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Abstract—This paper introduces a novel method for deter-
mining the best room to place an object in, for embodied scene
rearrangement. While state-of-the-art approaches rely on large
language models (LLMs) or reinforcement learned (RL) policies
for this task, our approach, CLIPGraphs, efficiently combines
commonsense domain knowledge, data-driven methods, and
recent advances in multimodal learning. Specifically, it (a)
encodes a knowledge graph of prior human preferences about
the room location of different objects in home environments,
(b) incorporates vision-language features to support multimodal
queries based on images or text, and (c) uses a graph network to
learn object-room affinities based on embeddings of the prior
knowledge and the vision-language features. We demonstrate
that our approach provides better estimates of the most ap-
propriate location of objects from a benchmark set of object
categories in comparison with state-of-the-art baselines1.

Index Terms—Commonsense knowledge, graph convolutional
network, knowledge graph, large language models, scene rear-
rangement.

I. INTRODUCTION

Imagine a robot being tasked with tidying up an unfamiliar
house. This task is a variant of the scene rearrangement
challenge for embodied AI [1]. To perform this task, the robot
must first determine what tidying up means in this specific
house, which requires constructing a representation of the
current state of the house and inferring a possible goal state
(i.e., a configuration in which the house is deemed tidy).
Any errors in this step can influence downstream planning
and control, resulting in irrecoverable failure. Computing the
most appropriate room location for specific object categories
is thus critical to the successful completion of such tasks.

Human-inhabited environments such as homes and offices
are designed to be functional and aesthetically pleasing.
A key characteristic of such environments is the semantic
organization, i.e., objects are placed in locations based on
their purpose. This enables humans to adapt efficiently to
new environments designed to serve the same purpose. For
example, when a person enters a new home and wants to
find sugar to make a cup of coffee, they instinctively look in
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1Supplementary material and code: https://clipgraphs.github.io

Fig. 1: Our method leverages semantic organization (e.g.,
“dumbbells are usually in the exercise room”) to better
compute the most suitable location for any given object.

the kitchen or pantry. We leverage this semantic organization
to enable robots to predict the likely locations of any given
object. Specifically, we leverage recent developments in mul-
timodal (vision-language) representation learning to propose
a flexible approach for learning object-room affinities, i.e.,
the relative likelihood of any given object belonging to a
particular room in a house, based on image and text input.

State-of-the-art methods have used Large Language Mod-
els (LLMs) as commonsense reasoning machinery for this
tidy up task [2]. These methods are limited to textual descrip-
tors, which can be challenging to ground to a specific scene.
Moreover, they use ground truth object labels for generating
object-room affinities, which limits their operation outside of
the training data distribution. Others have used reinforcement
learning (RL) to compute policies for related tasks such as
visual semantic navigation [3]–[6], and Multi-Object Nav-
igation [7]–[9], but do not fully leverage knowledge from
different sources in the learning process.

Our framework, CLIPGraphs, seeks to leverage the com-
plementary strengths of commonsense knowledge, data-
driven methods, and multimodal embeddings to estimate
object-room affinities accurately. It does so by incorporating:

1) A knowledge graph that encodes human preferences of
the room location of objects in home environments;

2) Joint embeddings of image and text features [10] to
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support multimodal learning and queries in the form of
images or text; and

3) A graph network that learns object-room affinities over
a dataset of common household objects based on latent
embeddings of the knowledge graph that includes the
image and text feature embeddings.

The novelty is in the combination of these components to
achieve the desired objective. We evaluate our framework’s
ability to correctly estimate the best room location for any
given object, the key step in scene rearrangement. We do so
using a dataset of 8000 image-text pairs that we created by
extracting images from the Web for 268 benchmark object
categories [2]. We show experimentally that our framework
substantially improves performance compared with state of
the art baselines comprising LLMs and language embeddings
encoding commonsense knowledge of the location of objects.

II. RELATED WORK

We motivate our novel framework by reviewing the limi-
tations of related work.

Embodied AI: To train embodied agents to perform
human-like activities, many common tasks have being ex-
plored recently like goal navigation [11]–[14], object navi-
gation [3], [5], [7], [15]–[17], scene exploration [18], [19],
embodied QA [20]–[22], and rearrangement [1], [23], [24].
ALFRED [25], TEACh [26], and [27] study the ability
of agents to perform actions based on natural language
instructions, and [28]–[30] use knowledge graphs for vi-
sual classification and detection. While these works include
explicit specification of the goal state by a human agent,
recent works have started the inclusion of reasoning with
commonsense knowledge to enable agents to perform these
tasks intelligently.

