
In Itsuki Noda, Adam Jacoff, Ansgar Bredenfeld and Yasutake Takahashi, editors, RoboCup 2005,
Springer Verlag, Berlin, Germany, 2006.

Towards Eliminating Manual Color Calibration

at RoboCup

Mohan Sridharan1 and Peter Stone2

1 Electrical and Computer Engineering, The University of Texas at Austin
smohan@ece.utexas.edu

2 Department of Computer Sciences, The University of Texas at Austin
pstone@cs.utexas.edu, http://www.cs.utexas.edu/~pstone

Abstract. Color calibration is a time-consuming, and therefore costly
requirement for most robot teams at RoboCup. This paper presents an
approach for autonomous color learning on-board a mobile robot with
limited computational and memory resources. It works without any la-
beled training data and trains autonomously from a color-coded map
of its environment. The process is fully implemented, completely au-
tonomous, and provides high degree of segmentation accuracy. Most im-
portantly, it dramatically reduces the time needed to train a color map
in a new environment.

1 Introduction
Upon arrival at RoboCup competitions, one of the first steps for most teams
in any of the real robot leagues is color calibration: the process of mapping raw
camera pixel values to color labels, such as green or orange. Due to differences in
lighting conditions and object colors between the teams’ labs and the competition
venue, pre-trained vision modules are unlikely to work “out of the box.”

The time required for color calibration contributes in large part to the need
for multiple days of setup time before each competition, a costly proposition
both from the perspective of reserving the venue and from the perspective of
individual travel expenses. In addition, both soccer-playing and rescue robots
must eventually be able to operate in natural, changing lighting conditions.
Rescue robots in particular must be operational as soon as possible after arriving
at a disaster site.

Though events, to date, have all been held under constant, bright lighting
conditions, it takes an hour or more to train the robot to recognize the desired
colors in its environment. One way to dramatically reduce this time is to enable
the robot to autonomously learn the desired colors from the environment using
the inherent structure. Doing so may also enable them cope more easily with
changing lighting conditions.

In the abstract, automatic color segmentation can be characterized by the
following set of inputs, outputs and constraints:
1. Inputs:

∗ A color-coded map of the robot’s world. This contains a representation of
the size, shape, position, and colors of all objects of interest.

∗ A stream of limited-field-of-view images that present a view of the struc-
tured world with many useful objects, and many unpredictable elements.

∗ The initial position of the robot and its joint angles over time, particularly
those specifying the camera motion.

2. Output:
∗ A Color Map that assigns a color label to each point in the color space.

3. Constraints:
∗ Limited computational and memory resources with all processing being

performed on-board the robot.
∗ Rapid motion of the limited-field-of-view camera with the associated noise

and image distortions.
This paper presents an approach for autonomous color learning on-board a

mobile robot with limited computational and memory resources. It works with-
out any labeled training data and trains autonomously from a color-coded map
of its environment. The process is fully implemented, completely autonomous,
and provides high degree of segmentation accuracy. Most importantly, it dra-
matically reduces the time needed to train a color map in a new environment.

2 Background Information

The SONY Aibo, ERS-7, is a four legged robot whose primary sensor is a CMOS
camera with a field-of-view of 56.9o (hor) and 45.2o (ver), providing the robot
with a limited view of its environment. The images are captured in the YCbCr
format at 30Hz and an image resolution of 208 × 160 pixels. The robot has
20 degrees-of-freedom (dof). It also has noisy touch sensors, IR sensors, and a
wireless LAN card for inter-robot communication. The camera jerks around a
lot due to the legged locomotion modality, and images possess common defects
such as noise and distortion. Figure 1 shows a picture of the robot and the
4.4m × 2.9m playing field.

