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Abstract

A robot performing a manipulation task encounters high degrees of non-linearities in its
interaction dynamics as it interacts with other objects in its workspace. Often the interaction
dynamics is highly discontinuous when the robot makes/breaks contact with other object(s)
and smooth at other times, making it a piecewise-continuous (PWC) dynamical system. The
interaction effects that the robot might experience during a task is also highly dependent on the
nature and physical properties of the objects involved. Furthermore, the high discontinuities
when a robot makes contact with other objects can be harmful for the robot and/or object if
not performed in a controlled manner. This unpredictability and inherently discontinuous
nature of interactions during task execution makes the design of a control framework for
changing-contact manipulation extremely challenging.

Solving any manipulation task requires developing a plan and then executing it accurately
and efficiently. There have been many attempts in literature to solve the former problem:
developing planners that build task plans for specific manipulation tasks subjected to different
types of constraints in motion such as collision-avoidance and contact locations. This thesis
investigates the less-explored plan execution part of robot manipulation, by developing an
adaptive and online control framework for efficient, safe, smooth and accurate execution of a
provided task plan in the presence of continuous and discontinuous interaction dynamics.

The first main contribution of this thesis explores the problem of controlling a robot in a
smoothly changing environment. For navigating such continuous environment, we propose
an adaptive variable impedance controller (AVIC) which can incrementally model, predict,
and compensate for the end-effector forces and torques that the robot experiences as it moves.
The second part of the thesis expands the AVIC for hybrid dynamical systems, where the
interaction dynamics can be discontinuous due to change in the contact mode of the robot.
The contact mode of the robot changes due to making/breaking of contacts or due to discon-
tinuities in the environment which makes the interaction dynamics piecewise-continuous,
and hence difficult to capture using a single model. Here, we develop a hierarchical hybrid
framework that has an incrementally updating mode-detection model that can learn to iden-
tify contact modes online, and choose appropriate dynamics models for the robot to use for
navigating the mode. The final contribution focuses on developing a contact-change-handling
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module that learns to deal with contact changes by attempting to reduce the discontinuities in
motion (spikes in force, acceleration, jerk, etc.) during mode transitions. The module has
an iteratively improving contact-anticipation model that incrementally improves estimates
of where contact changes occur in the task-space. The module also has the capability to
smoothly switch to special ‘transition-phase’ controllers that can automatically adapt their
own parameters so as to reduce the discontinuities in the regions of anticipated contacts.

Each part of the framework is evaluated experimentally in simulation and/or real-world,
demonstrating the effectiveness and importance of each component for building an incremen-
tal, adaptive framework that can learn to follow a task plan accurately, efficiently and safely.
Our AVIC framework is compared with other standards in adaptive control literature, and
we also demonstrate the need for having an adaptive forward model for handling changing
environment dynamics. We experimentally evaluate the ability of our hybrid framework
in identifying and modelling the dynamics of different contact modes, and then justify the
choices made in the development of the framework by making incremental changes to a
baseline framework in a simulated setting. The ability of our overall framework in predicting
and handling (anticipated as well as unanticipated) contact changes is also evaluated in the
context of a physical robot performing manipulation tasks that involves multiple contact
changes.
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Chapter 1

Introduction

Manipulation tasks in general are under-actuated systems, since addition of each inanimate
object to the environment increases the number of DoFs that cannot be controlled using the
fixed number of actuators that are available. The states of these objects can be altered only by
changing the state of the robot to one where it can manipulate them, resulting in a complicated
and almost unpredictable system dynamics. Moreover, in multi-object manipulation tasks
which require the robot to use one object to change the configuration of another (eg. tooling
tasks such as screwing, polishing etc.), the under-actuated dynamics become even more
complex. This inherent complex nature of manipulation tasks makes it essential to study the
basic, underlying properties and characteristics that are general to manipulation tasks.

Diverse manipulation tasks are addressed using different representations, control choices,
learning strategies, planning algorithms, and sensor modalities. The choices for these depend
on the type of task being attempted and the overall goal that is to be achieved. For ballistic
actions such as tennis racket swinging, it is important to have control over position, velocities
and sometimes accelerations of the end-effector [74], while in dexterous manipulation tasks
such as industrial assembly or in-hand manipulation, it becomes important to directly model,
predict and control the contacts and interaction forces.