Commonsense Reasoning In the context of rearrange-
ment, Housekeep [2], and TIDEE [31] work on tidying a
house using commonsense reasoning based on the training
of Large Language Models (LLMs); and CSR [32] generates
reasoning from a scene graph to detect objects and changes
in room states. Other works like JARVIS [33], DANLI [34],
and LLM-Planner [35] show the effectiveness of prompting
LLMs for language understanding and sub-goal planning
using natural language instructions. [36] evaluates the per-
formance of different language models and studies their
limitations concerning commonsense in the physical world.

CLIP for Embodied AI CLIP (Contrastive Language-
Image Pre-training) [37] uses large-scale text-image pairs
for training image and text encoders simultaneously and
has shown remarkable performance for object recognition.
The effectiveness of CLIP image and text embeddings for
Embodied AI tasks has been evidenced by recent studies
[23], [38]–[40] over traditional ResNet-based architectures
[41]. [42] demonstrated the use of CLIP to match objects in
a cross-instance setting with visual features as a measure of
similarity to complete tabletop object rearrangement tasks. A
recent work, ZSON [4], proposes a zero-shot object naviga-
tion agent that uses CLIP embeddings to localize objects in

the environment and navigate towards them without any ad-
ditional training. The agent leverages the semantic similarity
between the object category name and the visual features of
the object to guide its exploration. Similarly, CLIP was used
by [43], [44] for zero-shot vision and language navigation by
using natural language expressions for descriptions of target
objects. Recent works [6], [45]–[48] use pixel-level CLIP
features for robotic navigation using language commands.
[49], [50] have demonstrated the use of CLIP visual and
language embeddings for learning robotic scenes, and [51],
[52] use CLIP for generating 3D scene memories from 2D
images and natural language.

III. PROBLEM FORMULATION AND FRAMEWORK

To perform tidying up or other scene rearrangement tasks,
a robot needs the key ability to accurately compute the
appropriate location for any given object. To explore this abil-
ity, we created the Images for Room-Object Nexus through
Annotations (IRONA) dataset of 30 RGB images from the
Web for each of the 268 categories of household objects used
by Housekeep [2]2. For any such image, the robot had to
compute the likelihood that the object in the image belongs
to each of 17 room categories.

Our framework, called CLIPGraphs, trains a Graph Convo-
lutional Network (GCN) [53] to compute embeddings that are
used to estimate these object-room affinities. Figure 2 shows
the training pipeline. It uses a knowledge graph to encode
existing information of human preferences (of room location
of objects) for the object categories [2], and incorporates a
modified contrastive loss function to compute better latent
embeddings of the image and language encoder features
provided by CLIP [37] for the nodes of the knowledge
graph. The resultant node embeddings model the information
about the room location of various objects in the latent
space. During inference, the CLIP features generated for
any (test) RGB images are processed by the GCN, with
the cosine similarity between the embeddings of the rooms
and the image providing the desired estimate of object-
room affinities. We describe individual components of our
framework below.

A. Knowledge Graph

Our framework’s first step uses the human-annotated
preferences included in the Housekeep data [2]. For every
object-room pair, 10 human annotators ranked the receptacles
in that room based on the likelihood of the object being
placed there correctly or incorrectly. For each object-room-
receptacle tuple, there are thus 10 opinions that could be
positive, negative, or zero. We filter the dataset to ensure good
agreement amongst annotators. We calculate the positive
(negative) soft scores as the mean of the positive (negative)
reciprocal preference of all the receptacles for a given object-
room pair. To establish ground truth object-room mappings,
we use the object-room-receptacle scores, i.e., we select the
room with the highest positive-scored receptacle. Every other

2Supplementary material at: https://clipgraphs.github.io
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Fig. 2: CLIPGraphs constructs a graph module (bottom-left) using CLIP encoders and passes that to a GCN Encoder(E)
module. The encoder is trained using contrastive loss to create better node embeddings that bring similar embeddings closer.
Visualization of final layer activations confirms the formation of well-defined node clusters.

Fig. 3: An illustration of the five types of edges in our
knowledge graph. The colored edges denote positive edge
weights whereas black ones denote negative weights. The
number on the edge denotes the type of edge.

room in the domain is assigned the mean negative soft score
of receptacles in that room2.

