the axes of
motion can be recovered when needed. The state space where
the forward model is learned can therefore be represented as
Xt = [St−1, Dt], with:

St−1 =
[
∥ẋlin

t−1∥, ∥ẋ
rot
t−1∥, ∥F

ee
t−1∥, ∥τ

ee
t−1∥
]

(2)

Dt =
[
∥Fee

t ∥, ∥τ
ee
t ∥
]

(3)

where ∥ẋlin∥, ∥ẋrot∥, ∥Fee∥, and ∥τee∥ are the magnitudes of the
linear velocity, angular velocity, force, and torque (respectively)
at the end-effector.

The forward model’s predictions determine the feed-forward
term ufft in Equation 1, which cancels out the effect of the pre-
dicted wrenches during motion, revising the control equation:
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ut = Ht +Kp
t ∆xt +Kd

t ∆ẋt + λt−1Wpred
t + ufc

t (4a)
Kp

t = Kp
f ree + (1 − λt−1)(Kp

max −Kp
f ree) (4b)

λt = 1 −
1

1 + e−r(εt−ε0) (4c)

where λt−1Wpred
t is the weighted feed-forward wrench (i.e., end-

effector forces and torques) predicted by the forward model as-
sociated with the current mode mt. The factor λt, a function of
the accuracy of the forward model at instant t, maps the error
in prediction from the forward model (εt) to a value between
0 and 1, e.g., logistic function in Equation 4c. The logistic
growth rate r and the Sigmoid midpoint ε0 are hyper-parameters
tuned for the task. This control law formulation relies on the
feed-forward term only if the forward model’s predictions are
found to be accurate; if not, the feedback control term is pri-
oritized. Equation 4b describes the adaptation of stiffness pa-
rameters as a function of the prediction accuracy. Kp

max is the
maximum allowed stiffness, and Kp

f ree is the minimum stiffness
for accurate position tracking in the absence of external distur-
bances (i.e., free space motion). The damping term is updated

as Kd
t =

√
Kp

t /4 considering the manipulator to be a critically-
damped system. This formulation enables the robot to follow
P accurately using high feedback gains if the forward model is
unreliable, but be compliant if the feed-forward term provides
suitable compensation.

To incrementally update a forward model during task execu-
tion, our framework uses an online variant of GMM called the
Incremental GMM (IGMM) (Song and Wang, 2005; Engel and
Heinen, 2010; Ahmad, 2006). IGMM can update model pa-
rameters and incorporate additional components in the mixture
model using hyperparameters (closeness and frequency) set by
the designer. For more information about the incremental algo-
rithm used, please see (Engel and Heinen, 2010). IGMM inter-
nally uses a variant of the Expectation-Maximization (EM) to
maximize the following likelihood function:

L(θ) = p(X|θ) =
T∏

n=1

p(Xn|θ) =
T∏

n=1

 M∑
j=1

p(Xn| j)p( j)

 (5)

where θ = (µ j, σ j, p j) for j = 1...M are the parameters of the
M components of the GMM; and X = (X1, ..., XT ) represents
the points to be fit, with Xt = [St−1, Dt]. Each point contains
information about the previous end-effector state, along with
the current wrench. Once trained, the forward model provides
a function:

ffm : St 7→ Dt+1 (6)

that predicts Dt+1 at the next time step as a function of the cur-
rent (measured) value of St, using Gaussian Mixture Regression
(GMR) (Sung, 2004). The incremental nature of our dynamics
model allows the robot to capture the smoothly varying interac-
tion dynamics between the robot end-effector and the environ-
ment within any particular contact mode.

3.2. Detecting contact modes

In a typical manipulation task, the interaction dynamics are
non-smooth when a contact change occurs, moving the state
of the hybrid piecewise continuous system to a new contact
mode. Our approach for recognizing known modes and iden-
tifying new ones is based on the observation that any change
in mode is accompanied by a sudden, significant change in the
sensor measurements. In our framework, the robot responds to
pronounced changes in force-torque measurements by briefly
using a high-stiffness control strategy while quickly obtaining
a batch of sensor measurements to confirm and respond to the
transition. The robot learns a new dynamics model if a new
mode is detected, and transitions to (and revises) an existing
dynamics model if the transition is to a known mode.

The key factor influencing the reliability and generalizabil-
ity of our approach is the choice of feature representation for
the modes. This representation is task-dependent and should
be able to uniquely identify the different contact modes in the
task. For example, for the task of sliding an object over sur-
faces with different values of friction (see Figure 8), the prop-
erty that strongly influences the end-effector forces (Fee) is the
friction coefficient between the object and the surface. When
two objects slide over each other at constant velocity, Fee is
proportional to the applied normal force (R) and the friction co-
efficient (µ) (assuming the relative orientation of their surface
normals do not change); µ can then be estimated as:

µ ∝
∥Fee∥

R
(7)

A concise feature representation for this task is thus ∥F
ee
t ∥

Rt
, which

has the effect of making mode classification independent of the
magnitude of the applied force.

Similar features can be identified for distinguishing between
other contact modes in specific tasks. For instance, for tasks
that require the robot to slide over the same surface using differ-
ent types of contact (e.g., edge contact, face contact), the end-
effector torque measured by the robot provides a more distin-
guishable feature for differentiating between modes. For such
tasks, [ ∥τ∥R ,

∥Fee∥

R ] can thus be used as the feature representation
for each mode; it supports generalization over different normal
forces while reliably capturing the factors influencing the nature
of the contact. We have previously demonstrated the effective-
ness of such a feature representation in distinguishing between
contact types while being invariant to the direction of motion
as well as to the magnitude of the applied normal force (Sidhik
et al., 2020). A similar one-time exercise can be used to de-
termine a feature representation with the desired generalization
capability for other changing-contact tasks.

The management of modes is based on an online incremen-
tal clustering algorithm called Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) (Zhang et al., 1997) in
the Scikit-learn library (Pedregosa et al., 2011). This algorithm
incrementally clusters incoming data while respecting given
memory and time constraints, without examining all data points
or clusters. Each cluster is considered to represent a mode in the
abstract feature representation space, with the clusters updated
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Algorithm 1: Control loop of base controller for
piecewise-continuous dynamics

Input : Desired motion pattern as sequence of task
space way-points; Control parameters:
Kp

f ree,K
p
max; Dynamics models of modes

M = { fi : i ∈ [1,N]}; Current mode: m = 0.

1 while Motion pattern not complete do
2 if mode transition detected then

// Set high stiffness

3 Kp
t ← Kp

max
// Detect (new/existing) mode

4 m = detect classify mode()
// Populate new model for new mode

5 if new mode found then
6 M =M∪ fm
7 end
8 end
9 Update ffm|m online and use it for control in the

identified mode (Eq. 4)
10 end

using batches of the feature data. The fraction of the input fea-
ture vectors assigned to any cluster determines the confidence in
the corresponding mode being the current mode. If the highest
such confidence value is above a threshold, the dynamics model
of that mode is used and revised until a mode change occurs.
If the feature vectors are not sufficiently similar to an existing
cluster, a new cluster (i.e., mode) and the corresponding dy-
namics model are constructed, used, and revised (Section 3.1)
until a mode transition occurs.

