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Abstract

In application domains characterized by dynamic changes and non-deterministic

action outcomes, it is frequently difficult for agents or robots to function with-

out any human supervision. Although human feedback can help an agent learn a

rich representation of the task and domain, humans may not have the expertise or

time to provide elaborate, accurate and real-time feedback in complex domains.

Widespread deployment of intelligent agents hence requires that these agents op-

erate autonomously using limited and unreliable high-level feedback from non-

expert human observers. Towards this objective, we advocate the use of bootstrap

learning in an online augmented reinforcement learning framework. In the absence

of human feedback, the agent operates by sensing the environment, i.e., using en-

vironmental feedback. When a human participant provides high-level feedback on

the agent’s performance, the agent uses a learning scheme that enables the envi-

ronmental feedback and human feedback to bootstrap off of each other to contin-

uously revise their relative contributions to the agent’s action choice policy. The

algorithms are implemented and evaluated in two simulated domains: Tetris and

Keepaway soccer.

1 Introduction

Intelligent agents or robots interacting with humans in dynamic domains need the abil-

ity to operate reliably, efficiently and autonomously [11, 23]. Existing approaches to

human-robot or human-computer interaction (HRI/HCI) predominantly focus on en-

abling the agent to operate autonomously based on sensory inputs [6, 9, 16], or to learn

from extensive manual training and domain knowledge [1, 4, 12, 17, 25]. In dynamic

domains characterized by partial observability and non-determinism, it is typically dif-

ficult for an agent to operate without any human input [8, 24]. On the other hand,
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although human feedback can help an agent learn a rich representation of the task and

domain, humans frequently do not possess the expertise or time to provide elaborate,

accurate and real-time feedback in complex domains.

Widespread deployment of learning agents in the real-world requires that these

agents be accessible to non-expert users who can provide limited high-level feedback in

response to the agent’s observed performance, e.g., positive/negative reinforcement of

the agent’s action choices or a selection from multiple options posed by the agent. Re-

cent research has focused on enabling a robot or agent to acquire human feedback when

needed (or available) and merge it with the information extracted from sensory cues.

However, these methods do not model the unreliability of human inputs and require

elaborate knowledge of the domain, limiting their use to simple simulated domains or

specific robot tasks [3, 15, 19]. This paper presents an augmented reinforcement learn-

ing (ARL) framework that incorporates bootstrap learning to enable an agent to merge

limited and unreliable high-level human feedback with the reinforcement obtained by

sensing the result of environmental interactions. The ARL framework enables the en-

vironmental and human feedbacks to bootstrap off of each other to continuously and

incrementally revise their relative contributions to the agent’s action choices. The pro-

posed approach is illustrated and evaluated in two simulated domains: (a) Tetris, which

consists of a single agent; and (b) Keepaway soccer, a multiagent domain.

The remainder of the paper is organized as follows. Section 2 describes related

work and Section 3 describes the proposed scheme and test domains. Experimental

results are presented in Section 4, followed by conclusions in Section 5.

2 Related Work

Sophisticated approaches have been developed for key human-computer and human-

robot interaction (HCI and HRI) challenges such as autonomous operation, engage-

ment, safety, acceptance and interaction protocol design [11, 23]. Many algorithms

have been developed to enable autonomous operation in HCI/HRI, using a variety of

sensory inputs (e.g., visual, verbal and range data) to model social and environmen-

tal cues [7]. Considerable work has been done on using embodied relational agents

and virtual agents in applications such as health care [18]. However, the autonomous

operation typically requires a significant amount of domain knowledge, limiting the

application of these algorithms to specific applications.

Significant research has also been performed on enabling a robot or a simulated

agent to learn from demonstrations provided by a human observer [4, 12, 2, 10]. Many

of these methods focus on building sophisticated mathematical models using recent

research findings in a wide range of related fields such as control theory, biology and

psychology. Some approaches have been based on theories of social interactions among

humans and an understanding of the human learning process. A key constraint of

these schemes is that the associated feedback and information can only be provided by

human participants who possess substantial knowledge of the domain and the agent’s

capabilities.