To use the available annotated information to populate a
knowledge graph, we partitioned the IRONA web-scraped
dataset into training, validation, and test sets in a ratio of
15:5:10 images per object category. The knowledge graph is
instantiated with each image of the training set as a node,
along with room names, i.e., there are 268*15 + 17 = 4037
nodes. We then considered five types of edges connecting
nodes (see Figure 3): (1) image self edge (edge weight=1);
(2) edge between images of same object (edge weight=1);
(3) edge between two objects in the same ground truth room;
(4) edge between object and its correct room node; and (5)
edge between object and its incorrect room nodes. Next,
we assigned weights for each type of edge. Weights for
edges of type 4 and 5 were based on the object-room soft
scores. Edges of type 3 were given a randomly chosen weight
between 0.5 to 0.7, and edges of type 1 and 2 were assigned
a weight of 1.

Once the basic knowledge graph is created, we initial-
ize the graph’s nodes using the pretrained CLIP model’s
high-dimensional embeddings. Specifically, each object node
is initialized with the corresponding CLIP image encoder

embedding, and each room node is initialized with the
corresponding CLIP language encoder embedding. This is
because we want to capture the appearance of the objects
and the known association between objects and rooms (based
on the large dataset used to train CLIP embeddings). In
particular, we considered three pretrained architectures of
CLIP in our experiments: Vision Transformer (ViT), ResNet-
50, and ConvNeXt. ViT-H/14 [54] is trained on LAION-2B,
which is a 2.3 billion subset of the LAION-5B [55] dataset
with English captions. ResNet-50 [56] uses OpenAI’s pre-
trained weights [37], and ConvNeXt base [57] is pre-trained
on LAION-400m [58], which contains 400 million image-
text pairs3. For a discussion about how we experimentally
chose the embedding for different nodes, please refer to
our supplementary material. Once we have associated CLIP
embeddings with our knowledge graph’s nodes, we move to
the next steps of our training pipeline.

B. GCN Training

The next step of training feeds these node embeddings,
each of 512 or 1024 dimensions based on the CLIP architec-
ture chosen, and the adjacency matrix (of knowledge graph
structure) to a Graph Convolutional Network (GCN) [53] to
learn better latent space embeddings of our knowledge graph.
GCNs are able to capture non-linear relationships between
nodes, and learn from both local and global structures in a
graph. As a result, nodes that are more similar are mapped
to points that are closer in the latent embeddings space,
whereas nodes that are dissimilar are mapped to points
further away in the latent space. For example, the output
128-dimensional GCN (object) embedding for a microwave
will have a higher cosine similarity with the output 128-
dimensional GCN (language) embedding for the kitchen.

An important design decision during training is the choice
of the loss function. Prior work has devoted much attention to
functions such as contrastive loss [60], triplet loss [61], and
multi-class N-pair loss [62]. Recent work has demonstrated

3Implementation used existing code [59].



Fig. 4: Sampling method used in the loss function; shown
for K = 10 and M = 1; we average the loss over M batches.

the benefits of using the loss function introduced in the CLIP-
Fields method [52]. We modify this loss function to further
leverage the knowledge graph created using the IRONA
dataset and human preference annotations.
Loss Function. We train our GCN using a contrastive
loss function similar to that described in the CLIP-Fields
method [52] with the objective of clustering similar em-
beddings closer in the latent space and mapping dissimilar
embeddings to points that are further away in the latent space.
We adapt the basic loss function to our problem formulation
and use the additional information of edge weights.

L = −e−weight+• log

(
e(sim+•/T )∑K

i=1 e
(sim–•,i/T )

)
(1)

where weight+. is the edge weight between the positive node
and the anchor node, sim+• is the cosine similarity between
the anchor and a positive node embedding, and sim–•,i is
the cosine similarity between anchor node embedding and
ith negative node embedding. T is a temperature term that
is tuned over a validation set. We randomly select one of
the 17 rooms as our anchor node, then choose a positive
node (for numerator in Equation 1) by picking an object
within that room at random, and finally sample k negative
nodes for the denominator of the loss function from objects
located outside the room; Figure 4 illustrates this process,
which is repeated for a batch of samples and the mean loss
is calculated. This formulation of the loss function minimizes
the distance between the anchor node and the positive node
while maximizing the distance with each of the negative
nodes, leading to distinct clusters in the graph embeddings.
As stated before, the training pipeline is outlined in Figure 2.