Algorithm 1 describes the framework’s control loop for a
changing-contact manipulation task (e.g., sliding an object on a
surface) based on the base controller (i.e., a hybrid force-motion
variable impedance controller) described so far. The robot at-
tempts to move through the given motion pattern until it is com-
pleted. When a change in contact mode is detected (line 2)
based on a substantial change in the sensor measurements (from
the end-effector), the robot responds by setting a high stiffness
(line 3), collecting sensor measurements, confirming whether a
transition has occurred to a new or existing mode (line 4), and
creating new forward (dynamics) models if necessary (lines 5-
7). In the absence of a mode transition (i.e., the change in sensor
measurements that triggered the high stiffness operation was an
anomaly), the robot continues with the current dynamics model
for subsequent motion (line 9).

3.3. Predicting contact changes

A robot manipulator following a given motion pattern in a
static environment (i.e., no moving objects other than the robot)
can experience discontinuities in dynamics due to two types of
transitions: (i) impact-based transitions (i.e., collisions); and
(ii) impact-less transitions. Collisions occur when the mov-
ing end-effector comes in contact with a fixed object in its
workspace. Any collision-based mode change will suddenly

remove at least one degree of freedom (DoF) of the robot in the
functional coordinate space. Collisions are thus characterized
by large spikes in force-torque measurements as a function of
the approach velocity and factors such as coefficient of resti-
tution and hardness of the objects involved. Also, there is a
discontinuity in the end-effector velocity, with at least one di-
mension set to zero in the functional coordinates, leading to
spikes in acceleration and jerk as well. Discontinuities due to
impact-less transitions, on the other hand, occur when there are
significant changes in the dynamics due to other factors instead
of collisions. A simple example involves the end-effector slid-
ing across two surfaces with different values of frictional re-
sistance (Figure 1a). The robot experiences sudden changes in
sensor measurements as it crosses the boundaries between the
surfaces, but the transition may not result in large impact forces
or a significant drop in velocity; unlike the impact-based tran-
sition, the impact-less transitions occur without a loss in degree
of motion freedom.

While the base controller in our framework detects mode
changes and uses (or learns) appropriate forward models in each
mode, it does not address the discontinuous dynamics during
the transition between modes. To handle the discontinuities,
the robot needs to be able to anticipate these transitions. Antic-
ipating impact-based transition (i.e., collisions) by predicting
impact forces or time to collision is challenging because these
parameters are influenced by robot dynamics and controller pa-
rameters, e.g., reducing the velocity or stiffness reduces the im-
pact force and increases time to contact. On the other hand,
static contact parameters such as end-effector position during
impact and direction of contact force can be predicted more re-
liably. These parameters do not change significantly between
task repetitions if we can make the reasonable assumption that
the motion pattern and environmental attributes do not change
significantly between repetitions of the task.

Similar to the target motion pattern and the base controller
in our framework, a contact’s position is also represented in the
task-space of the robot. Our contact anticipation model encodes
the robot’s belief about the position of each expected contact in
the target motion pattern as a multivariate Gaussian, with the
covariance ellipsoid representing the associated uncertainty and
the “region of anticipated mode transition” C. During any trial
of the task, the robot expects a specific contact position c to lie
within the corresponding C. The robot uses a Kalman filter to
update its estimate of the location of each contact over a small
number of trials. The state update equation is: ċ = Ac+Buk+w,
where c is the contact position, A is the object’s self-activation
(I for positively activated objects), B is the control matrix cap-
turing the effect of action u on contact position, and w is Gaus-
sian noise modeling the uncertainty in the contact location. The
sensor model uses the end-effector pose (obtained by forward
kinematics with joint positions) as a measurement when a con-
tact is detected; noise in the sensor model depends on the joint
encoder noise and forward kinematics. The corrected estimate
of the contact position results in a reduced covariance ellipsoid
for subsequent trials. Although this approach supports contact
with movable objects, we only consider contact with station-
ary objects in this paper. These simplifications result in Gaus-
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sian updates using the noisy measurements based on the robot’s
kinematics model (since sensor input is from an FT sensor) each
time the robot experiences a contact change.

3.4. Transition-phase controller
Given the ability to predict contact changes, as described

above, the robot still needs a suitable controller to use dur-
ing the transition. A key contribution of our framework is the
use of a transition-phase controller to achieve this objective.
In our framework, the transition-phase controller used during
mode transitions has the same structure as our base (variable
impedance) controller (i.e., Equation 4a). The difference is in
the choice of the control parameters, which can be different
based on the type of transition: impact-based or impact-less.
The control equation is thus given by:

u = Kp∗∆x +Kd∗∆ẋ + uff + H (8)

where Kp∗ and Kd∗ are the stiffness and damping parameters
that can vary depending on the type of transition. Next, we
describe how this controller supports the desired characteristics
for the two types of transitions.

3.4.1. Transition-phase controller for collisions:
For impact-based transitions, the permitted impact force may

differ based on the task, e.g., a particular force may damage del-
icate objects but it may be necessary for other tasks. Our con-
troller allows the designer to impose a task-specific limit on the
maximum allowed impact force. In addition, we figured out ex-
perimentally that reducing the controller stiffness helps reduce
the jerk in motion after impact by providing compliance, but
has no significant effect on impact forces because the error and
stiffness term in the feedback control loop come into effect only
after contact is made. Also, the approach velocity was observed
to be directly proportional to the impact force, especially when
the robot registered a contact while moving in free space. Based
on these insights, the transition-phase controller was designed
to operate at a lower stiffness (e.g., a fraction of the maximum
allowed impact force for the task) to reduce vibrations during
the transition. Also, we used a simple linear (regression) model
to capture the relationship between impact force and approach
velocity. This model was then used to compute the approach
velocity for any (given) desired force on impact.

Since the robot does not initially have a model of the rela-
tionship between impact force and approach velocity, it starts
with a safe low velocity during the first trial of any given task
with a target force on impact. The difference between the tar-
get and measured impact force is used to revise the approach
velocity for the next iteration of the task:

∆va = β(Fd − Fm) (9)

where ∆va is the change in approach velocity, Fd is the desired
impact force along direction of motion, Fm is the measured im-
pact force, and β is a learning rate that is ideally less than or
equal to the slope of the function relating impact force to ap-
proach velocity. Over a small number of trials, this method
enables the robot to compute and use a task-specific approach
velocity for a desired impact force.

