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Abstract— Human-robot collaboration in practical domains
typically requires considerable domain knowledge and labeled
examples of objects and events of interest. Robots frequently
face unforeseen situations in such domains, and it may be
difficult to provide labeled samples. Active learning algorithms
have been developed to allow robots to ask questions and
acquire relevant information when necessary. However, human
participants may lack the time and expertise to provide compre-
hensive feedback. The incremental active learning architecture
described in this paper addresses these challenges by posing
questions with the objective of maximizing the potential utility
of the response from humans who lack domain expertise.
Candidate questions are generated using contextual cues, and
ranked using a measure of utility that is based on measures
of information gain, ambiguity and human confusion. The top-
ranked questions are used to update the robot’s knowledge by
soliciting answers from human participants. The architecture’s
capabilities are evaluated in a simulated domain, demonstrating
a significant reduction in the number of questions posed in
comparison with algorithms that use the individual measures or
select questions randomly from the set of candidate questions.

Index Terms— Human-robot interaction, incremental knowl-
edge acquisition, contextual query generation.

I. INTRODUCTION

Robots1 collaborating with humans in complex domains
typically need a significant amount of domain knowledge.
It is, however, difficult to equip robots with accurate and
complete domain knowledge, and human participants may
lack the expertise and time to provide elaborate instructions
to robots. The ability to pose relevant questions that quickly
draw a human’s attention to the object(s) and event(s) of
interest can thus significantly influence the quality of a
robot’s interaction with humans.

Humans frequently use contextual cues to draw attention
to an object of interest. Such contextual information is
all the more useful when we forget the word(s) typically
used to describe an object, or if our collaborator does not
have the necessary background knowledge to understand
our description. Contextual cues can take different forms,
and positional context with reference to a known object can
be very useful in disambiguating the object of interest. For
instance, instead of referring to a “1965 Ford Mustang” in a
busy street intersection, we may refer to the “red car behind
the bus”, using both feature labels (e.g., color and object
labels) and positional reference to a known object. Humans

1In this paper, “agent”, “robot” and “learner” are used interchangeably.

also incrementally learn from, and build upon, existing
knowledge, by posing questions to acquire information from
parents, teachers and friends. Furthermore, since we may
often be embarrassed to ask “stupid questions”, we attempt
to formulate interesting questions that help us quickly acquire
the desired information. Consider, for instance, the common
question: “what is that?”, which even in the presence of
other cues (e.g., gestures) is likely to provide an ambiguous
reference to the person we are interacting with, resulting in a
possibly inaccurate response. In contrast, the question: “what
is in your right hand?” is more likely to obtain an accurate
answer by unambiguously drawing attention to the object
of interest. Motivated by these instinctual choices made by
humans, this paper describes an architecture for incremental
knowledge acquisition from visual and verbal cues in human-
robot interaction. An agent equipped with this architecture:

• Constructs candidate questions about objects in a scene
under consideration, based on current domain knowl-
edge and the contextual information available for use.

• Ranks these questions based on their relative utility, i.e.,
their ability to minimize interaction with humans; utility
is computed using heuristic measures of information
gain, ambiguity and human confusion.

• Solicits human feedback by posing the top-ranked ques-
tions, updating knowledge and incrementally learning
about the objects and scenes under consideration.

We illustrate and evaluate the capabilities of the architecture
on simulated images of scenes with objects characterized
by different colors and shapes. The robot’s objective is
to start with incomplete knowledge about objects in the
scene, and learn the labels of the objects and features in the
scene by posing as few questions as possible. Although this
objective and the simulated domain may appear simplistic,
they (a) capture the research challenges of interest, which are
also intrinsic to more complex human-robot collaboration
domains; and (b) help isolate and thoroughly analyze the
contributions of the proposed algorithms and measures.

The remainder of the paper is organized as follows. Sec-
tion II reviews a representative set of related work. Section III
describes the proposed architecture and its components.
Section IV describes the experimental setup and discusses
the results of experimental evaluation. Finally, Section V
presents the conclusions along with future plans.
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II. RELATED WORK

This section motivates the proposed architecture by re-
viewing a representative set of related work.