C. Testing

Once the GCN has been trained, the pipeline used for
testing (i.e., inference) is shown in Figure 5. Similar to the
process of training, we compute the CLIP image encoder
embedding for the test image, and the CLIP language encoder
embedding for the possible rooms. These embeddings are
passed to the GCN with only self-edges (in the absence
of a knowledge graph) to obtain the output (latent space)
embedding for the test image and the possible rooms. Next,

similarity scores are calculated between each image node
x⃗ and each of the room(s) y⃗ using the cosine similarity
function: cos(x⃗, y⃗) = x⃗·y⃗

||x⃗||·||y⃗|| . We then average the similarity
scores over different images of each object category to get
the affinity score between that object category and each of
the candidate rooms.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the experiments we conducted and
discusses the corresponding results.

A. Experimental Setup

Object-room affinities have predominantly been deter-
mined by language-based embeddings or human input in
prior work. Since our work combines prior knowledge and
multimodal (vision, language) inputs, our chosen baselines
were off-shelf language encoders and the GPT-3 LLM. We
experimentally evaluated the following hypothesis:

• H1: CLIP language embeddings result in better perfor-
mance than other language encoder embeddings;

• H2: Multimodal CLIP embeddings, by themselves, do
not perform better than language-based embeddings;

• H3: Our framework leads to better performance than (i)
the underlying CLIP embedding, (ii) just the language-
based encodings, and (iii) the GPT-3 LLM;

• H4: Our framework provides robustness to previously
unseen noisy backgrounds.

We evaluated H1-H3 quantitatively and evaluated H4 quali-
tatively. The performance task was to compute estimates of
object-room affinities for all 268 object categories and 17
rooms in the test split of the IRONA dataset. We considered
two performance measures:

1) mAP: The mean average precision (mAP) is the average
of precision scores at different recall values for each
instance of an object category, and the mean over all
the object categories.

2) Top k Hit Ratio: The average fraction of object cat-
egories for which the ground truth correct room was
among the Top k estimates from our framework.

All claims are statistically significant unless stated otherwise.

B. Quantitative Results

To evaluate H1, we first compared two existing language
encoder embeddings (RoBerta [63], GloVE [64]) with just
the CLIP-based language embeddings with each of the three
CLIP architectures. As shown in Table I, the CLIP-based lan-
guage embeddings (particularly the ViT architecture) resulted
in better performance, supporting H1.

Next, we compared the performance of the multimodal
(vision, language) CLIP embeddings for each of the three
CLIP architectures. As shown in Table II, performance is
comparable but slightly worse than that in Table I. These
results support H2 and motivate the use of GCNs.

Next, we computed the performance of our architecture,
i.e., with GCNs trained using the contrastive loss function
and the underlying multimodal CLIP embeddings, with the



Fig. 5: Our inference pipeline processes input RGB images to generate CLIP image embeddings. These embeddings are
processed by the GCN Encoder to produce latent image embeddings. Cosine similarity between these latent embeddings
and previously learned room embeddings determines object-room affinities.

Lang Model Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.405 0.223 0.472 0.632
ViT 0.456 0.256 0.576 0.710
RN50 0.453 0.275 0.546 0.643
RoBerta 0.417 0.238 0.491 0.636
GloVE 0.148 0.123 0.208 0.278

TABLE I: CLIP-based language embeddings perform better
than other popular language encoders; results support H1.

UnTuned-CLIP Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.41 0.24 0.46 0.62
ViT 0.42 0.25 0.49 0.65
RN50 0.39 0.19 0.45 0.67

TABLE II: Multimodal CLIP embeddings, by themselves, do
not improve performance compared with just the CLIP-based
language embeddings (see Table I). Results support H2.

corresponding results shown in Table III. The best perfor-
mance was (once again) with the ViT version of the CLIP
architecture. Also, performance was substantially better than
with the multimodal CLIP embeddings (Table II) or CLIP’s
language encoder embeddings (Table I). For example, there
is an ≈ 40% increase in mAP score compared with not using
the GCNs. These results partially support H3.

To further explore the benefits of a multimodal CLIP repre-
sentation, we conducted experiments with our framework, but
with GCN embeddings of only the language-based encoding
of CLIP. The results reported in Table IV show the benefits
of using the multimodal CLIP embeddings.