On the robot, visual processing typi-

Fig. 1: An Image of the Aibo and the
field.

cally occurs in two stages: color segmen-
tation and object recognition ([3] presents
our implementation). Color segmentation
is a well-researched field in computer vi-
sion with several good algorithms, for ex-
ample [2, 10]. But these involve computa-
tion that is infeasible to perform on au-
tonomous robots given the computational
and memory constraints. In the RoboCup
domain too, several methods have been ap-
plied, from the baseline approach of creat-
ing mappings from the YCbCr values to the color labels [?], to the use of de-
cision trees [11] and axis-parallel rectangles in the color space [12]. All of them
involve an elaborate training process wherein the color map is generated by
hand-labeling several (≈ 20 − 30) images over a period of at least an hour.

The color map is used to segment the image pixels to one of the desired
colors and construct connected constant-colored blobs. The blobs are used to
detect useful objects (e.g. markers and the ball). The robot uses the markers
to localize itself on the field and coordinates with its team members to score

goals on the opponent. All processing, for vision, localization, locomotion, and
action-selection, is performed on board the robots, using a 576MHz processor.

Though games are currently played under constant and reasonably uniform
lighting conditions, a change in illumination over several days forces teams to
re-calibrate the vision system. Also, the overall goal of eventually playing against
humans in natural lighting puts added emphasis on the ability to learn the color
map in a very short period of time. Attempts to automatically learn the color
map have rarely been successful. One such instance is [6]), wherein the author
presents a method to learn the color map using three layers of color maps with in-
creasing precision levels. But the generated map is reported to be not as accurate
as the hand-labeled one and other domain specific constraints are introduced to
disambiguate between object colors, during the object recognition phase. In [?],
colors are estimated using a hierarchical Bayesian model with Gaussian priors
and a joint posterior on robot position and environmental illumination.

This paper presents a novel approach that enables the robot to autonomously
learn the entire color map, using the inherent structure of the environment and
about seven images, in less than five minutes. It involves very little storage and
the resultant segmentation accuracy is comparable to that obtained by the color
map generated by the hand-labeling process.

3 Problem Specification
Here, we formally describe the problem of generating a color map for the robot.

To be able to recognize objects and operate in a color-coded world, a robot
generally needs to recognize a certain discrete number (N) of colors (ω ∈ [0, N −
1]). A complete mapping identifies a color label for each possible point in the
color space [4] under consideration:

∀p, q, r ∈ [0, 255] {C1,p, C2,q, C3,r} 7→ ω|ω∈[0,N−1] (1)

where C1, C2, C3 are the three color channels (e.g. RGB or YCbCr), with the
corresponding values ranging from 0 − 255.

We represent colors using a Three-Dimensional (3D) Gaussian model (reason-
ably approximates actual distributions) with the assumption of mutually inde-
pendent color channels. In practice, the independence assumption, which implies
a lack of correlation among the three color channel values for any given color,
does not hold for all colors. Nonetheless, it closely approximates reality and
greatly simplifies the calculations — computationally expensive operations such
as inverting a covariance matrix need not be performed.

Each color ω ∈ [0, N − 1] can then represented by the density distribution:

p(ω|c1, c2, c3) =
1√

2π
∏3

i=1 σCi

· exp−1

2

3
∑

i=1

(

ci − µCi

σCi

)2

(2)

where, ci ∈ [Cimin
, Cimax

] represents the value at a pixel along a color channel
Ci while µCi

and σCi
represent the corresponding means and variances.

Under this model, the means and variances of the distributions are the only
statistics that need to be collected and stored for each color that is to be learnt,
making the learning process fast and feasible to execute on the robot. Next, we
describe the learning setup and the actual process that the robot goes through
to learn the color map.

4 Learning Setup

In this section we describe the algorithm (summarized in Algorithm 1) that the
robot executes to autonomously learn the color distributions.