Active learning algorithms allow incremental labeling or
acquisition of data, e.g., by allowing a human annotator to
label instances in the dataset that have been misclassified by
existing models. A recent survey categorized active learning
algorithms into pool-based, stream-based and membership
query algorithms [1]. Existing algorithms predominantly
focus on choosing unlabeled instances that are to be pre-
sented to the annotator, rather than evaluating the types
of queries to ask [1], [2], [3]. However, research indicates
that the introduction of feature queries allowing labeling of
features as well as object instances significantly improves
performance based on the learned models [4].

Active learning has been combined with multiple instance
learning (MIL) to minimize human supervision by supporting
the labeling of bags (e.g., images) instead of individual
instances (e.g., objects and features in the images) [5].
In such combinations, research shows that an incremental
learning architecture that provides the ability to solicit labels
of previously unseen bags, speeds up learning of object
models and results in more accurate object recognition based
on these models [6]. Research also shows that a multimodal
learning algorithm that associates visual features with verbal
descriptions (provided by humans) leads to object models
that provide more accurate object recognition than models
based on just visual features [7]. Although these algorithms
reduce human involvement, the focus is on labeling bags and
not on the relative merits of different query types.

AI researchers have developed algorithms that allow the
learners to ask different types of questions. Research has
explored the embedding of context in queries to improve
the overall quality of the questions posed by a robot to
human participants [8]. However, this algorithm evaluated
the reaction of humans, and the ability of humans to answer
questions correctly, instead of the agent’s ability to learn
from these questions. A different approach to asking the
right questions were explored in [9], where a decision tree
was used to identify a series of questions that would extract
the desired information. Another option is to pose query
generation as a planning task, but it requires prior knowledge
of possible answers, which will differ from scene to scene;
the planning will also be computationally inefficient.

Learning from demonstration (LfD) algorithms allow
agents to observe a human demonstrate a specific task, and
either mimic the observed actions or map the actions to avail-
able capabilities. Common algorithms that use teleoperation,
planning and demonstration learning techniques have been
surveyed and discussed in [10], [11]. More recent research
has combined active learning with LfD to explore the use of
different types of questions [12]. This work introduced four
types of queries: object label, feature label, demonstration,
and affirmation queries, but the objective was to explore how
each query category is perceived by humans.

Our proposed architecture seeks to address the limitations
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Fig. 1. Overview of the proposed architecture.

of existing work by allowing the learner to use contextual
cues and incrementally pose questions with high relative
utility, i.e., questions that help disambiguate between (and
quickly acquire information about) domain objects.

III. PROBLEM FORMULATION

Figure 1 is an overview of the proposed architecture.
The architecture starts with limited knowledge of the scene.
The set of possible queries are generated using contextual
cues, as described in Section III-A. Candidate queries are
ranked based on measures of information gain, ambiguity,
and human confusion (Section III-B), and the top-ranked
queries are posed to a human annotator. Human input is used
to revise domain knowledge, which is used to generate a new
set of queries until all objects and features are labeled. The
following notation will be used throughout this paper:

1. An object in the domain can be characterized by n
different properties or features.

2. F = {F1, ...,Fn} denotes a superset of features. Each
Fi, i ∈ [1.n], is a set of instances of one type of feature
(e.g., color).

3. A feature instance f ∈ Fi is a tuple 〈label, values〉,
where label refers to a human understandable word, e.g.,
red, and values refer to the computer representation of
that label, e.g., RGB value (255, 0, 0).

4. Scene S is a set of objects. Each s ∈ S is the tuple
〈label,OF〉, where OF = {f1, ..., fn} with fi ∈ Fi, i ∈
[1, n]. Each object thus has a label and one instance of
each feature, e.g., black for color and circle for shape.
Object s with feature fi is denoted by fi(s).

