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Abstract— Large Language Models (LLMs) are considered
state of the art for many tasks in robotics and AI. At the same
time, there is increasing evidence of their critical limitations
such as generating arbitrary responses in new situations,
inability to support rapid incremental updates based on limited
examples, and opacity. Toward addressing these limitations, our
architecture leverages the complementary strengths of LLMs
and knowledge-based reasoning. Specifically, the architecture
enables an AI agent assisting a human to use an LLM to provide
generic abstract predictions of upcoming tasks. The agent
also reasons with domain-specific knowledge, recent history of
interactions with the human, and semantic databases to: (a)
provide contextual prompts to the LLM; and (b) compute a
plan of concrete actions that jointly implements the current task
and prepares for the anticipated task, replanning as needed.
Furthermore, the agent solicits and uses high-level human feed-
back based on need and availability to incrementally revise the
domain-specific knowledge and interactions with the LLM. We
ground and evaluate our architecture’s abilities in the realistic
VirtualHome simulation environment, demonstrating a substan-
tial performance improvement compared with just using an
LLM or an LLM and logical reasoner. Project website: https:
//brianej.github.io/igfmrdskaa.github.io/

I. MOTIVATION

Consider an AI agent assisting a human in daily living
tasks such as fetching a book or preparing breakfast; Figure 1
shows some snapshots in a simulation environment. Recent
generative AI systems such as Large Language Models
(LLMs) and Vision Language Models (VLMs) are con-
sidered state of the art for the corresponding perception,
reasoning, and interaction problems [1]–[5]. At the same
time, there is increasing evidence of the limitations of using
such “end-to-end” systems for these problems [6], [7]. In
particular, they are based on a narrow set of representations
and update processes; make arbitrary decisions in truly novel
situations; do not support rapid, incremental updates from
limited examples; and are opaque [6], [8], [9]. Researchers
have tried to address these limitation through frameworks
combining knowledge-based and data-driven methods, e.g.,
using domain knowledge to guide LLMs, and using LLMs
to provide high-level tasks implemented by other tools [10]–
[12]. However, designing a framework that effectively lever-
ages the strengths of generative models, prior knowledge,
and human feedback remains an open problem.

In a departure from existing work, we present an architec-
ture inspired by research in cognitive systems [13] for an AI
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Fig. 1. Embodied AI agent adapts generic, contextual prediction of
future task using domain-specific knowledge and human feedback,
planning and executing actions to jointly achieve these tasks.

agent collaborating with a human. As outlined in Figures 1-2,
the architecture enables the agent to:

• Automatically identify task-, domain-, and user-specific
context for any given task based on semantic knowledge
related to the task’s expected outcomes, using this
context and recent history of the user’s commands to
prompt an LLM to predict upcoming tasks.

• Leverage prior knowledge and human feedback based
on need and availability to adapt the LLM’s predictions
to the tasks and domain at hand, using non-monotonic
logical reasoning to compute and execute a plan of
actions that implement current and anticipated task(s).

• Use knowledge of tasks, observation of task outcomes,
and human input to provide feedback to the LLM,
incrementally revising the LLM’s predictions to match
the user’s preference, leading to faster and more reliable
adaptation with fewer interactions.

We implement and evaluate our architecture in the physically
realistic VirtualHome [14] simulation environment, using
ChatGPT-4o as the LLM [15], Answer Set Programming
(ASP) for non-monotonic logical reasoning [16], and Word-
Net for generic semantic knowledge [17]. Experimental
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results demonstrate how each component of our architecture
and the underlying methodology contribute to significantly
improving performance in complex scenarios.

II. RELATED WORK

We motivate our architecture by reviewing related work in
data-driven task prediction and planning.

A. High-Level Task Prediction with LLMs

Previous research has shown experimental evidence of an
LLM’s ability to predict tasks in household environments
based on limited instructions or examples [10], [18], [19],
although relying on just high-level domain details and static
contextual information can produce outdated predictions in
practical domains [2], [20], [21]. Although some studies
extract contextual information from the environment and use
them with LLMs, they do not fully leverage prior domain
knowledge [18], [20]. Drawing on these insights, our frame-
work employs semantic similarity analysis to dynamically
update domain-specific data used to prompt LLMs, thus
offering more accurate predictions.