Researchers are increasingly focusing on using limited high-level human feedback

in robot/agent domains based on need and availability. For instance, Rosenthal et
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al. [19] developed a CoBot that associates each action with probability functions of suc-

cess and failure, and seeks human help (on failure) to localize and navigate to desired

locations. Knox and Stone [15] developed the TAMER (Training an Agent Manually

vis Evaluative Reinforcement) framework to enable a human to train a learning agent,

and used different linear functions to combine human and environmental feedback and

maximize a reward function in simulated domains. The work described in this paper

is also based on an RL framework and a scheme to combine human and environmen-

tal feedback. The key difference is that the two feedback mechanisms bootstrap off

of each other to continuously revise their relative contributions to the agent’s action

choice policy, thereby making best use of the human feedback.

3 Problem Formulation

This section describes the augmented reinforcement learning framework, which com-

bines bootstrap learning with reinforcement learning, followed by the specific formu-

lations for the experimental domains.

3.1 The RL Framework and Bootstrap Learning

Reinforcement learning (RL) is a computational goal-oriented approach, where an

agent repeatedly performs actions on the environment and receives a state estimate

and a reward signal [21]. It is common to model an RL task as a Markov decision pro-

cess (MDP). In this paper, the standard formulation is augmented to include the human

feedback signal, resulting in the tuple 〈S,A,T,R,H〉:
• S is the set of states.

• A is the set of actions.

• T : S×A×S′ → [0,1], is the state transition function.
• R : S×A→ ℜ is the environmental reward function.

• H is the human reward signal.

At each step, the agent uses a policy to probabilistically select an action a ∈ A in state

s ∈ S:

π : S×A→ [0,1] (1)

The goal is to compute the policy that maximizes the expected future reward over

a planning horizon. One of many different schemes such as policy iteration, value

iteration and policy gradient algorithms can be used to compute this policy. The key

difference with respect to the standard MDP formulation is the inclusion of high-level

human feedback that (like environmental feedback) can be unreliable. In addition,

though the environmental feedback is obtained instantaneously for a given state and

action, the human feedback can be a complex function of current, past or future states

and actions.

As shown in Figure 1, a bootstrap learning scheme is used to effectively merge

the two feedback mechanisms, modeling the action choice policy as a function of the

feedback signals, the current state and the current action:

a = argmax
a∈A

f (R,H) (2)
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Figure 1: Augmented RL framework with bootstrap learning.

where R is the environmental feedback, H is the human feedback and a is the action

choice that maximizes the function of R and H. In the experimental domains described

below, the following linear function was evaluated:

a = argmax
a∈A

{wr ·R+wh ·H} (3)

where wh is the “weight” assigned to the human feedback and wr is the weight assigned

to the environmental feedback. Since the weights are a measure of relative importance,

we can set wr = 1 and use wh as the relative importance of human feedback. Choosing

actions as a linear function of the feedback signals is similar to the scheme reported to

have the best performance in the Mountain Car domain [15]. The novelty lies in the

fact that our approach enables the two feedback mechanisms to bootstrap off of each

other to update the weights and continuously revise the relative importance of each

feedback mechanism. Another weighting scheme: a = argmaxa∈A{wr ·R(1+Hwh)},
referred to as the exponential scheme, was used to investigate a correlation between

the feedback signals, but experimental results did not support such a correlation. The

bootstrap learning scheme to update the weights proceeds as follows:

• The agent initially assumes the absence of human feedback and learns a policy

through environmental interactions. The agent evaluates different policies generated

by varying the parameters of the underlying RL algorithm (e.g., policy gradient),

using a “performance measure” suitable for the domain—see Sections 3.2, 3.3 for

examples.

• At any given time, the agent keeps track of the top N policies: πi, i ∈ [1,N], i.e.,
the policies that result in high values of the performance measure: pmi, i ∈ [1,N].
Action choices are made based on one of these policies (with wr = 1 in Equation 3),

where the probability of a policy being chosen is proportional to the value of its

performance measure relative to other policies.

• When human feedback is provided, the agent maintains a separate policy based on

this feedback mechanism. The agent also keeps track of the degree of match between

the action chosen by the current environmental feedback-based policy and action that

would be chosen based on the human feedback-based policy. The degree of match

can, for instance, be a numerical count of the number of times the two policies result
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in the same action choice.