The next experiment compared our framework’s perfor-

GCN-CLIP Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.73 0.62 0.81 0.88
ViT 0.85 0.76 0.93 0.97
RN50 0.66 0.53 0.75 0.81

TABLE III: CLIPGraphs use of GCN embeddings of mul-
timodal CLIP features and commonsense knowledge results
in substantially better performance compared with just the
CLIP embeddings in Tables I and II. Results support H3.

GCN-CLIP[Lang] Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.64 0.53 0.69 0.76
ViT 0.77 0.68 0.77 0.83
RN50 0.59 0.46 0.63 0.74

TABLE IV: Using our GCN-based embedding with just the
underlying language-based CLIP encoding results in better
performance than in the absence of the GCN embedding, but
performance is not as good as when GCNs are used with the
multimodal CLIP embeddings (in Table III).

Test mAP ⇑ Hit-Ratio ⇑

Top-1 Top-3 Top-5

Our[GCN-CLIP] [III] 0.85 0.76 0.93 0.97
GPT-3 0.66 0.52 0.76 0.81
Best Lang Encoder[I] 0.456 0.275 0.576 0.71

TABLE V: Our framework, with GCN and underlying mul-
timodal CLIP embeddings, substantially improves perfor-
mance compared with standalone GPT-3 LLM and language-
based encoders; hence, the results strongly support H3.

mance with the GPT-3 LLM and a state of the art language
encoder that provided the best performance among language-
based encoders. The results summarized in Table V show that
our framework provides substantially better performance by
fully leveraging prior commonsense knowledge and multi-
modal CLIP embeddings. These results strongly support H3.

C. Qualitative Results

Figure 6 shows the result of using our framework with
images of previously seen objects but in noisy, previously
unseen backgrounds. In each case, the object’s room asso-
ciation was estimated correctly. Next, Figure 7 shows the
success cases when our trained framework was used with
objects from previously unseen object categories. Success
(i.e., estimating the correct room association for the objects)
can be attributed to leveraging commonsense knowledge
extracted from similar images.

Figures 8 and 9 show some examples of our framework’s
limitations. In Figure 8, an input image of earpods (not
present in the training set) was mapped to the utility room
because it was similar in appearance to hair dryers that were



Fig. 6: Qualitative results for previously seen objects in new backgrounds; supports supports H4.

Fig. 7: Successful placement of previously unseen object cat-
egories (Handwash, plier) in the correct room by leveraging
commonsense domain knowledge.

Fig. 8: Failure to determine correct room for object category
earpods (not in our train set) because it was structurally
similar to hair dryer category that was in our training set.

Fig. 9: Failure with composite object categories; tools was
not a category in our training set, but they were incorrectly
associated with the play room because they were structurally
similar to the toy toolkit that was in the training set.

known to our framework. Figure 9 shows another failure
case in which our framework estimated the room association
for actual tools (which it has not seen before) as playroom
because the training set contained an image of a toy tool
kit in a playroom. However, each tool, when considered
individually, is associated with the correct room location.
These results support hypothesis H4.

V. CONCLUSION AND FUTURE WORK

Accurately estimating object-room affinities is an im-
portant step in performing scene rearrangement tasks. We
presented a framework called CLIPGraphs, which estimates
these affinities by leveraging the complementary strengths
of commonsense knowledge, data-driven methods, and mul-
timodal (vision, language) embeddings. Specifically, our
framework encodes prior human preferences in a knowledge
graph and considers CLIP-based image and language em-
beddings of nodes in this graph. It then uses Graph Con-
volutional Network (GCN)-based embeddings of these CLIP
embeddings to learn and estimate the object-room affinities.
We experimentally evaluated our framework’s performance in
estimating object-room affinities using our IRONA dataset
of 8040 images of 268 benchmark object categories. We
experimentally demonstrated a substantial improvement in
the ability to estimate object-room affinities compared with
language encoder embeddings and the GPT-3 LLM. We also
showed qualitatively that our framework provides robustness
to previously unseen noisy backgrounds.

Our framework opens up directions for further research.
For example, we plan to train our model with top-k correct
rooms to generate object-room affinities that would be useful
in downstream tasks such as multi-object navigation.We also
plan to develop personalized or task-specific embeddings
that allow our framework to calculate object-room affinities
tailored to individual users, homes, or tasks. This will enable
physical robots to assist humans in complex scene rearrange-
ment tasks, and other embodied AI tasks characterized by
semantic organization.
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