3.4.2. Transition-phase controller for impact-less transitions:
If the robot expects an impact-less transition in C, it does

not have to reduce its velocity and can continue following the
original plan. Reducing velocity would delay task completion,
which is undesirable. At the same time, high stiffness values
will result in steady motion and more accurate sensor measure-
ments, which will help in mode identification. Our transition-
phase controller thus uses a high stiffness for impact-less transi-
tions. Specifically, the parameter values for this transition phase
controller (Equation 8) are set to be the maximum allowed val-
ues of the adaptive variable impedance controller (base con-
troller) for the current task, i.e., Kp∗ = Kp

max.

3.5. Smooth transition between controllers

The transition-phase controller described above is designed
to reduce discontinuities during mode changes. However, the
robot still needs a strategy to smoothly transition from the base
controller to a transition-phase controller as it enters the region
of anticipated mode transition (C). Specifically, the robot needs
to transition from base controller output u1 (for current contact
mode) to a suitable transition-phase controller with output u2.
A key characteristic of our framework is its ability to meet these
requirements as described below.

3.5.1. Transition strategy:
We use a linear interpolation between u1 and u2 over a time

window [0,T ] to achieve the smooth transition to the transition-
phase controller:

u =(1 − α)u1 + αu2; α = t/T t ∈ [0,T ] (10)

where T is the desired duration of the transition between the
controllers. Since u1 and u2 are represented in the same (task)
space, as long as the outputs from the two controllers (u1 and
u2) are individually smooth, the output of the combination will
also be smooth. Recall that the output of the fixed transition-
phase controller (u2) corresponds to a (relatively) low- or high-
stiffness depending on the type of transition. The interpolation
ensures that the switch to the transition-phase controller occurs
smoothly by the time the robot reaches pc, the first point in
its motion trajectory that intersects with the estimated region
of expected contact change (C). A similar approach is used
to smoothly (and quickly) transition from the transition-phase
controller to a normal controller after contact is made.

3.5.2. Velocity profile shaping:
Recall that transition-phase controllers for handling colli-

sions use a lower velocity than in the original kinematic se-
quence P to reduce the force on impact. Also, the switch to this
controller will take place at different points in the trajectory as
the region C is revised over time. The trajectory’s timeline thus
has to be modified to account for the modified velocity profile.
To achieve this objective, we enable the robot to create a new
velocity profile and the corresponding time-mapping. Our for-
mulation results in motion that is smooth and continuous at all
orders, i.e., it is C∞ smooth.
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Figure 3: Velocity plots with matched position, acceleration, and jerk plots.
Velocity varies from 1.2 to 0.5 in unit time.

Without loss of generality, assume that the target motion pat-
tern (P) is along one dimension. Also, assume that the transi-
tion starts at time t1 with v1 and has to be completed at t2 with
velocity v2 as the robot crosses boundary point pc of C. Our
velocity profile is then defined as:

v(τ) =


v1 +

(v2−v1)e−1/τ

e−1/τ+e−1/(1−τ) if 0 < τ < 1,
v1 if τ ≤ 0,
v2 if τ ≥ 1

(11)

where τ = t/T = t/(t2 − t1). For τ ∈ (0, 1), e−1/τ has continuous
derivatives at all orders at every point τ on the real line. Since
v(τ) has a strictly positive denominator for all points in its do-
main and velocity limits are enforced ∀τ < [0, 1], this profile
provides a smooth transition from v1 to v2 over [t1, t2] and v(τ)
is continuous despite its piece-wise definition. Acceleration and
jerk are computed as first- and second-order derivatives of v(τ)
with respect to τ, and the motion trajectory is obtained by in-
tegrating the velocity profile. Figure 3 shows some illustrative
plots to demonstrate that all motion derivatives are continuous.

4. Experimental evaluation

In this section, we describe the experimental evaluation of
our framework’s capabilities in the context of changing-contact
robot manipulation tasks. We first describe results of incremen-
tally updating and using forward models for control in contin-
uously and smoothly varying environments (Section 4.1). We
then show the advantage of our adaptive variable impedance
(base) controller in such continuous-contact environments by
comparing it with representative adaptive control strategies
(Section 4.2). Next, we experimentally demonstrate our frame-
work’s ability to identify and model different contact modes in
tasks where the interaction dynamics changes discretely (Sec-
tion 4.3). In Section 4.4, we experimentally justify key choices
made in the formulation of our framework for handling piece-
wise continuous dynamics, by comparing with a sophisticated,
long-term prediction algorithm. Then, in Section 4.5, we eval-
uate the overall framework’s ability to produce smooth motion
in the presence of collisions and impact-less mode transitions.
We experimentally evaluated four hypotheses:

H1: Incrementally updated forward models reliably and effi-
ciently capture the smoothly changing interaction dynam-
ics in a contact mode, and enable our base controller to
provide better performance than traditional adaptive con-
trol strategies;

H2: Our base controller with the contact mode recognition
strategy enables the robot to detect and model contact
modes, and to reliably follow the target motion pattern un-
der piecewise-continuous dynamics of changing-contact
manipulation tasks;

H3: Incremental updates of the predictive models and adaptive
control strategies are required to effectively model and ac-
count for the piecewise-continuous interaction dynamics
of changing-contact manipulation tasks; and

H4: Our framework’s contact anticipation module incremen-
tally and accurately predicts the contact locations, and our
transition-phase controller and transition strategy help re-
duce discontinuities during mode changes in changing-
contact manipulation tasks.

As stated earlier, we use simulation environments and a phys-
ical robot in our experiments. Experimental comparison with
baselines is mostly performed in 2D and 3D simulation envi-
ronments that support multiple trials and an in-depth analysis
of the interaction dynamics under controlled settings. We re-
port results of experimentally evaluating our framework on a
seven degrees of freedom (DoF) Franka Emika robot manipula-
tor arm; we also use a model of this robot in our 3D simulation
experiments. Additional details of the simulation environments
and experiments are provided in the appropriate sections below.

It is challenging to choose the baselines and environments
for experimental evaluation because none of the existing frame-
works support all the capabilities of our framework. For ex-
ample, purely analytical control methods may not support the
desired adaptation and incremental learning capabilities (Pez-
zato et al., 2020; Yang et al., 2011). State of the art data-driven
methods (in the joint space or task space) may provide good
performance in situations similar to those in the training set,
but will not support runtime adaptation to previously unseen
situations (Khader et al., 2020). We thus chose some well-
established methods and environments that support some subset
of the desired capabilities, and enable us to evaluate these ca-
pabilities and/or demonstrate the need for these capabilities.