• If mi, i ∈ [1,N] represent the degree of match between the human feedback-based

policy and the best environmental feedback-based policies, the weight associated

with the human feedback can be estimated as:

wh =
∑i pmi×mi

∑i pmi

(4)

where a high value of the weight represents a high degree of belief associated with

the human feedback.

• A similar scheme can be used to evaluate the agent’s performance with respect to

one or more sources of human feedback if a substantial amount of human feedback

is available. In addition, it is possible to update the weight/trust incrementally across

different episodes. For instance, the weight wh can be updated after episode k:

wk
h =

pmk−1wk−1
h + pmkmk

pmk−1 + pmk
(5)

based on the performance measure in this and the immediately previous episode.

The core component is the continuous and online update of the combined action pol-

icy, where the agent alternately assumes the policy (or policies) based on each feedback

mechanism to be ground truth, in order to update the weight associated with the policy

based on the other feedback mechanism. Since action choices are based on the com-

bined policy (Equation 3), the agent quickly adapts to different humans, unreliability

of environmental feedback, and dynamic changes over a period of time as the human

observer gets tired or bored. Specific instances of this learning scheme are described

below for the two simulated test domains.

3.2 Tetris Domain

Tetris is a game played on a w× h grid in which “tetrominoes” (i.e., shapes) of four

blocks fall one at a time from the top of the grid, stacking up on the grid’s base or any

blocks below. If the blocks fall such that a row is completely filled with blocks, then

that row is cleared. All the blocks in that row disappear and all the blocks in higher

rows shift down by a row. When the blocks stack up to the top of the grid, the game

ends. The goal of a Tetris player is to maneuver the falling blocks to clear as many lines

as possible and maximize episode duration. The performance measure in this domain

is hence the number of lines cleared per game (i.e., per episode). A screenshot of the

domain is shown in Figure 2.

One challenge in this domain is the size of the state space—the 20×10 board shown

in Figure 2 has a state space of ≈ 2200. The action space consists of four actions: move

left, move right, rotate clockwise, drop, and the feedback signal from the environment

(or human) is assumed to be instantaneous. Knox and Stone [15] developed a much

smaller set of 21 features for this domain, e.g., column heights, maximum height of

columns, number of holes and difference in heights of adjacent columns. An analysis

of the significance of the feature set shows that it is in fact possible to obtain similar

performance with just 12 features (maximum and average height of columns, number
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Figure 2: The Tetris application domain

of holes and difference in column heights). However, for ease of comparison, we use

the set of 21 features in our experiments. Two different RL algorithms were used: the

policy gradient (PG) algorithm implemented in the libPG library [5] and the cross-

entropy (CE) method [22] as used by Knox and Stone [15]. PG methods parametrize

the policy function and use gradient descent to converge on a stochastic policy that

optimizes the long-term reward—they are more robust to changes in policy parameters.

The CE method learns weights for the feature vectors using sampling techniques in

order to maximize the reward—it has been shown to outperform many RL methods in

the Tetris domain.

3.3 Keepaway Soccer Domain

Keepaway is a subtask of robot soccer involving a small number of players. One team,

the keepers, tries to maintain possession of a ball within a limited region, while another

team, the takers, tries to gain possession. Whenever the takers take possession or the

ball leaves the region, the episode ends and the players are reset for another episode

with the keepers being given possession of the ball again. This domain is implemented

within the RoboCup soccer simulator [20]. Parameters of the task include the size of

the region, the number of keepers and the number of takers. Figure 3 shows a screen

shot of an episode with 3 keepers and 2 takers (called 3vs.2 or 3v2 for short) playing in

a 20m×20m region.