B. LLMs with External Tools for Task Planning

There is increasing evidence that directly using LLMs
as planners can result in poor performance in complex do-
mains [2], [3], [6]. Researchers have instead explored using
LLMs to generate Planning Domain Definition Language
(PDDL) domain models for general-purpose planners, with
humans providing high-level oversight and corrections [7],
[11]. Others have used LLMs to generate high-level tasks
for achieving a goal, with the tasks being implemented as
a sequence of actions by a classical planner with fixed
domain knowledge [6], [10]. More recent work that considers
domain-specific information and some human feedback to
correct LLM predictions does not fully leverage contextual
input or support human-in-the-loop (HITL) planning [22]. In
contrast, our framework incrementally uses domain knowl-
edge (e.g., plan outcomes) to adapt the prompts to an LLM
for predicting high-level tasks. In addition, the LLM’s out-
puts are automatically corrected and incrementally mapped
to domain-specific information, leading to more reliable
predictions and faster task completion.

C. Human-Centered Feedback

In complex domains, human feedback plays a vital role
in ensuring reliable and efficient operation in the context of
planning, learning, and other tasks [23]–[25]. Frameworks
like TaskBench [26] and Reflexion [27] highlight the impor-
tance of iterative human feedback for improving an LLM’s
performance in complex tasks. Additionally, hierarchical task
structures often enhance feasibility of completing multi-step
tasks [28]. Our framework employs iterative fine-tuning of
LLMs by automatically integrating domain-specific knowl-
edge and HITL feedback [29], [30] based on need and
availability; the AI agent can solicit specific feedback if
it is not able to make progress despite multiple attempts,
and humans can decide to intervene or provide feedback
whenever they notice a need to do so.

III. PROBLEM FORMULATION AND FRAMEWORK

Consider an embodied AI agent assisting a human in a
home in performing tasks {τ1, τ2, . . . , τn} that are assigned
to the robot one at a time. Each τi describes a high-level task
(e.g., “heat milk,” “prepare a snack”) that is implemented
as a sequence of fine-grained actions {a1, . . . , ami

}. Our
architecture for this agent combines the complementary
strengths of an LLM, knowledge-based reasoning, and HITL
feedback, as shown in Figure 2. Specifically, on receiving a
user-assigned task, the agent determines contextually relevant
information (Section III-B). The information determines the
prompt to the LLM to predict the next task(s) (Section III-
C). ASP-based non-monotonic logical reasoning is used
to jointly compute a plan of actions for the current and
predicted tasks. The plan is executed, with replanning to deal
with unexpected outcomes (Section III-A). Any input from
the user about the predicted task is used by the agent to
revise the prediction directly or through the LLM; also, the
user can intervene during or after plan execution to set a new
task (Section III-D). In addition, the agent can solicit and use
human input to address unexpected outcomes from the LLM
or after action execution. We describe the components below.

A. Knowledge Representation and Reasoning with ASP

In our architecture, any domain’s transition diagram is
represented using action language ALd [31]. Action lan-
guages are formal models of parts of natural language
for describing dynamic systems. The domain representation
comprises system description D, a collection of statements
of ALd, and a history H. D has a sorted signature Σ with
basic sorts, and domain attributes (statics, fluents) and actions
described in terms of the basic sorts.

Our domain includes basic sorts such as room, container,
furniture, food, human, and step (for temporal rea-
soning) that are arranged hierarchically, e.g., fruit is
a sub-sort of food that is a sub-sort of item. Statics
are domain attributes whose values cannot change, e.g.,
next to(kitchen, study) and fluents are attributes whose
values can change. Fluents can be inertial, which obey inertia
laws and are changed by actions, e.g., loc(item, room)
and in hand(agent, item); and defined, which do not
obey inertia laws and are not directly changed by ac-
tions, e.g., otherloc(human, room) is the human’s location.
Actions include agent’s actions, e.g., move(agent, room),
pickup(agent, item), and switchon(agent, appliance), or
exogenous actions, e.g., exo pickup(human, item).