5. R is the set of Relations that can exist between two
objects in a scene. Each relation r ∈ R between two
objects in the scene is assumed to be determinable and
their labels are known to the architecture e.g., relative
positions of two objects in space, and the temporal
relations between two events. Such relations are denoted
by r(si, sj), where si, sj ∈ S and si 6= sj .
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6. Knowledge Base denoted as K is the tuple defined as
〈S,LS,US,LF ,UF ,R〉:
• LS is the set of labeled scene objects, with LS ⊆ S.
• US denotes the set of unlabeled scene objects such that
US ⊆ S. Note that LS ∩US ≡ ∅, i.e., these sets have
no common members.

• LF denotes the superset of labeled features:
{LF1,LF2, ...,LFn}. Each LFi ⊆ Fi, i ∈ [1, n]
contains instances of a specific feature (e.g., color)
with known labels.

• UF denotes the superset of unlabeled features:
{UF1,UF2, ...,UFn}. Each UFi ⊆ Fi, i ∈ [1, n] con-
tains the instances of a specific feature with unknown
labels. Note that LFi ∩ UFi ≡ ∅.

Using this notation, we next describe the steps for generating
candidate queries (Section III-A), and the measures for
ranking the queries (Section III-B).

A. Query Generation

This section describes the generation of a set of candidate
queries Q for a scene, where each query q ∈ Q contains
embedded contextual information to describe the object of
interest. Specifically q = 〈t, s, C〉, where:

• t denotes the query type e.g., object label query or
feature label query.

• s ∈ S denotes the object of interest in the scene.
• C denotes the embedded context, which describes the

object of interest. Specifically C = 〈SC,LC, gc〉 where:
– SC denotes the set of self contexts. The labeled

feature(s) of s or the label of s can be a self context.
– LC denotes the set of local contexts. Local contexts

are labeled objects or features that are related to s
i.e., r(s, si) such that si ∈ S , r ∈ R, si 6= s, with
si ∈ LS or ∃f ∈ LF such that f(si).

– gc denotes the global context defined by its relation
to the whole scene. We assume that only one
global context exists for each object (e.g., top right
corner), and that gc is computable.

Algorithm 1 describes the generation of queries with level-
1 context. The input is a scene object s and the output is
a set of possible questions Q. First, all the context which
can describe s is retrieved. Note that global context gc is
computed using predefined subroutines. Self contexts SC of
the object s are the known object label or labeled features
(e.g., red) of s. Local contexts are the labeled objects or
features that are related to s (e.g., above red object). If the
object label of s is unknown, i.e., s ∈ US , an object label
query is generated using the global context and added to Q.
Object label queries are also generated using each of the self
contexts of s and added to Q. Next, object label queries are
generated for s using each of its local contexts, and added
to Q. It is possible that no context exists to describe s,
resulting in zero queries about unlabeled components of s.
After object queries are generated and collected, each feature
of s is checked for labels. Using the same global context
used above, each unlabeled feature generates a feature label

query to be added to Q. Similarly, feature label queries are
generated using the self contexts of s, and the local contexts
of s, and added to Q. Finally, Q is returned as output.

Algorithm 1: Level 1 Query Generation
Input: s: a scene object, and knowledge base
Output: Q: set of queries

1Procedure QueryGeneration()
2 C ← Context(s)
3 Initialize SC with C[0]
4 Initialize LC with C[1]
5 Initialize gc with C[2]
6 if s ∈ US then
7 q ← 〈object, s, 〈∅,∅, gc〉〉
8 Q ← Q∪ {q}
9 for each sc ∈ SC do

10 q ← 〈object, s, 〈{sc},∅, null〉〉
11 Q ← Q∪ {q}
12 end
13 for each lc ∈ LC do
14 q ← 〈object, s, 〈∅, {lc}, null〉〉
15 Q ← Q∪ {q}
16 end
17 end
18 for each feature f in f(s) do
19 if f ∈ UF then
20 q ← 〈f, s, 〈∅,∅, gc〉〉
21 Q ← Q∪ {q}
22 for each sc ∈ SC do
23 q ← 〈f, s, 〈{sc},∅, null〉〉
24 Q ← Q∪ {q}
25 end
26 for each lc ∈ LC do
27 q ← 〈f, s, 〈∅, {lc}, null〉〉
28 Q ← Q∪ {q}
29 end
30 Q ← Q∪ {q}
31 end
32 end
33 return Q
34 Procedure Context(s)
35 SC = {f ∈ LF | f(s)}
36 if s ∈ LS then
37 SC = SC ∪ {label of s}
38 end
39 LC = {si ∈ S | si 6= s,∃r(s, si), si ∈ LS}
40 LC = LC ∪ {si ∈ S | si 6= s,∃r(s, si), f(si) : f ∈
LF}