Keepaway is a challenging domain because the state space is too large to explore

exhaustively, each agent has partial state information, and all agents in the team have

to learn simultaneously. Since it is based on the RoboCup simulator, agents receive

(noisy) visual perceptions every 150msec indicating the relative distance and angle

to visible objects. In each episode, agents choose from higher-level macro actions
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Figure 3: Keepaway (3v2) soccer domain.

based on the available skills (HoldBall(), PassBall(k), GetOpen(), GoToBall(), Block-

Pass(k)) instead of executing parametrized primitive actions (e.g., Turn(angle) and

Dash(power)). The focus is on enabling the keepers to retain possession of the ball

for as long as possible—the length of an episode is hence used as the performance

measure. As in [20], the state space for the keepers is discretized to 13 variables that

capture the distances and angles between the keepers, takers and the center of the re-

gion. The takers follow a default policy of moving to the ball. The semi-Markov

decision process (SMDP) version of Sarsa(λ ) algorithm is used as the RL algorithm

to modify the behavior of the keepers. Despite the reduction in state and action space,

learning by exploring all possible states and actions is a challenge in this domain. Tile

coding is hence used to make learning feasible, and the associated parameter values are

chosen based on the values reported in [20].

Reinforcement signals in the keepaway domain are based on the performance of

the team of keepers. Though environmental feedback can be encoded to occur in-

stantaneously, the domain changes too quickly for a human to provide feedback for

a specific state and action, i.e., human feedback cannot be modeled as being instanta-

neous. The human feedback is likely to be a complex function of prior time steps, i.e., a

set of states and actions. Based on prior work [13, 14], the credit assignment of human

feedback is modeled as a gamma distribution, as shown in Figure 4. The parameters

of this function were estimated experimentally by conducting a study of the reaction

times of a set of human participants in standard cognitive experiments. The resultant

distribution is similar to that reported in [14]. If p(x) is the gamma distribution-based

probability density function (PDF), the credit assigned to a time interval as a result of

a unit reinforcement is computed by integrating the PDF over the interval. In the ex-

periments below, for a human feedback at time t, the mean of the gamma PDF is hence

located at ≈ (t−0.5) to assign credit to a set of states and actions. The PDF indicates
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Figure 4: Probability density function p(x) for credit assignment estimated as

gamma(2.5,0.3). The x-axis denotes time before reinforcement (i.e., in the past).

that human input is delayed and that the credit drops off exponentially as we consider

past states and actions.

4 Experimental Setup and Results

This section reports the results of experiments performed in the Tetris and Keepaway

domains. The goal was to evaluate two hypotheses: (a) performance improves sig-

nificantly when the human and environmental feedbacks are combined, in comparison

to when the feedback mechanisms are used individually; and (b) using the bootstrap

learning scheme improves performance in comparison when it is not used with the un-

derlying reinforcement learning algorithms. In the remainder of this paper, ARL refers

to the use of bootstrap learning in the modified RL framework. All results are statisti-

cally significant (at 95% level) unless otherwise stated.

Human Participants: Four non-expert humans participated in the experiments.

These participants were provided a high-level description of the test domains, includ-

ing available action choices and the performance measures to be maximized by the

agent(s). However, these participants had no knowledge of the states and the underly-

ing algorithms, and very little knowledge of these domains prior to these experiments.

Experiments were conducted in the Tetris domain using cross entropy as the un-

derlying RL algorithm. The ARL approach and the linear combination function of

Equation 3 was used to merge human feedback with the environmental feedback. For

comparison, we implemented the linear combination scheme that iteratively annealed

the weight assigned to the human feedback at the end of each episode—this scheme

provided the best performance in the Mountain Car domain [15]. Figure 5 shows ex-

perimental results, with each data point obtained by averaging the results over a set of

20 trials. Human input was provided at infrequent intervals—no more than 5 times in

any episode and on average 2 times per episode. The participants were provided breaks
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between trials.
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Figure 5: Performance in the Tetris domain using cross entropy as the default RL

algorithm. The ARL approach performs significantly better than CE and the scheme

that anneals the weight factor for human feedback.

The results show that the ARL approach improves performance (i.e., larger number

of lines are cleared) in comparison to the default CE approach, and results in better

performance than the combination scheme that anneals the weight assigned to human

feedback between episodes [15]. The performance improvement is due to the ARL

approach’s ability to adapt to the unreliability of feedback signals, thereby exploiting

their complementary properties. The performance of the ARL approach is also much

better than that obtained with just the human feedback—these results are not included

in Figure 5 because it is infeasible to provide human feedback over different states and

actions for a large number of episodes.