In the simulation environments and on the physical robot, we
considered changing-contact manipulation tasks with a target
motion pattern—see Figure 1. These tasks involve impact-less
mode changes, impact-based mode transitions, or both. The
performance measures in these tasks include accuracy of (or the
error in) following the target motion pattern, recognizing mode
changes, estimating location of contact changes, and/or achiev-
ing the desired value of relevant parameters (e.g., force on im-
pact). We also consider the task completion time and qualitative
measures of the smoothness of interaction dynamics.
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(a) Predictions from fixed GMM forward model.

(b) Predictions from incremental GMM model.

Figure 4: Comparison of fixed and incrementally revised GMM models in for
the “porridge stirring” task in a 2D simulated environment; red: predicted sen-
sor values; green: actual measurements. Incrementally revised forward models
provide better prediction ability.

4.1. Continuous-contact manipulation
Our prior work provided a proof of concept demonstration

of smooth control of a seven DoF robot arm for continuous-
contact manipulation tasks (Mathew et al., 2019). We also com-
pared the tracking performance of our controller with a base-
line fixed-stiffness position-tracking controller to demonstrate
the need for variable impedance when interacting in a continu-
ously changing dynamic environment.

To further demonstrate the importance (and benefits) of
incrementally adapting the forward model in response to
continuous changes in dynamics (H1), we compared our
incrementally-revised forward model with a fixed GMM model
pretrained using the same data. We used a custom-built 2D sim-
ulated environment based on the Box2D physics engine (Catto,
2017) with noiseless measurements—see Figure 1c.

We simulated a porridge-stirring task in simulation with the
viscosity increasing as the robot moves. Specifically, the robot
was provided a target motion pattern of moving in a circular
path in an environment in which (unknown to the robot) the
viscosity increases continuously from 0 Ns/m2 to 80 Ns/m2

in steps of 0.1 Ns/m2 every simulation step (the total circular
trajectory had 600 steps). The sensor measurements collected
during the initial phase were used to build a fixed GMM model
for one-step prediction of end-effector forces based on previous
end-effector velocity and force. This model and a high-stiffness

controller served as the baseline for comparison with our incre-
mentally updated GMM model and the variable impedance con-
troller. The ability of the trained models to predict the sensor
measurements were then evaluated in an environment in which
the viscosity increases from 0 − 150 Ns/m2, and results from
one such trial are summarized in Figure 4a.

We observed that the fixed and incrementally-updated mod-
els are able to predict the forces accurately when the measure-
ments are similar to the training data. However, when the sen-
sor measurements vary from those observed during training,
the prediction accuracy is poor with the fixed GMM model but
it continues to be good with the incrementally-revised GMM
models. Even when the predictions are accurate with the fixed
GMM model, it is largely due to the use of a constant high-
stiffness controller. Although we do not show it here, we did
verify that when the fixed GMM model is used to guide our
variable impedance controller (in Equation 4b), it causes un-
reliable trajectory tracking. In addition, for the pretrained for-
ward model to be useful, the training data will need to include
samples from different regions of the state space; this imposes
additional training time and memory requirements. These re-
sults indicate the need for using an incrementally revised for-
ward model to account for continuously-changing interaction
dynamics within a contact mode, i.e., these results indicate sup-
port hypothesis H1.

4.2. Comparison with adaptive control methods

To further test H1, we compared our base controller, i.e., the
adaptive variable impedance controller (AVIC) of our frame-
work, with one representative method from each of three classes
of adaptive control methods in the presence of continuously and
smoothly varying interaction dynamics.

4.2.1. Comparison with MRAC:
The first baseline we considered was an established MRAC

method (Tarokh, 1991). Recall from Section 2.2 that MRAC
methods attempt to adapt their control law based on a prede-
fined reference model. In the chosen MRAC method, the refer-
ence model uses a second-order spring-damper system for each
dimension i, parameterized with user-defined values for desired
natural frequency ωi and damping ratio ζi. The control law con-
tinuously adapts its parameters to minimize tracking errors.

MRAC was tested in a “multi-spring” simulated environment
in which the robot had to move along a circular trajectory while
the end-effector is being pulled by three springs of different
stiffness—see Figure 1c. Tuning the large number of hyperpa-
rameters was found to be quite cumbersome for continuously
varying environments, and performance was sensitive to the
choice of parameter values. For example, in Figure 5, trajec-
tory tracking is affected by the choice of the frequency param-
eter ω of the reference model, with stability affected adversely
when the value of ω is changed from 1.5 to 1. In addition, the
selection of hyperparameters proved to be challenging in the
“porridge stirring” environment used in Section 4.1 and per-
formance comparable to our framework could not be achieved
using the MRAC method.
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Figure 5: Trajectory tracking performance of MRAC method is highly depen-
dent on the design of the reference model.

Figure 6: Our controller provides significantly better trajectory tracking com-
pared with the AIC controller.

4.2.2. Comparison with a self-tuning regulator:

As an example of a self-tuning controller, we chose the Ac-
tive Inference Control (AIC) method (Pezzato et al., 2020).
This adaptive control strategy supports continuous updates in
the presence of changing environmental dynamics; the control
parameters are iteratively updated to account for unaccounted
energy in order to reach a fixed target. Given time, AIC con-
verges to a fixed target smoothly and without any appearance
of instability for any dynamically changing environment. How-
ever, this is not useful when the robot has to follow a motion
trajectory as the controller’s parameters will typically not con-
verge before the target changes to the next point in the trajec-
tory. As a result, the robot always lags behind the target with
AIC; Figure 6 shows the trajectory following performance ob-
served in a particular experimental trial. We also observed that
unlike AIC, our base controller compensated for external dis-
turbances by directly predicting and canceling the forces, thus
minimizing the lag in trajectory tracking.

(a) BAC is unstable with incorrect initialization of parameters.

(b) BAC parameters struggle to converge in 30 trials in “multi spring” environ-
ment.

Figure 7: Trajectory following performance of BAC controller in a particular
trial of two different experiments; dotted line is the target trajectory and solid
line is the observed path of the robot: (a) performance is sensitive to parameter
initialization; and (b) parameter values do not converge in a limited number of
trials in more complex environments.

4.2.3. Comparison with a gain-scheduling controller:
We implemented Biomimetic Adaptive Control (BAC), an

RL-based gain-scheduling approach that iteratively updates
control parameters (gains) at each point in a repeating trajec-
tory (Yang et al., 2011). Given data from multiple trials of a
trajectory, parameters at each time step are updated using val-
ues at the same time step from previous iterations such that a
cost function based on tracking error is minimized.

In our experimental trials, we observed that bad parameter
initialization for BAC caused instabilities and tracking irregu-
larities that accumulated as the trajectory progressed. This is
because BAC does not account for the temporal relationship
between controller parameters within a trial. One example of
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such a trial with incorrect parameter initialization is shown in
Figure 7a. Due to this sensitivity to initialization, it is difficult to
ensure smooth trajectory tracking when learning a time-indexed
parameter profile.