Algorithm 1 General Color Learning

Require: Starting Pose Known, Map of the robot’s world.
Require: Empty color map.
Require: Array of poses for learning colors, Pose[].
Require: Array of objects, described as shapes, from which the colors need to be

learnt, Objects[].
Require: Ability to move to a target pose.
1: i = 0, N = MaxColors

2: Timest = CurrT ime

3: while i < N and CurrT ime − Timest ≤ Timemax do

4: Motion = RequiredMotion(Pose[i])
5: Perform Motion {Monitored using visual input}
6: if LearnGaussParams(Colors[i]) then

7: Learn Mean and Variance of color from candidate image pixels
8: UpdateColorMap()
9: if !Valid(Colors[i]) then

10: RemoveFromMap(Colors[i])
11: end if

12: end if

13: i = i + 1
14: end while

15: Write out the color statistics and the color map.

The algorithm can be described as follows: The robot starts off at a known
position in its map of its world. It has no initial color information, i.e. the means
and variances of the colors to be learnt are initialized to zero. It also has three
lists: the list of colors to be learnt (Colors), a list of corresponding positions that
are appropriate to learn those colors (Pose), and a list of corresponding objects,
defined as shapes, that can be used to learn the colors. Using a navigation
function (RequiredMotion()), the robot determines the motion required, if any,
to place it in a position corresponding to the first entry in Pose, and executes
the motion command. The object shape definition – the corresponding entry in
the Objects array – leads to a set of constraints (heuristic candidacy tests) that
are used to select the candidate blob. The robot stops when either a suitable
blob is found or it thinks it has reached its target position. Further details of
the candidacy tests can be found in a technical report [3].

Once in position, the robot executes the function LearnGaussParams() to
learn the color. If a suitable candidate blob of unknown color (black in our case)
exists, each pixel of the blob is examined. If the pixel value is sufficiently distant
from the means of the other known color distributions, it is considered to be a
member of the color class under consideration. When the entire blob has been

analyzed, these pixels are used to arrive at a mean and a variance that then
represent the 3D Gaussian density function of the color being learnt.

The function UpdateColorMap() takes all the learned Gaussians as input
and generates the complete mapping from pixel values to the color labels. This
process of assigning color labels to each cell in the 128 × 128 × 128 cube is the
most intensive part of the learning process. Hence, it is performed only once
very five seconds or so. Each cell is assigned a color label corresponding to the
color whose density function (Equation 2) has the largest probability value. The
updated color map is used to segment all subsequent images.

The segmented images are used for detecting objects, which are in turn used
to validate the colors learnt (Valid()). The entire learning procedure is repeated
until all desired colors are learnt and/or the predecided learning time (Timemax)
has elapsed. A more detailed description can be found in [9].

5 Experimental Setup

A line drawing of the legged league field,

Y
E

LL
O

W
 G

O
A

L

B
LU

E
 G

O
A

L

12

3

4

5

6

BLUE−PINK

PINK−YELLOW PINK−BLUE

YELLOW−PINK

Fig. 2: The Learning positions.

with its color coded goals and markers, is
shown in Figure 2. We present the results
when the robot always starts off in Position-
1 and moves through a deterministic sequence
of positions (the elements of the array Pose[]).

The steps involved in the algorithm can
be presented as an ordered list of positions,
colors (to be learnt) and objects:
1. Step-1: Position1 with head tilted down, white and green, Field line and center

circle.
2. Step-2: Position-2, yellow, Yellow goal.
3. Step-3: Position-3, pink, Yellow-pink marker.
4. Step-4: Position-4, blue, Blue goal.
5. Step-5: Position-5, blue (Disambiguate green and blue), Pink-blue marker.
6. Step-6: Position-6 with head tilted down, ball color (orange), Ball.
7. Step-7: Position-6 with head horizontal, opponent’s uniform color, Opponent.

The robot then writes out the color map and the statistics to the memory
stick. A few important points are to be noted with regard to the learning process.
In Position-1, learning is performed based on the fact that a large portion of the
image (in that position) consists of green. The algorithm is entirely dependent
on inherent structure of the environment and not on the particular color that is
being learnt. The positions for learning the ball and opponent colors are set so as
to minimize the movement. Currently we only learn red for the opponent uniform
color, though the process could be used to learn darkblue too. The video of the
learning mechanism, as seen from the robot’s camera, can be viewed online [1].