41 Compute gc(s) . predefined subroutine
42 return 〈SC,LC, gc〉

A simplistic question template was used for constructing
queries: <Question word(s)> <Type> <Context>?
With the following specific example: <What is the> <color
label of the object> <below the cross>? Self context
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information, e.g., red object, is an exception to this template;
there is no additional context in the corresponding queries.

1) Level of Context: Humans, especially those without
domain expertise, are likely to be overwhelmed by a large
amount of contextual information, leading to information
overload and inaccurate responses. We consider different
levels of contextual information, and limit ourselves to three
levels, using α to denote human confusion. Level 1 queries
are least likely to confuse the human annotator, while Level
3 queries are the most confusing due to the amount of
contextual information considered. The levels are defined as:

• Level 1: One item of contextual information.
– A self context, e.g., red object.
– Two self contexts, e.g., red rectangle.
– A local context, e.g., object above the red object.
– A global context, e.g., top right corner.

• Level 2: Two items of contextual information.
– A self context and one global context, e.g., red

object in the top right corner.
– A self context and a local context, e.g., red object

above the triangle.
– A local context and a global context, e.g., object at

the top, above the red object.
– Two local contexts, e.g., object above the red

object, to the right of the circle.
• Level 3: Three items of contextual information.

– A self context, a global context, and a local context,
e.g., red object in the top right corner, next to the
circle.

– Two self contexts and a local context. e.g., red
circle above the triangle.

– Two self contexts and a global context. e.g., red
circle at the top of the scene.

– Two local contexts and a self context. e.g., red
object to the right of the circle, above the green
object.

– Two local contexts and a global context. e.g., object
on the right, above the circle and to the right of
the yellow object.

Queries of a specific level are generated if the corresponding
contextual cue exists, e.g., there are labeled feature or object
instances that can be used to describe the object of interest.

B. Query selection

After the set of queries Q is generated, the most useful
queries can be identified as those that (1) maximize informa-
tion gain; (2) minimize ambiguity; and (3) minimize human
confusion. We designed heuristic measures to capture these
intuitive principles. The first measure captures the potential
information gain if human annotation is obtained for a query
q ∈ Q (Section III-B.1). The second measure captures how
the embedded contextual information in q uniquely describes
the object of interest (Section III-B.2). The information
obtained from these two measures is combined, using a
measure of human confusion to break ties (Section III-B.3).

1) Information Gain: Consider a set of m distinct objects
in a scene; each object has one instance of each feature. If
color and shape are the features of an object in the domain,
F = {F1,F2}, with color and shape feature instances being
members of F1 and F2 respectively, e.g., F1 3 f = blue
and F2 3 f = rectangle. We denote the scene objects with
labeled featuref ∈ LFi as LSFi and the scene objects with
unlabeled features f ∈ UFi as USFi, such that:

|LSFi|+ |USFi| = |LS|+ |US| = |S| = m

for each i ∈ [1, n]. Note that LSFi ∪ USFi = S and
LSFi ∩ USFi ≡ ∅ for each i ∈ [1, n]. The ratio of the
number of instances of each feature or object the learner
will acquire labels for (by posing a specific query) against
all the knowledge the learner can acquire about the scene, is
denoted by:

P (Fi) =
|LSFi|
m

, P (S) =
|LS|
m

The information gain (β) is then measured as the product of
quantities computed above:

β =

n∏
i=1

P (Fi)× P (S)

which represents the potential information gain upon obtain-
ing the answer to candidate query q.