Based on Σ, the domain’s dynamics are described using
three types of axioms such as:

move(A,R) causes loc(A,R) (1a)
¬(at(A,R1), I) if at(A,R2), I), R1 ̸= R2 (1b)
impossible give(A,O,U) if loc(A,R1), (1c)

otherloc(U,R2), R1 ̸= R2

where Statement 1(a), a causal law, implies that an agent
(A) moves to a room (R), it is located in R; Statement 1(b),
a state constraint, implies that an agent (A) cannot be in



Fig. 2. Architecture overview: (a) any user-assigned task is used to compute contextually-relevant domain-specific information based on
command history and expected outcomes, leading to a prompt to the LLM that predicts the subsequent task(s); (b) LLM’s output is
corrected and adapted to specific domain based on domain knowledge and human feedback; (c) ASP-based reasoning is used to compute
and execute a plan of actions to jointly achieve current and future task; (d) Human feedback can revise outcomes and determine next step.

two places (L1, L2) at the same time; and Statement 1(c),
an executability condition, prevents the agent from trying to
give an object to a human user who is not in the same room.

History H is a record of statements of the form
obs(fluent, boolean, step), which represent observations,
and of the form hpd(action, step), which represent executed
actions, at specific time steps.

To reason with knowledge, we automatically construct
ASP program Π(D,H) that includes statements from D
and H, inertia axioms, reality check axioms, closed world
assumptions for defined fluents and actions, helper relations
to reason over time steps, e.g., holds(fluent, step) and
occurs(action, step) imply (respectively) that a fluent is true
and an action is part of a plan at a time step, and helper
axioms to define goals and guide planning and diagnosis.
ASP is based on stable model semantics, and encodes default
negation and epistemic disjunction; unlike “¬a” that states a
is believed to be false, “not a” only implies a is not believed
to be true. Each literal is true, false, or unknown, and the
agent only believes what it is forced to believe. ASP supports
non-monotonic reasoning, the ability to revise previously
held conclusions, which is essential for agents operating with
incomplete knowledge and noisy observations. All reasoning
tasks, i.e., planning, diagnostics, and inference are reduced to
computing answer sets of Π; we use the SPARC system [32].
For example programs, please see [33].

Since our evaluation scenarios in VirtualHome can be
complex, with many objects, containers, and locations, com-
puting a plan with multiple steps can often be computa-
tionally expensive. To address this issue, we adapt prior
work in our group on a refinement-based architecture that
represents and reasons about the domain at two different
(but formally linked) abstractions [34]. For more complex
scenarios, our embodied AI agent can reason, for example,
in terms of rooms and regions within rooms. In general, a
common criticism of knowledge-based methods is that they
need comprehensive domain knowledge, but existing work
includes methods that can use incomplete knowledge and
revise it over time [35]. Also, the effort involved in encoding
prior knowledge is much less than the effort required to train
purely data-driven systems.

B. Identifying Domain-specific Context

When a task τ is assigned to the embodied agent by
a human user, the agent determines contextually relevant
prior information, i.e., a subset of properties of a subset of
objects and actions, based on two strategies. First, it searches
through recent history H of commands from this user to
identify potential next commands C. It processes entries in C
and extracts suitable key words K corresponding to actions,
objects, and object properties and identifies entities in the
domain R semantically similar to entries in K based on the
WordNet [17] database; this similarity is computed based on
categories (i.e., sorts) of objects and actions. The state of
entries in R is considered to be contextually relevant to τ .

The second strategy uses the prior knowledge encoded in
the ASP program Π and the associated knowledge base (KB)
to simulate the completion of τ and identify set of objects
O whose state will change if τ is completed. The agent
computes the current state of each entity in O as information
contextually relevant to τ and used for further analysis.

C. LLM-based Prediction

In our architecture, ChatGPT-4o is prompted with auto-
matically identified domain-, task-, and user-specific con-
textual information to predict the subsequent tasks. In a
household environment, if the prompts do not consider such
contextual information, e.g., current state and user preference
to “make coffee” followed by “read newspaper”, the LLM
will generate inconsistent outputs, e.g., “switch on lamp”
when the human has already completed the task, or “make
tea” when the human wants coffee. As stated in Section III-B,
the contextual information in the prompt includes: likely next
task(s) based on user history, current state of relevant entities,
and domain-specific knowledge of relevant axioms. The
predicted output from LLM is further adapted to the specific
domain, using knowledge in ASP program Π and WordNet
to replace incorrect actions and objects with appropriate (and
semantically similar) entities in the domain, e.g., replace non-
existent “mug” with “cup” to serve hot chocolate to human.

D. Human-in-the-loop Revisions

The LLM-generated predictions of subsequent tasks may
not always align with user intentions, and the computed (and
executed) plan of fine-grained actions may not achieve the
user intentions that may have evolved (or changed) over time.