6 Experimental Results

We tested the accuracy of the color maps that were learned autonomously on the
robots by comparing their segmentation accuracy with a color map generated
by the prevalent approach of hand-segmenting a set of ≈ 25 images. We refer to

this color map as the Hand Labeled (HLabel) color map. This map corresponds
to a fixed illumination condition. Here, an intermediate map (IM) of the same
size as the overall color map is maintained for each color. Each cell of an IM
stores a count of the number of times an image pixel that maps into that cell was
labeled as the corresponding color. Each cell in the final color map is assigned
the label corresponding to the color whose IM has the largest count in that cell.

Based on results [5, 7, 8] that the LAB color space could be reasonably robust
to illumination variations, we trained a color map each in LAB and YCbCr.
Since the colors of the ball and the opponent overlap with the marker colors, we
performed the analysis in stages: first with just the fixed marker colors and then
with all the colors included.

On a set of sample images of the markers (15) captured using the robot’s
camera, we first compared the performance of the three color maps with the
color labeling provided interactively by a human observer, the Ground Truth
(GTruth). We are interested only in the colors of the markers and other objects
on the field and/or below the horizon. Also, the correct classification result is
unknown (even with HLabel) for several background pixels in the image. There-
fore, the observer only labels pixels suitable for analysis and these labels are
compared with the classification provided by the three color maps. On average,
≈ 20% of the pixels in the image get labeled by the observer. The average clas-
sification accuracies are 87.8± 3.18, 97.9± 0.76, and 98.8± 0.44 for the YCbCr,
LAB and HLabel color maps respectively, as compared to GTruth.

The color labeling obtained by

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Sample Images with Ball. (a)-(c)
Original, (d)-(f) YCbCr, (g)-(i) LAB

using the HLabel color map or the
map generated in the LAB color space
is almost perfect in comparison to
the human color labeling. There is
not much difference in the qualita-
tive performance between these and
the YCbCr map. Sample image re-
sults are available in [9, 1] – the robot
is able to learn a reasonable color
map in both color spaces when only
the marker colors are considered.

Next, we let the robot learn the
ball color (orange) in addition to
the marker colors. The average clas-
sification accuracies are 74.8±9.2%,
94± 5.6% and 98.5± 0.8% for the YCbCr, LAB and HLabel color maps respec-
tively, as compared to GTruth. Figure 3 show the segmentation results over a
set of images.

In the YCbCr color space, the inclusion of orange causes the segmentation to
degrade even over the colors (pink and yellow) that it could classify well before.
This is not the case in LAB – the object recognition procedure is able to find
the ball without any additional constraints (the ball is rarely found in YCbCr).

Therefore the color of the opponent’s uniform (red) is learnt only in the LAB
color space. Images illustrating this can be seen at [9, 1].

While operating in the LAB color space, we still do not want to transform
each pixel in the test image from YCbCr to LAB due to computational con-
straints. So, during the color map update, we assign the color label to each
discrete cell in the YCbCr color map by determining the label assigned to the
corresponding pixel values in LAB. The pixel-level transformation increases in
the training time. The learning process takes ≈ 2.5minutes in YCbCr while it
takes ≈ 4.5minutes in LAB, still much smaller than the time taken to generate
HLabel, an hour or more.

When the illumination changes within a range of illuminations, the original
color map does not perform well. But the robot is able to learn a new color map
in a few minutes.

Finally, we tested the hypothesis that the algorithm is robust to color re-
mapping. We changed the field setting by moving a goal to a carpet that has
a non-uniform blue design and we placed a small piece of white paper on it
instead of the field lines. The robot still learnt the carpet color as green and
proceeded to learn other colors. Next, we started the learning process with the
robot in Position-2, facing the blue goal (Figure 2). The robot ended up learning
the color blue as yellow and vice versa. This confirms our hypothesis that the
process is dependent only on shape and size and not on the particular color that
is being learnt.

Sample image results for all experiments can be seen in [9] or on the team
web-site [1].