We also observed that although BAC can provide good tra-
jectory tracking for simple environments given good parame-
ter initialization and a sufficient number of trials (Yang et al.,
2011), the parameters often do not converge in a limited num-
ber of trials in more complex environments. For example, Fig-
ure 7b shows the trajectory following results of a particular trial
in the “multi-spring” environment. BAC and other such gain-
scheduling controllers also rely on the duration of the task (i.e.,
number of time steps in each trial) to be fixed across trials.

Results from the comparison with the three classes of adap-
tive controllers show that the incremental learning (of the pre-
dictive forward models) and the online adaptation of the feed-
back gains enables our controller to perform better in the pres-
ence of continuous and smoothly changing interaction dynam-
ics, which further supports hypothesis H1.

4.3. Evaluation for piecewise continuous interaction dynamics

Next, we evaluated the ability of our base controller to ac-
curately detect contact modes, and to acquire or revise the pre-
dictive models of these modes for reliable trajectory following
in the presence of piecewise-continuous dynamics correspond-
ing to discrete contact mode changes (H2). We used a 7-DoF
physical robot for these experiments. We have demonstrated in
prior work that a single model is insufficient for accurate trajec-
tory tracking in the presence of such dynamics, motivating the
need for piecewise-continuous models (Sidhik et al., 2020). In
this paper, we report results of comparing our controller with a
position- and force-tracking controller to demonstrate the need
for having separate controllers depending on the interaction dy-
namics.

We used a ”changing surface” task for the evaluation. The
robot had to slide an object attached to its end-effector along
a desired trajectory, and it experienced three previously unseen
surfaces with different values of friction—see Figure 8. As de-
scribed in Sections 3.1 and 3.2, we expected the robot to iden-
tify a transition to each new mode (i.e., each surface) and in-
crementally build a predictive (forward) model for the mode
while operating under high stiffness. Once the dynamics mod-
els for a mode had been built, we expected the robot to respond
to subsequent transitions to this mode by using and revising the
corresponding dynamics model. The abstract feature represen-
tation used for distinguishing between the contact modes was
∥Ft

ee∥

Rt , as mentioned in Section 3.2, which represents surfaces as
a distribution of their friction coefficients.

Figure 9 shows the robot’s ability to detect mode changes
in one trial of this experiment. The robot was able to identify
transitions to existing or new modes with high confidence. In
each instance, the second best choice of mode was associated
with a much lower value of confidence. The results also show
that our hybrid framework and feature representation make per-
formance robust to changes in the direction of motion, i.e., a
new mode is not identified when the manipulator moves over

Figure 8: Robot manipulator sliding an object attached to its end-effector in a
given motion pattern along three surfaces characterized by different values of
friction.

a previously seen surface in a new direction. There was some
similarity in the confidence values for surfaces 2 and 3 (S2 and
S3 in Figure 9) because of the similarity in their friction values.
Although it should be possible to quickly detect a previously
seen mode, the clustering-based approach for mode detection
can make the identification of new (or previously seen) modes
depend on the number of modes for which the robot has already
learned models (Sidhik et al., 2020).

Figure 10 shows the trajectory tracking error and the values
of the stiffness parameters of the controller during the trial. The
peaks in the trajectory error plot correspond to a sudden change
of surface. During each such instance, the predictions made
by the dynamics model of the previous mode caused a mo-
mentary error in the trajectory tracking ability, until the robot
switched to using a high stiffness controller and identified the
current mode; the robot then used suitable low(er) stiffness to
complete the task. It can also be seen that switching to a previ-
ously seen mode requires a much shorter period of high stiffness
compared with building a new dynamics model. These results
show that the framework is able to identify and learn the pre-
dictive models for different contact modes, supporting (H2). In
other work, we have demonstrated the ability to identify and
learn the predictive models for the modes corresponding to a
robot sliding objects using different types of contacts (e.g. edge
contact, surface contact); the robot’s performance was observed
to be robust to changes in the direction of motion and the ap-
plied normal force (Sidhik et al., 2020).

4.4. Incremental learning and adaptation

Next, we explored the need for incrementally updating the
predictive models for the discrete modes, and the need for
adaptive control strategies, to handle the piece-wise contin-
uous dynamics of changing-contact manipulation tasks (H3).
As the baseline for comparison, we chose a state of the art
framework that performs offline long-term prediction of dy-
namics (Khader et al., 2020). It identifies the task’s dynamic
modes from a training dataset of demonstrations of the desired
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Figure 9: Modes detected and their confidence values; red vertical lines on the x-axis indicate actual mode transitions. The number on top of a peak (in green)
indicates the confidence with which the transition was identified; the number below a peak (in red) corresponds to the mode with the next highest confidence. “N”
indicates a transition to a new mode.

(a) Controller stiffness during task execution

(b) Absolute error in trajectory tracking; the spikes correspond to a temporary, incorrect feed-forward prediction by the previous model.

Figure 10: Performance of our base controller in the changing-surface task.

motion, uses multi-class Support Vector Machines to predict
mode changes, builds separate Gaussian Process (GP) dynam-
ics model for each mode, and provides a probabilistic algo-
rithm for multi-step prediction of joint-space state variables for
changing-contact manipulation tasks. It was proposed as a data-
efficient way of predicting long-term state evolution of joint-
space dynamics for tasks involving discontinuous dynamics; al-
though it was not designed as a solution for real-time control in
such tasks, it presents an interesting option for exploring H3.

We simulated the 7-DoF physical robots in the PyBullet 3D

simulation environment (Coumans and Bai, 2016–2021) and
setup a task similar to the one used with the baseline frame-
work. As shown in Figure 1b, the robot (with a block fixed
to the end-effector) approaches a table to make contact with
it, slides the block along the table until it collides with a wall,
and slides on the table along the wall. We mapped H3 to two
sub-claims that we then evaluated: (i) unlike our framework,
the baseline is unreliable for tasks with discontinuous dynam-
ics unless the robot uses high-stiffness control or is trained and
tested in the same environment; and (ii) real-time update of the
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(a) System trained with wall friction 0.6, tested with friction 0.9.

(b) System trained with wall friction 0.1-0.7, tested with friction 0.9.

Figure 11: Baseline framework’s prediction of one joint’s position; dotted ver-
tical line indicates end-effector’s contact with the wall. Predictions are reliable
only when used with a high stiffness controller.

predictive models provides more reliable performance than the
baseline framework’s offline, long-term prediction of dynamics
in the presence of unexpected environmental changes.

4.4.1. Long-term prediction of joint dynamics:
We first trained the baseline system with a dataset of trials

in which the robot used a fixed medium-stiffness controller and
the friction of the wall (large red block in Figure 1b) was fixed
to 0.6. Testing was then done with a higher friction value (0.9)
and the same controller. Figure 11a shows the prediction and
actual values of the positions of one of the joints involved in
the task (the first joint). Since the offline framework was not
aware of the change in friction, it predicted the joints to move
as freely as it did during training. The true joint positions were,
however, affected by the higher surface friction of the wall re-
sulting in the “true” values of the joint’s position lagging behind
the “predicted” values.