2) Unambiguity: For an object or feature, the learner must
also determine how much contextual information should be
included in the query to describe the object unambiguously.
If there is no unique scene object that satisfies the contex-
tual information embedded in a query, the query becomes
ambiguous. The proposed unambiguity measure γ captures
this reasoning using a modified Chi-square probability dis-
tribution with degree of freedom k = 2 and x ∈ [0,+∞]
denoting the number of objects or feature instances in the
scene which satisfy the query context:

γ = f(x) =

x = 0, 0

x ≥ 1, 1

2
k
2 Γ( k

2 )
(x− 1)

k
2−1e−

x−1
2

This distribution that can be simplified for k = 2 as:

γ =
1

2
e−

x−1
2

where Γ is the Gamma function such that Γ(1) = 1.
3) Combined score: The candidate queries are to be

ranked in decreasing order of utility based on the combi-
nation of the measures: information gain, unambiguity, and
human confusion. First the utility δ of a query is computed
as the product of the information gain and unambiguity
measures described above, i.e., δ = β × γ. Based on the
value of this score, the queries can be ranked relative to each
other. The query with a higher δ is preferred for soliciting
information from a human. If there are multiple queries with
the same δ, a measure of human confusion (α) is used to
break the tie. We introduce a simple definition of α based on
the level of context information: Level 1 queries are preferred
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Fig. 2. An example scene with simulated objects.

over Level 2 queries, and Level 2 queries will be preferred
over Level 3 queries. The levels of context are described in
Section III-A.1. If multiple queries still have the same overall
score, one of these queries will be selected randomly.

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup (Section IV-
A) and summarizes the results of experimentally evaluating
the algorithms described above (Section IV-B).

We report results of evaluating our architecture in a
simulated domain, which is simplistic enough to support
thorough analysis of the algorithm and the measures, while
also capturing the research challenges that are intrinsic to
more complex human-robot collaboration domains [13]. The
simulated domain abstracts away the uncertainty in the
information extracted from visual cues and verbal cues using
sensor input processing algorithms. The uncertainty that may
exist in human input is also not considered. The experimental
results reported below correspond to trials with simulated
images of scenes, with objects characterized by color and
shape features. The labels of interest therefore include the
color labels, shape labels, and object labels2.

A. Experimental setup

For objects characterized by specific colors and shapes, the
feature set F = {F1,F2}, where F1 3 f = 〈label, RGB〉
is a tuple of color labels and RGB values. Ten different
colors are considered in the trials: Blue, Brown, Grey, Green,
Orange, Pink, Red, Yellow, White and Black. The repre-
sentations for White and Black are assumed to be always
known; they are the foreground and background colors. Next,
F2 3 f = 〈label, contour〉 is a tuple of shape labels and
shape contours; a contour is a set of points on a plane. The
15 shapes in the domain are: Arrow, Circle, Cross, Heart,
Hexagon, Moon, Octagon, Oval, Parallelogram, Pentagon,
Rectangle, Square, Star, Trapezoid, Triangle. A Scene is thus
a set of colored shapes without any occlusion—Figure 2
shows an example.

The set of relations R considered in this simulated domain
are spatial relationships that are known to the robot and
are defined in terms of the known (x, y) coordinates of the

2In the examples reported here, the object labels are a combination of
the color labels and shape labels, but this is not a requirement.
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Fig. 3. Knowledge of object and scenes labels expressed as a function
of the number of queries posed to obtain this knowledge, for the scene
in Figure 2. The proposed query selection algorithm acquires knowledge
faster than algorithms that use just the information gain measure or the
unambiguity measure, or a random selection strategy.

centroids of objects, e.g., above/up/on top refers to centroids’
relative locations in terms of the y axis. The experimental
setup allows no more than two spatial relationships to exist
between any two objects. The objective of the learner is to
learn the labels of the objects and features in the scene by
posing as few questions as possible. The number of questions
posed is used as the performance measure.