Next the performance of the ARL approach was evaluated using policy gradient

(PG) as the underlying RL algorithm. The results of these experiments are shown

in Figure 6. As expected, the default PG algorithm does not result in as many lines

being cleared as with the CE algorithm. However, the ARL approach for merging

the feedback mechanisms still performs significantly better, i.e., clears a much larger

number of lines than the default PG algorithm.

Finally, experiments were conducted in the Keepaway soccer domain, where the

performance of the keepers was measured in terms of their ability to retain possession

of the ball for as long as possible. The underlying RL algorithm was the SMDP ver-

sion of Sarsa(λ ). The ARL approach was used to incrementally determine the best

combination of human feedback and environmental feedback to be used to determine

the action choice policy. Here, both the linear combination scheme (Equation 3) and

the exponential combination scheme (Section 3.1) were evaluated. As described in

Section 3.3, it may not be possible to provide instantaneous human feedback in this
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Figure 6: Performance in the Tetris domain using policy gradient as the default algo-

rithm. The ARL approach significantly improves the performance of the PG algorithm.

domain. In order to measure the suitability of the gamma PDF shown in Figure 4

for credit assignment when human feedback is provided, performance was measured

with and without the use of this function. Figure 7 summarizes the results, with each

data point (as in the Tetris domain) representing the average over 20 trials. Given that

episode times can vary (as seen in Figure 7) the human participants provided feedback

infrequently—no more than two times in any episode. The human participants also

provided (intentionally) incorrect feedback approximately once every ten feedback at-

tempts.
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Figure 7: Performance in the Keepaway soccer domain using policy gradient. The

ARL approach performs better than the default Sarsa(λ ) algorithm. Using the learned

gamma distribution for credit assignment significantly boosts performance.

10



The plots in Figure 7 indicate that all feedback combination mechanisms that use

the ARL approach perform better than the default RL algorithm without any human

feedback, despite the added unreliability in the human feedback. The linear combina-

tion of the two feedback mechanisms results in significantly better performance than

the policy gradient RL algorithm. The best performance is achieved when the gamma

PDF is used for credit assignment along with the linear combination of the feedback

signals. The exponential combination scheme (with the gamma PDF) does not improve

performance substantially, which may indicate that this combination scheme does not

reflect the true relationship between the feedback signals. The experimental results

in the two test domains indicate that using the gamma PDF-based credit assignment,

bootstrap learning and linear combination scheme in a modified RL framework is a

promising option for further investigation in other domains.

Threats to Validity: When human input is used in intelligent agent (or autonomous

robot) domains, the performance may depend on the capabilities of the human partic-

ipants involved in the study. The experiments reported in this paper used feedback

provided by four human participants at infrequent intervals. Though the performance

of the participants (when considered individually) were consistent across the two differ-

ent domains, additional trials may be required in other domains to further substantiate

the results reported here. Specifically, future experiments will consider a larger number

of human participants, larger number of episodes (especially for Keepaway), varying

amounts of added noise, other combination functions, other appropriate application

domains and a thorough analysis of the corresponding experimental results.

5 Conclusions and Future Work

Human participants can enable agents or robots to learn a rich representation of the

task, thereby operating reliably and efficiently in dynamic domains. However, it may

be infeasible for a human to possess the time and expertise to provide elaborate, ac-

curate and real-time feedback to agents in complex domains. This paper described an

approach that uses bootstrap learning in an augmented reinforcement learning frame-

work to enable an agent to effectively merge the limited and unreliable high-level feed-

back from a human with the reinforcement signals obtained through interactions with

the environment. The agent incrementally and continuously revises weights that deter-

mine the relative contribution of each feedback mechanism to its action choice policy.

The agent is hence able to make best use of the available information. Experimental

results in the Tetris and Keepaway domains indicate that the approach described in this

paper outperforms the individual feedback mechanisms and the established schemes to

combine these feedback signals.

The main aim of the research reported in this paper is to find reliable ways of com-

bining human and environmental feedbacks. One direction of further research is to

use the proposed scheme along with an underlying probabilistic belief representation

to enable an agent (or a robot) to operate in partially observable domains and automat-

ically acquire relevant human input when needed. Future research will also focus on

other multiagent and multirobot domains collaborating towards a shared objective in

the real-world.
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