For further exploration, the training set was modified to in-

Figure 12: Prediction of the position of one joint produced by the baseline
framework. System trained and tested using a constant high-stiffness controller
(friction values as in Figure 11b).

Figure 13: Prediction of end-effector force along Y-axis (along the wall). Sys-
tem trained with wall friction values between 0.1 − 0.7, tested on wall with
friction 0.9.

clude wall friction values between 0.1 − 0.7 in increments of
0.1; the system was then tested on a wall with friction 0.9.
The predictions were similar to the those in the previous set
of experiments, but with a wider band of uncertainty around the
predictions due to the larger variability in the training data—
see Figure 11b. In addition, when a high stiffness controller
is used for training and testing, the robot follows the trajectory
quite closely regardless of friction. This results in lower vari-
ability across trials, as indicated by the narrower uncertainty
band around the prediction and more accurate predictions—
see Figure 12. These results indicate that learning dynamics
in the space of joint positions and velocities poses a hard high-
dimensional problem. Also, the learned forward models do not
capture the interaction dynamics accurately, and predictions are
reliable only when used with a high stiffness controller.

The main reason for the baseline framework’s poorer perfor-
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mance with the previously unseen value of surface friction is
that it is unaware of the environment’s dynamics before it per-
forms the prediction. This is not necessarily a flaw of the frame-
work as it was not designed for such use cases. However, our
experiments indicate that for accurate long-term prediction of
joint-space dynamics, either the environment has to remain un-
changed and/or the robot has to use a high-stiffness controller;
the former requirement is not realistic and the latter is not de-
sirable. For environments whose dynamics can change after
training, the system will at least have to be trained with many
examples of different environments. Our framework addresses
these issues by learning and revising a model of the dynamics
in the task space (instead of joint space) and accessing a more
direct estimate of the interaction dynamics in the form of end-
effector forces and torques.

4.4.2. Long-term prediction in the task-space:
Next, the baseline framework was modified to consider the

interaction dynamics in the task space by reformulating the
framework’s GPs (that model dynamics of each mode) to model
p(Feet+1 |Feet , ẋt]), similar to the forward model of our base con-
troller (Section 3.1).

The system was again trained with examples of the evolution
of the state when the surface friction was between 0.1 and 0.7;
the trained models were compared with the measurements ob-
tained when the surface friction was 0.9. Figure 13 shows the
measured and predicted force measurements along the Y-axis,
the direction along which the wall’s friction acts. The spikes
in Figure 13 at ≈ 400 along the X-axis corresponded to when
the robot made contact with the table, and the spikes between
700 − 800 corresponded to when the robot collided with the
wall. We observed that the actual values of friction force after
contact with the wall did not fall within the predicted band of
uncertainty. Also, the effect of different levels of friction was
more observable in the task space, indicating that it is more
meaningful to represent the interaction dynamics for changing-
contact tasks in the task space. This experiment suggests that
interaction dynamics cannot be predicted reliably without feed-
back during task execution.

4.4.3. One-step task-space prediction with real-time feedback:
In the next experiment, real-time measurements from the

robot ([Feet , ẋt]) were provided as feedback to the baseline
framework during testing. At each timestep, the system then
only had to predict sensor values for the next timestep using the
dynamics model for the identified mode. Although this strategy
produced better results than before by extrapolating from the
learned model to handle previously unseen values—see Figure
14a—the predictions are still not accurate. This is because the
baseline framework’s model is not incrementally updated as the
environment’s dynamics changes. Our hybrid framework, on
the other hand, supports incremental, real-time updates to the
dynamics models. This resulted in more reliable predictions for
the same experiment, as shown in Figure 14b, leading to more
accurate trajectory tracking in the presence of discretely chang-
ing dynamics in previously unseen environments.

(a) Modified baseline framework’s prediction.

(b) Predictions from the forward model of our base controller.

Figure 14: Prediction of end-effector force along Y-axis (along the wall). Each
system was trained with wall friction between 0.1−0.7, and tested with friction
0.9. Dotted vertical line indicates when the robot made contact with the wall
(obstacle).

Note that the training of the baseline framework required
significant time and computational resources depending on the
density and the length of the data in the training set. The im-
plementation of the GP in this framework took ≈ 55 minutes
training time on an 8-core, 16GB RAM computer without us-
ing a GPU, for a dataset consisting of 40 trials of the task men-
tioned above; the long-term prediction process during testing
takes ≈ 20 minutes.

Overall, the experiments discussed above demonstrate that
the incremental, real-time revision of the predictive, forward
(dynamics) models is critical for changing-contact manipula-
tion tasks. Also, performance improves significantly when the
learning is done in the task space and suitable feedback of the
system state is available and used. The results of these exper-
iments support hypothesis H3. The observed results are also
influenced by the choice of the state space and feature repre-
sentation used for control and learning. Our framework support
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Figure 15: A simulated sliding task that involves making contacts with different
surfaces in the workspace.

such incremental learning and adaptive control based on a suit-
able representation; it is thus able to provide smooth control of
changing-contact robot manipulation tasks.

4.5. Evaluating overall framework

We then evaluated our framework’s ability to accurately an-
ticipate mode transitions and smoothly switch to the appropriate
transition phase controllers in the anticipated regions of con-
tact (H4). Specifically, we explored the ability to anticipate
and handle discontinuities in target motion patterns with multi-
ple collisions (Section 4.5.1), and those with impact-less mode
transitions (Section 4.5.2).

4.5.1. Multiple collisions:
The motion profiles (e.g., velocity, acceleration profiles) of a

changing-contact manipulation task are expected to have large
spikes when discontinuities arising from collisions are not han-
dled. Since these spikes can damage a physical robot, we first
explored the contact anticipation and handling ability in simula-
tion. Figure 15 shows the simulation environment and the task.
The robot had to move in free space toward the table and make
contact with it, slide along the table’s surface (i.e., force control
in one direction) until it came in contact with a wall (i.e., side of
red object in Figure 15), slide along this wall (i.e., force control
in two directions) to make contact with second wall (i.e., blue
object in Figure 15), slide up this wall (force control along one
direction) until end of wall is reached, break contact with wall
and move through free space until contact is made with top of
red surface, and slide along the red surface until goal location
is reached. The baseline used for comparison had the simulated
manipulator attempt to follow the target motion pattern without
anticipating contacts and handling discontinuities.