Our architecture uses HITL strategies to address these issues.
Specifically, once the LLM predicts the next task, the AI
agent communicates the current and predicted task through
a visual interface and pauses briefly to see if the human
wants to intervene. If no human input is received, the agent
proceed to computing and executing the plan for these tasks.
If the human does intervene, they can revise or reject the
predicted task; in this case, the agent uses the revised input
as the goal to be achieved by ASP-based reasoning.

The human can also intervene during or after plan exe-
cution. This can take the form of asking the agent to revert
to the state before the plan or some steps of the plan were
executed, e.g., the agent fetched a newspaper that the human
no longer wants to read. If possible, the robot completes this
user request or indicates its inability to do so, e.g., the agent
cannot undo coffee after it has been prepared. The human
input can also take the form of an entirely different task or
a revision of their preferences, which the agent considers in
the next cycle. Overall, our architecture leads to more natural
interactions between the agent and a human.

IV. EXPERIMENTAL SETUP AND RESULTS

We experimentally evaluated four hypotheses regarding
our architecture’s capabilities:
H1: Using contextually relevant information to prompt the

LLM leads to more accurate future task prediction
compared with not using this information.

H2: Leveraging domain knowledge and user feedback sig-
nificantly reduces effort for improving the LLM’s pre-
dictions and completing the tasks.

H3: Incrementally adapting LLM predictions to user needs
and preferences leads better performance compared with
baselines that do not support such adaptation.

H4: Planning actions jointly for the current task and the pre-
dicted (i.e., anticipated) task leads to better performance
than executing tasks one by one.

We describe the experimental setup and results below.

A. Experimental Setup

We created a simulated household environment in Vir-
tualHome with 36 objects, four rooms, and 11 actions.
We created 200 high-level tasks (e.g., rearranging objects
in specific configurations, fetching specific objects), each
annotated with a textual description and an ASP-based goal,
e.g., “has(user, book)” or “on(cup, table)”. We considered
different scenarios with different initial conditions by varying
the state of specific objects, e.g., a lamp switched on or
off, and a book on the desk or in the user’s hand. As with
other such simulated domains, the agent has knowledge of
the domain’s state (i.e., full observability).

We employed ChatGPT-4o as the LLM for generating
task predictions with Chain of Thought (CoT) prompting; as
discussed later, prediction accuracy improved when prompts
included contextual knowledge and human feedback. To
capture realistic task flows, five human participants not
involved in our architecture’s design were asked to order
20 sequences of 10 tasks under different scenarios, yielding

a total of 1000 tasks to be completed by the AI agent. These
sequences reflected common household routines and different
user preferences, e.g., eating fruit before drinking milk, or
drinking tea after selecting a book to read.

For evaluating H1-H3, we considered task sequences from
one participant at a time to explore the evolution of the
user’s preferences and behavior. Out of 20 task sequences for
any user, some were used as historical knowledge and the
rest were used for testing. For any test sequence, the LLM
received the first task as input and predicted each subsequent
task until the sequence was executed; this evaluation was
repeated a certain number of times. Details of number of
historical sequences and repetitions in each experiment are
provided when summarizing the corresponding results. For
hypothesis H4, we considered the task sequences of each
user, but provided the correct predicted task as input at each
step to focus on the planning ability.

B. Baselines

For hypotheses H1-H3, we considered three baselines.
(B1) LLM. The LLM independently predicts the next

high-level task and generates the corresponding low-
level execution plan; non-monotonic logical reasoning
(ASP), domain-specific context, or human feedback
are not used for validation or correction. Only re-
prompting is available as a strategy in response to a
predicted task being invalid or undefined.

(B2) LLM, ASP, reprompt. The task predicted by the LLM
is implemented as a plan of actions by ASP. There is no
correction of LLM output with domain knowledge and
no human feedback. Only re-prompting is available if
a predicted task is invalid or undefined.

(B3) LLM, ASP, domain-specific correction. B2 is ex-
tended by using prior knowledge to automatically adapt
the LLM’s output to the task and objects defined in
the domain before planning an action sequence. If this
strategy does not result in a task that can be completed
by the agent, the LLMs are re-prompted; any persisting
failures are handled through human feedback.