7 Discussion and Conclusion

We have presented an approach to automating the color learning and segmen-
tation process on-board a legged robot with limited computational and storage
resources. In spite of the relatively low-resolution images with inherent noise and
distortion, the algorithm enables the robot to autonomously generate its color
map in a very short period of time. The corresponding segmentation accuracy is
comparable to the that obtained by hand-labeling several images over a period
of an hour or more. This could result in a substantial reduction in the setup time
before the games can begin at RoboCup competitions.

Though we have tested our approach only in the legged league environment,
it applies to the other leagues where the vision is done on-board a mobile robot
in a known, color-coded environment. Color-calibration in the small-size league
is currently more straightforward because vision is often done with a stationary
overhead camera. However, as teams move towards on-board vision, they will face
the same constraints as the other robot soccer leagues. To apply this method in
the rescue league requires the generation of a test-environment with objects of
relevant colors in known locations. One could imagine quickly collecting relevant
training objects and placing them in fixed locations that can be communicated
to the robot for training purposes. However it remains to be shown that doing
so generalizes to the larger environment, and if so, that it enables a reduction in
manual effort and training time. This is an important area for future research.

The algorithm depends only on the structure inherent in the environment
and a re-mapping of the colors does not prevent the robot from learning them.
Further, the color map can be learnt in several fixed illumination conditions
between a minimum and maximum on the field. The learning can be easily
repeated if a substantial variation in illumination is noticed.

Currently, the color map is learnt from a known fixed starting position with-
out any prior knowledge of colors. An extension that we are currently working
on is to learn from any given starting position on the field.

Acknowledgments

We would like to thank the members of the UT Austin Villa team for their
efforts in developing the soccer-playing software mentioned in this paper. This
work was supported in part by NSF CAREER award IIS-0237699, ONR YIP
award N00014-04-1-0545, and DARPA grant HR0011-04-1-0035.

References

1. The Utaustinvilla research website, 2004. http://www.cs.utexas.edu/users/

AustinVilla/?p=research/auto_vis.
2. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature

space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(5):603–619, 2002.

3. P. Stone et al. UT Austin Villa 2004: Coming of Age, AI Technical Report 04-
313. Technical report, Department of Computer Sciences, University of Texas at
Austin, October 2004.

4. Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice
Hall, 2002.

5. Jeff Hyams, Mark W. Powell, and Robin R. Murphy. Cooperative navigation of
micro-rovers using color segmentation. In Journal of Autonomous Robots, 9(1):7–
16, 2000.

6. Matthias Jungel. Using layered color precision for a self-calibrating vision system.
In The Eighth International RoboCup Symposium, Lisbon, Portugal, 2004.

7. B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire. Low-order-complexity
vision-based docking. IEEE Transactions on Robotics and Automation, 17(6):922–
930, 2001.

8. M. Sridharan and P. Stone. Towards illumination invariance in the legged league.
In The Eighth International RoboCup Symposium, Lisbon, Portugal, 2004.

9. M. Sridharan and P. Stone. Autonomous color learning on a mobile robot. In
The Twentieth National Conference on Artificial Intelligence (AAAI), 2005, To
Appear.

10. B. Sumengen, B. S. Manjunath, and C. Kenney. Image segmentation using multi-
region stability and edge strength. In The IEEE International Conference on Image
Processing (ICIP), September 2003.

11. The UNSW Robocup 2001 Sony Legged League Team. RoboCup-2001: The Fifth
RoboCup Competitions and Conferences. Springer Verlag, Berlin, 2002.

12. The UPennalizers Robocup 2003 Sony Legged League Team. RoboCup-2003: The
Fifth RoboCup Competitions and Conferences. Springer Verlag, Berlin, 2004.

13. William Uther, Scott Lenser, James Bruce, Martin Hock, and Manuela Veloso.
Cm-pack’01: Fast legged robot walking, robust localization, and team behaviors.
In The Fifth International RoboCup Symposium, Seattle, USA, 2001.