As shown in Figure 16a, in the absence of the module an-
ticipating and handling contact changes, the robot experienced
high impact forces and discontinuities in the dynamics. There
were thus large sharp peaks in acceleration (i.e., high jerk val-
ues) during the motion pattern, e.g., the accelerations were as
high as 18 m/s2 and the peak impact forces were well above
50N; this could damage a real robot. When the same task was

Prediction Error (m) Initial Final (trial 5)

Contact 1 (Z-axis) 0.12 ± 0.3 0.016 ± 0.039
Contact 2 (Y-axis) 0.09 ± 0.2 0.011 ± 0.04
Contact 3 (X-axis) 0.1 ± 0.2 0.018 ± 0.036

Table 1: Error in the estimated contact location along the most significant axis
(in parenthesis) in the first and fifth trials of the task in Figure 17. Value
along the diagonal of the covariance matrix is shown as the standard devia-
tion (± term).

performed using our framework, noisy initial estimates of the
contacts were provided to mimic values from a noisy vision
sensor; recall that the framework can identify contact mode
changes even without these estimates. Using our framework,
the robot was able to complete the task and provide signifi-
cantly smoother motion (than the baseline) even in the first trial.
The velocity and acceleration curves were smoother, even when
there were multiple contacts. Also, the peak forces were signifi-
cantly lower, with the highest impact force being less than ≤ 8N
(a 84% reduction from the baseline), and the peak acceleration
on impact was ≤ 1m/s2, due to the lower velocity in the tran-
sition phase. However, the time to complete the task increased
by about 3.7 seconds due to the modified velocity profiles of the
plan. The framework thus traded off task completion time for
smoothness of motion. We hypothesized that this delay could
be reduced as the robot incrementally revised its estimate of the
location of contacts, and explore this hypothesis further on a
physical robot.

As shown in Figure 17, in the robot experiments, the 7-DoF
physical robot manipulator with a wooden block attached to
its end-effector was asked to move vertically down to the ta-
ble (contact 1), slide along y-axis (the table’s surface) to a wall
(contact 2), and slide along the wall (while in contact with the
table’s surface) to another obstacle (contact 3). The robot was
provided noisy (i.e., incorrect) initial estimates of the contact
positions (see Table 1). Over a few iterations of this task, the
robot had to improve its estimate of the contact positions and
reduce the deviation for the the given motion pattern. The robot
also had to modify its approach velocity from the initial value
of 0.05 m/s to achieve a desired impact force of 8 N. Since each
contact in the target motion pattern corresponds to a different
kind of environment dynamics (e.g., motion in free space, mo-
tion against surface friction), the velocity required to attain the
desired impact force was expected to be different. The robot
also had to incrementally revise its approach velocity for each
contact until the desired velocity for that mode was achieved.
Furthermore, the robot had to minimize any spikes in the veloc-
ity or acceleration profiles.

Figure 18a shows the velocity, acceleration, and end-effector
force in the first trial, and Figure 18b shows these values after
five trials. The results indicated a reduction in the spikes in the
motion profiles. The reduction was not as pronounced as in the
simulation environment (Figure 16a) because we set a low ap-
proach velocity to prevent damage to the physical robot in the
initial trials, i.e., when it did not have a good estimation of the
location of the collisions. However, the results in Figure 18a,
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(a) Without using contact handling module.

(b) When using our contact handling module.

Figure 16: End-effector velocity, acceleration, and force while performing the changing-contact manipulation task in Figure 15: (a) without using the module that
handles contact changes; (b) using our framework that includes the contact handling module. Our framework significantly reduces the discontinuities (i.e., spikes in
velocity profiles).
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Figure 17: A changing-contact manipulation task that involves the block in the
robot’s end-effector making contact with the table’s surface at ”1”, a wall at
”2”, and another object at ”3”.

Figure 18b, and Table 1 indicated a significant reduction in the
uncertainty in the estimate of the contact positions, i.e., in the
size of the covariance ellipsoids, and the robot spent signifi-
cantly less time using the transition-phase controller and the
associated lower velocity. The last plot in Figure 18a and Fig-
ure 18b show the activation of our framework without and with
the contact anticipation module and related adaptation. The mo-
tion pattern was completed in 14.4 s in the first trial and in 9.2 s
in the fifth trial. These results support H4.

The covariance ellipsoids converged in the first three trials
of the task, but the task was repeated to evaluate the ability to
compute and set the approach velocity for different transition-
phase controllers. The robot converged to a suitable approach
velocity for the first contact (from motion in free space) in five
iterations. It was, however, difficult for the robot to adjust its ap-
proach velocities for contacts 2 and 3, which required the robot
to use force control along one and two directions (respectively).
Contact 3 was particularly challenging because it involved slid-
ing along two different surfaces, with the different frictional
resistance offered by the two surfaces resulting in very noisy
readings from the force-torque sensor. Since the impact force
was along the same direction as friction, it was more difficult to
isolate the impact force from the force due to surface friction,
which made updating the approach velocity more challenging.

Although the results documented in this subsection related
to the experiments conducted on a physical robot have already
been published in our previous work (Sidhik et al., 2021), the
extensive experiments conducted with a simulated robot in a
suitable environment are novel; they demonstrated our frame-
work’s ability to anticipate collisions and thereby reduce im-
pact forces by trading off between accuracy and task comple-
tion time.

4.5.2. Impact-less transitions:
In this experiment, the objective was to test the effective-

ness of the framework in accurately predicting the location of
impact-less contact changes, i.e., mode changes that are not due
to collisions, and handling the associated discontinuities.

The experiment involved the physical robot following a mo-
tion pattern similar to that previous experiment (in Section 4.5.1

above). Specifically, the robot had to approach a surface (sur-
face A) from above, slide along the surface to make contact
with a wall, slide along the wall (on the table surface), and then
slide on the table’s surface until it comes in contact with an-
other object—see Figure 1a. The difference was that the sur-
face along which the robot had to slide changed suddenly along
segments ‘2’ and ‘4’, i.e., the robot experienced a surface with
a different friction value. The switch along segment ‘2’ was
to a surface with a higher friction, and that along segment ‘4’
was (back) to the surface with a lower friction. As in the previ-
ous experiment, the robot was given a noisy initial estimate of
the position of the impact-based contact change, but it was un-
aware of the existence or location of the surface switches along
segments ‘2’ and ‘4’ in Figure 1a; it had to anticipate them in
subsequent trials once it realized that it had experienced pre-
viously unknown contact changes in the first trial of the target
motion pattern. The desired behavior from the robot was that
it learned to anticipate collisions as well as impact-less contact
changes, and smoothly switches to an appropriate transition-
phase controller to reduce any associated discontinuities in the
motion dynamics.