Recall that our architecture extends B3 by automatically
generating contextual prompts (Section III-B) for the LLM;
soliciting human feedback (if available) when domain knowl-
edge and re-prompting do not lead to an executable task;
using ASP-based diagnosis and replanning when plan exe-
cution leads to an unexpected outcome; and soliciting human
input to address persistent execution failures. For comparison
with baselines, each specific experimental run with our
architecture was repeated for each baseline with the same
initial condition, historical sequences, and initial task. For
H4, we used two baselines: B4, a variant of B1 that used
an LLM to generate a plan for one task at a time; and B5,
which used ASP to plan actions for one task at a time.

C. Evaluation Measures

We used five performance measures for evaluation.
1) Prediction accuracy. Measures extent to which LLM’s

predictions align with user’s actual input (H1, H2).



2) Zero-reprompting accuracy. Measures frequency of
LLM’s predicted task being correct on the first attempt,
i.e., initial prediction accuracy (H1, H2, H3).

3) Task completion rate. Measures proportion of predic-
tions successfully implemented and executed as a plan
of actions in the simulator (H1, H2).

4) Average count of re-prompting. Quantifies iterations
required for correct task prediction (H2).

5) Average number of actions. Quantifies the number of
actions needed to complete the assigned task(s); also
computed for task sequence (H4).

D. Experimental Results

In the first experiment, the 20 sequences for any given user
were split into four blocks of five sequences each. In each
experiment trial, one block was used as historical information
and the remaining three blocks (i.e., 15 sequences) were used
for testing. We ran four such trials, each with a different
block (of five sequences) as historical information, and the
entire experiment (with four trials) was repeated three times
for the user under consideration. Table I summarizes the
results comparing our architecture with B1-B3. The use of
reprompting in B2 improved performance, e.g., better task
completion rate and slightly better prediction accuracy, and
the use of domain-specific knowledge to revise the LLM’s
predictions in B3 significantly improved performance, e.g.,
prediction accuracy and task completion rate, compared with
B1-B2. Our proposed architecture led to significantly better
performance on all measures compared with all baselines,
with high prediction accuracy and task completion rate
along with significantly reduced need for reprompting. These
findings support H1, H2 and H3.

To evaluate the impact of historical knowledge, we re-
peated the experiment mentioned above for different number
of historical sequences (0, 5, 10, 15, 19), and computed the
prediction accuracy, as summarized in Figure 3. Note that
the prediction accuracy only reached a low value for B1-2;
it reached a much higher value with B3 but was consistently
highest for our architecture.

To further evaluate the impact of contextual knowledge,
knowledge-based reasoning, and human feedback (i.e., H2),
we conducted another experiment. Out of the 20 sequences
for any given user, three blocks (each with five sequences)
were used as historical context, with the remaining block
(of five sequences) used for testing in an experimental
trial. We ran four such trials, each with a different block
used for testing, and the entire experiment was repeated
10 times for the user. To simulate the presence of noisy
historical information, we intentionally replaced 20% of
each sequence (i.e., two of 10 tasks) in history with in-
formation semantically similar to (in terms of relations or
their arguments) but not a correct match to the domain-
specific knowledge. For example, grasp(agent, object) may
replace pickup(agent, object), or light may replace table-
lamp. Table II summarizes the results. The introduction of
noise had a negative impact on performance, even with
the much larger amount of historical information. However,
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Fig. 3. Prediction accuracy as a function of the number of sequences
in historical information. Increasing the number of historical se-
quences increases accuracy up to a point. The accuracy stabilizes
as a low value for B1-3; it is reasonably steady at a much higher
value for B3 but it is consistently highest for architecture.
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Fig. 4. Zero-reprompting accuracy over 10 training rounds of
replacing one sequence in the incorrect user’s historical information
with a correct sequence. Baselines B1-3 (in red) show minimal
adaptation to the changes in historical information, but our archi-
tecture quickly leverages the incremental feedback, achieving higher
accuracy with minimal need for reprompting.

as before, the use of domain-specific information and the
selective use of human feedback improved performance, with
our architecture achieving significantly better performance
than the baselines and that in Table I with fewer historical
sequences but no noise. These results further support H2-H3.