B. Experimental Results

For the scene in Figure 2, assume that the robot’s initial
knowledge includes the color labels, shape labels, and object
labels of the following four objects: pink star, green arrow,
blue heart, and yellow cross; not all these objects are in the
scene in Figure 2. The following are a subset of the questions
generated by the system. Each line starts with the iteration
number; the question is either rejected as being ambiguous,
or ends with the answer obtained:

• Iteration 1: “What is the label of the shape on bottom
left of the scene?” Parallelogram.

• Iteration 2: “What is the label of the object with green
color?” Ambiguous Query.

• Iteration 3: “What is the label of the color of Parallel-
ogram shaped object?” Gray.

Note that when queries refer to more than one object, e.g.,
the ambiguous question in the second iteration above, it
is not posed. Overall, the system incrementally obtains the
necessary information by building on the existing knowledge,
and using it to pose the subsequent questions.

Next, Figure 3 compares the proposed query (ranking and)
selection algorithm with three other algorithms on the scene
illustrated in Figure 2: (1) using only the information gain
measure; (2) using only the unambiguity measure; and (3)
a baseline approach that randomly selects queries from the
candidate set. Figure 3 plots the % knowledge of object and
feature labels in the scene as a function of the number of
queries posed to acquire this knowledge. Since the proposed
query selection algorithm combines information gain and
unambiguity measure to select high utility queries from Q,
it provides the best performance with the least number of
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queries posed. In contrast, the baseline approach chooses
queries randomly fromQ, and requires the maximum number
of queries to acquire knowledge of object and feature labels
in the scene. If an ambiguous query is posed to the annotator,
the interaction is considered unsuccessful and leads to no
answer. This allows the query selection algorithm that only
uses the unambiguity measure (Section III-B.2) to obtain
complete knowledge of the scene by posing the same (total)
number of queries as the proposed query selection algorithm.
However, the proposed algorithm allows the robot to maxi-
mize the amount of knowledge acquired during each human
interaction in the intermediate stages. Since the algorithm
that only uses the information gain measure poses ambiguous
queries (similar to the random query selection algorithm), it
often results in unsuccessful interactions; in fact, using just
the information gain measure can be worse than selecting
queries randomly. We anticipate the improvement provided
by the proposed algorithm is likely to be more pronounced in
more complex scenes, especially if the uncertainty in sensor
input processing or human feedback is not abstracted away.

Finally, Figure 4 summarizes the results for a set of five
scenes. These scenes differ in complexity, i.e., in terms
of the number and type of objects in the scene. For each
of these scenes, the robot started with the same initial
knowledge about a subset of objects in the scene, i.e., labels
of these objects and their color and shape features. The
proposed algorithm for selecting questions from the set of
candidate questions Q was compared with the algorithm that
selected questions randomly from Q (“baseline”), and with
the algorithm that only used the information gain measure to
select queries from Q. We observe that for each set of paired
experimental trials, our query selection algorithm enables the
robot to learn the desired labels of scene objects and features
by posing a much smaller number of queries. Over a set
of 100 different (randomly generated) scenes with different
number and type of objects, the ratio of the average number
of questions posed using just the information gain measure
with the number of questions posed using our algorithm is
1.19± 0.112; the ratio when the random selection algorithm
is compared with our algorithm is 1.17±0.106. These results

are statistically significant, and are more pronounced as the
scenes become more complex, e.g., the ratio is as high
as 1.75 in certain scenes when only the information gain
measure is used to select questions.

V. CONCLUSION

To collaborate with humans in complex domains, robots
typically need a significant amount of domain knowledge.
However, humans may lack the time and expertise to provide
accurate domain knowledge or elaborate feedback. The ar-
chitecture described in this paper generates candidate queries
using contextual cues, and combines heuristic measures of
information gain, ambiguity, and human confusion, to rank
queries based on their relative utility. The top-ranked queries
are used to solicit human feedback, which is used to incre-
mentally revise the domain knowledge and pose subsequent
queries. Experimental results in a simulated domain indi-
cate that the proposed algorithm and measures significantly
reduce the number of queries posed in comparison with
a baseline algorithm that selects questions randomly, or
uses the individual measures. Future work will consider
other types of queries, and model the uncertainty in human
feedback and in information extracted from sensors and
actuators on physical robots interacting with humans.
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