In this experiment, we focus on the performance of the
framework along the two segments in which the surfaces
changes, i.e., the previously unknown impact-less mode tran-
sitions, occur. Figure 19 shows the velocity, acceleration, and
end-effector force profiles in these regions measured during the
first trial of the task. As expected, the robot experienced sud-
den spikes in velocity and acceleration (jerk) when the surface
changed unexpectedly. Recall that this is due to the wrong
predictions provided by the dynamics model which provides a
feed-forward term for the controller that either overestimates or
underestimates the environment forces in the new mode. When
the robot detected such a discontinuity, it identified this as a
contact change and quickly switched to a high-stiffness con-
troller to verify whether a mode change had actually occurred.
Once a transition to a new mode was confirmed, the robot
learned a new dynamics model for the mode which it used with
the base controller while in that mode. Although the surface
changed again along segment ‘4’, the robot recognized this as a
mode that it had experienced before and transitioned (with the
intermediate use of a transition-phase controller) to using the
model and controller of the mode.

In the second trial of this task, the robot expects these mode
switches; the shaded regions in Figure 20a represent the antic-
ipated region of impact-less contact change. In this region, the
robot switches to a high stiffness controller to identify the new
mode quickly while also reducing sudden velocity-acceleration
spikes during motion. The size of the anticipated region of con-
tact change reduced in the subsequent trial, as shown in Fig-
ure 20b, which further reduced the time the robot spends using
a transition-phase controller. These results further support hy-
pothesis H4.

We made an interesting observation during this experiment:
the robot was able to detect the change from the surface with
lower friction to the surface with higher friction (along segment
‘2’) much more easily than the transition from higher friction
to lower friction. This difference can be attributes to the fact
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(a) Experiment trial 1.

(b) Experiment trial 5.

Figure 18: Velocity, acceleration, force, and controller activation levels in: (a) experimental trial 1; and (b) experimental trial 5; for a task involving multiple
collisions. Use of our framework reduces uncertainty in estimates of contact positions, reduces the time spent using the transition-phase controller, and reduces
discontinuities in the motion.

that during the transition from the surface with lower friction to
that with higher friction, the increase in friction at the region of
the block in contact with the new surface offers the highest re-
sistance and contributes to the frictional resistance of the block.
This increase is rather pronounced, as observed in Figure 19.
During the transition along segment ‘4’ from the surface with

higher friction to that with lower friction, on the other hand, the
trailing part of the block is in contact the surface with higher
friction that still offers resistance. The robot thus experiences
a more gradual change (reduction) in the frictional resistance,
and the discontinuity is not that pronounced as with the mode
change in the other segment. This observation motivated the
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Figure 19: Selected sections of the velocity (top), acceleration (middle), and force (bottom) plots in the first trial of the task; the robot is unaware of the impact-less
transitions in the task beforehand. (Left) plots for the first impact-less transition along segment ‘2’ in Figure 1a; (Right) plots for the second impact-less transition
along segment ‘4’ in Figure 1a. (Note: X & Z axes in the force plot are not relevant in the motion during the chosen segment, and have therefore been faded out.)

need for experimentally setting a threshold on the error between
the end-effector measurements and the predictions from the for-
ward model for that mode.

5. Conclusion

Many robot (and human) manipulation tasks are changing-
contact manipulation tasks. They are characterized by piece-
wise continuous interaction dynamics, with discontinuities due
to collisions and changes in surfaces, types of contact, and other
factors, and continuous elsewhere. While it is possible to con-
struct a hybrid framework with continuous dynamics within
each of a set of discrete modes, it is difficult to provide com-
prehensive information about the modes in practical tasks. In
addition, such a hybrid framework cannot, by itself, address
the discontinuities that exist during the transition between the
modes; these discontinuities can damage the robot or the envi-
ronmental objects.

In this paper, we presented an adaptive framework for
changing-contact manipulation tasks inspired by studies in hu-
man motor control. The framework has a mode detection mod-
ule which can recognize existing modes and identify new con-
tact modes based on an abstract feature representation. Each
such mode is characterized by a suitable predictive/forward dy-
namics model, a control law, and a relevance condition. The

forward model is learned and revised incrementally during run-
time, with the error between the predicted and actual measure-
ments (of end-effector forces and torques) being used to adapt
the gain (i.e., stiffness and damping) parameters in the corre-
sponding control law. Our framework also includes a contact
handling module that uses a Kalman filter to incrementally im-
prove estimates of contact positions. These contact position
estimates help revise the velocity profile to minimize the time
spent in a transition-phase controller, ensure smooth transition
to and from this controller, and achieve a desired force on im-
pact. Our representational choices enable us to simplify and
address the associated challenges reliably and efficiently.

We showed the effectiveness of the overall framework in the
context of a physical robot performing manipulation tasks that
involve multiple contact changes, and in the context of 2D and
3D simulation environments in which a robot had to execute
motion patterns involving making and breaking contacts. We
experimentally demonstrated the need for adaptive control and
incremental learning strategy in the presence of tasks and envi-
ronments with a mix of continuous and discontinuous dynam-
ics. We compared our framework’s performance with a repre-
sentative method from each of three different classes of adap-
tive control methods from the existing literature, and with a so-
phisticated framework for offline, long-term prediction in the
context of discontinuous dynamics, to highlight the capabilities
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(a) Experiment trial 2.

(b) Experiment trial 3.

Figure 20: Selected sections of the velocity (top), acceleration (middle), and force (bottom) plots in (a) experimental trial 2; and (b) experimental trial 3. In each of
(a) and (b), (left) plots for the first impact-less transition along segment ‘2’ in Figure 1a; and (right) plots for the second impact-less transition along segment ‘4’ in
Figure 1a. (Note: X & Z axes in the force plot are not relevant in the motion during the chosen segment, and have therefore been faded out.)

of our framework. Our experimental results support our claim
that our framework enables smooth control of changing-contact
robot manipulation tasks.

Our framework opens up many directions of further research.
First, we only focused on collisions due to translational mo-
tion, and did not address collisions due to rotations of the end-
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effector. This could be addressed by defining a region of antic-
ipated collision in SO(3). Second, we observed that updating
the approach velocity for collisions when the robot is already
in contact with another surface is more complicated. This is
because of the difficulty in differentiating between the sensor
measurements obtained due to reactive forces from the existing
contact and the sensor measurements obtained due to the im-
pact force generated by the collision with another object. One
way to address this issue is to learn a better forward model (for
each contact mode) that can accurately predict the forces due
to the first contact. Third, we only modified the velocity profile
to achieve the desired smooth motion, and future work will ex-
plore the relationship between stiffness values and the impact
forces. Proof of experiments indicate that this is a challeng-
ing problem. Moreover, reducing the stiffness during approach
to a contact position makes the motion more sensitive to iner-
tia. This behavior is due to the lag in tracking the target trajec-
tory and the uncompensated end-effector mass, which are due
to the lower value of the stiffness used as the robot approaches
a contact position. The long-term objective of this research is
to achieve smooth and reliable motion in different changing-
contact manipulation tasks.
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