Next, we evaluated the architecture’s ability to adapt
incrementally to changes in user habits (i.e., H3) using the
sequences of a pair of humans, say user1 and user2, split
(as before) into four blocks that each had five sequences. In
an experiment trial, we used one block (of five sequences)
of user2 for testing. The historical data provided to the
LLM had three blocks of sequences (i.e., 15 sequences)
from user1, but one historical sequence was replaced by a
sequence from user2 (that is not being used for training).
The number of such replaced sequences was increased by
one over 10 such trials, with the entire experiment repeated
three times. We used zero reprompting accuracy as the per-
formance measure, with the results summarized in Figure 4.
Baselines B1-3 (in red) struggle to adapt to the changes in
historical sequences, but our architecture quickly leveraged
the incremental feedback, achieving higher accuracy with
minimal need for reprompting. These results support H3.

Finally, we evaluated the benefit of planning jointly for
current and anticipated tasks (H4). We considered 20 se-
quences from one (randomly selected) user. For each se-
quence, B4 and B5 produced and executed a sequence of
concrete actions for one task at a time using LLM and
ASP respectively. With our approach, the agent received the
current task and the predicted next task as goals (until end of
sequence), and planned and executed a sequence of action to



Architectures → B1: LLM B2: LLM, ASP, reprompt B3: LLM, ASP, corrections Proposed
Prediction accuracy (in %) ↑ 13.78 14.78 76.00 92.89
Zero-reprompting accuracy (in %) ↑ 5.44 4.67 8.11 21.56
Average reprompting count (Num) 1.1129 1.2857 1.0365 0.8254
Task completion rate (in %) ↑ 7.87 14.44 75.67 92.78

TABLE I. Comparing our architecture with B1-B3; up and down arrows (↑, ↓) indicate whether higher or lower values are desirable
for specific measures. The proposed architecture significantly enhances the prediction accuracy, zero-reprompting accuracy, and task
completion rate; statistical tests conducted at 99% level of significance.

Architectures → B1: LLM B2: LLM, ASP, reprompt B3: LLM, ASP, corrections Proposed
Prediction accuracy (in %) ↑ 12.00 12.50 87.60 94.00
Zero-reprompting accuracy (in %) ↑ 4.80 4.60 8.50 23.60
Average reprompting count (Num) ↓ 1.1333 1.16 1.0331 0.7979
Task completion Rate (in %) ↑ 7.2 12.30 87.40 94.00

TABLE II. Comparing our architecture with B1-B3; up and down arrows (↑, ↓) indicate whether higher or lower values are desirable
for specific measures. Using domain-specific knowledge to correct LLM’s predictions improves performance (see B3 column). The use
of contextual prompts, domain knowledge-based corrections, and selective human feedback in our architecture significantly improves
performance in comparison with all baselines; statistical tests conducted at 99% level of significance.

Architectures → B4: LLM (one task) B5: ASP (one task) ASP (joint planning)
Total number of actions for all sequences 779 761 659
Average of ratio of number of actions per sequence 1.19 1.16 1.00
Average of ratio of number of actions per task 1.32 1.20 1.00
Task Completion Rate (%) 64.45% 96.50% 98.50%

TABLE III. Baselines B4-5 plan actions for one task at a time with LLM and ASP respectively. Our architecture plans actions to jointly
achieve current task and prepare for the upcoming tasks, resulting in shorter plans. B4 could not find suitable action sequences for
many sequences; performance measures were only computed for tasks that all three methods completed. Statistical tests at 99% level of
significance.

jointly achieve these goals. We only repeated the experiment
five times with B4, and explored the same across different
users. Table III summarizes the results. Our architecture,
which planned actions to jointly achieve current task and
prepare for the upcoming tasks, resulted in shorter plans.
Also, since the number of actions can vary substantially
based on the task, the measures computing an average con-
sidered the ration of the values for the baselines withe respect
to those for our architecture. Note that just using an LLM
(B4) could not find plans that executed successfully for many
sequences, and the performance measures in the top three
rows were only computed for tasks that all three methods
completed. These results provide support for H4. Please see
project website [33] for code, results and supporting video.

V. EXECUTION TRACES

We present two execution traces to illustrate our architec-
ture’s capabilities.

A. Execution Example 1: Context and ASP Planning

Consider the scenario: a robotics book is on the bookshelf
in the living room; a table lamp in the living room is turned
off; a human is sitting on a chair at the desk in the living
room; the agent is also in the living room. When instructed:
"Please give me the book", the agent uses ASP-
based reasoning to mentally simulates the execution of the
following plan to achieve the goal has(user1, rbook):
occurs(move(agent1, bookshelf), 0), occurs(pickup(agent1,
rbook, bookshelf), 1), occurs(move(agent1, user1), 2), oc-
curs(give(agent1, rbook, user1), 3).

Fig. 5. User input, context, and historical record in the prompt.

The domain objects impacted by this plan are identified: r-
book, bookshelf. Next, using the semantically relevant data
from WordNet, the agent identifies the context most relevant
to this task as ReadingContext; other contexts related to
dining and cleaning are considered less relevant. The agent
also examines recent history of tasks (of this user) co-
occurring with the reading context and identifies the related
command please turn on the table-lamp and the related
object as table-lamp. It provides all of these as related context
to the LLM, as shown in Fig 5, which responds with:

Predicted command: switchon tablelamp
Reason: The suggested command from history is
to switch on the table lamp, which aligns with the
user’s frequently executed actions and supports a
reading context by providing adequate lighting.

This is translated to a goal for ASP-based reasoning:
holds(switched on(tablelamp), I). The agent
then gives the user a brief period to review and revise the
goal. Since there is no human interrupt, the agent uses ASP-
based reasoning to compute a plan of actions for both the
goals, which is then executed in the simulator—see Fig 6,
with the corresponding outcomes revising domain state.



Fig. 6. ASP generated plan for goals in Execution Example 1.

B. Execution Example 2: Prediction Error, HITL, Diagnosis

Consider another scenario: the human and the agent are
in the living room; a coffee table is located in the adjacent
bedroom; food items such as cereal, cutlets and juice are
laid out on the kitchen counter. The human is interacting
with the agent as part of a lunchtime routine. Recall that our
architecture supports two strategies to handle situations in
which the LLM’s prediction do not match domain knowledge
or user preferences (Sections III-B-III-D).
Contextual replacement of LLM output. If LLM predic-
tion includes an entity not in the ASP-based description of
domain knowledge, the agent uses semantic knowledge in
WordNet and prior context to identify the closest match. For
example, when LLM’s prediction requires the agent to fetch
cornflakes, which is not defined in the domain, the agent
identifies cereal from domain knowledge as a close match.
User feedback. When the LLM’s prediction does not match
the user’s preference, the user can ask for it to be revised
(Figure 7), replaced, or ignored, supporting human oversight.
ASP-based Diagnosis. During plan execution, the agent is
unable to pickup coffee from the coffeetable—see Figure 8.
This triggers ASP-based diagnosis to identify that coffee is
no longer available in the domain (e.g., it has been con-
sumed). The agent reasons and offers an alternative plan to
fetch juice (a different beverage) instead. The corresponding
plan results in successful execution, with the domain state
being updated accordingly.

VI. CONCLUSION

This paper presented an architecture that integrates generic
knowledge (LLM), reasoning with domain-specific knowl-
edge (ASP), contextual information, and human-in-the-loop
(HITL) feedback to enable an embodied AI agent to assist
a human in a complex domain. Experimental evaluation in

Fig. 7. Feedback adjusts LLM prediction in Execution Example 2.

Fig. 8. ASP-based diagnosis and correction of execution errors.

the VirtualHome environment indicates that computing and
using contextual information leads to more reliable future
task predictions from the LLM, and reduces the need for re-
prompting. Also, ASP-based reasoning with domain knowl-
edge to plan and execute a sequence of actions that jointly
achieve current task and prepare for anticipates task leads
to performance improvement. In addition, HITL feedback
enables real-time error correction and incremental knowledge
refinement. Overall, our architecture improves performance
substantially compared state of the art data-driven and/or
knowledge-based baselines.

Our architecture opens up multiple directions for further
research. This includes exploring the architecture’s applica-
bility to more complex tasks and domains. We will also
investigate the expansion of the architecture to consider
reasoning with (learned) probabilistic models of uncertainty
by building on prior work on a refinement-based archi-
tecture [34]. In addition, we will consider expanding the



architecture’s learning capabilities to incrementally acquire
and revise domain knowledge [36]. Furthermore, we will
implement and evaluate the architecture’s capabilities on
physical robot platforms. The long-term goal is to develop
intelligent agents capable of seamlessly reasoning with prior
knowledge, learning from experience, interacting with hu-
mans, and adapting their behavior on the fly to evolving
human preferences and environments.
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