Many of the research commonly seen in intelligent robot manipulation involve using
large training data [12, 157, 117] to obtain very hardware-specific and task-specific strategies
to solve a task. Moreover, solutions for multi-object manipulation tasks and tasks involving
multiple contact changes are usually shown only in simulations [157], mainly due to the fact
that data collection and training using hardware is impractical in most cases. In most works
which demonstrate real-robot tasks, the tasks are either ballistic (involving only one impact
contact with another object) [103], or make use of manual ‘safe’ interactions – for e.g., using
passively compliant hardware [117, 142] or modelled objects [186, 12].
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A solution to any manipulation task involves two sub-problems: (i) generating a task
plan (desired trajectory, contact locations, contact wrenches, etc.), and (ii) executing the
plan, which involves tracking the reference signals while respecting task-defined and/or
user-defined constraints (such as overall energy cost, motion smoothness, vibrations, impact
forces, etc.). Many research dealing with the planning aspect of multi-object manipulation
tasks can be found in literature, but very few deal with the control strategies for accurate
and safe trajectory tracking in interaction tasks. Control theory provides a vast repository
of strategies for controlling a system and tracking a target, but these often do not take into
account the discontinuous nature of changing-contact manipulation tasks and ignore the
effects of collisions and contact changes.

This thesis explores this second problem of executing a plan for a changing-contact
manipulation task efficiently and smoothly, when the physical and interaction properties of
the object(s) involved may be unknown. This requires the robot, in minimum number of
trials, to be able to handle continuous and discontinuous interaction dynamics due to the
nature of contacts that the robot has to make during the task, as well as handle impacts and
contact changes that may or may not be known beforehand, while ensuring that the overall
motion is smooth and that the provided plan is followed as accurately as possible.

1.1 Motivation and problem formulation

Typical manipulation tasks involve making and breaking contacts with different objects in
the work space. Consider the robot manipulator in Fig. 1.1 that has to move its end-effector
along a motion pattern that requires it to make and break contact with objects and surfaces.
This task’s dynamics, i.e., the relationship between the forces acting on the robot and the
resultant accelerations, vary markedly before and after contact. They also vary based on other
factors such as type of contact, surface friction, and applied force. Many industrial assembly
tasks, e.g., peg insertion, screwing, and stacking, and many human manipulation tasks are
instances of such ‘changing-contact’ tasks. The interaction dynamics of the robot performing
these tasks are discontinuous when a contact is made or broken and continuous elsewhere,
making it difficult to construct a single dynamics model. It is possible to construct a hybrid
model with separate continuous dynamics and distinct control laws within each of a number
of discrete dynamic modes; the overall dynamics are then piece-wise continuous, with the
robot transitioning between modes as needed [99]. Even then, the highly non-linear nature of
such interactions results in large discontinuities in the overall motion dynamics of the robot
at the regions of transition, in the form of high forces, jerk, and vibrations. These sudden
and uncontrolled system disturbances during contact change instances such as collisions can
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Fig. 1.1 A sliding task that involves the robot making and breaking contacts with different surfaces.
The interaction dynamics is piecewise continuous, where the dynamics is discontinuous when contact
changes occur, but is continuous otherwise. Contact changes can be due to collisions with objects, or
due to impact-less mode transitions (e.g. when the robot slides between the surfaces (white and blue),
the difference in their friction causes a discontinuity in the interaction forces) – see Chapter 6.

damage the robot and/or objects involved. Therefore, the robot also has to learn to handle
these discontinuities such that the overall motion is smooth and safe.

This thesis explores these problems and proposes an incremental adaptive framework
for changing-contact manipulation tasks. The framework includes (i) an adaptive variable
impedance control (AVIC) strategy with an incrementally updating forward model for han-
dling and tracking a trajectory in continuously changing dynamical environments (Chapter 4),
which is then adapted for piecewise continuous systems using (ii) a hierarchical formulation
with a high-level online mode-detection component and separate low-level dynamics models
for different contact modes (Chapter 5); as well as (iii) a contact-change-handling module
for anticipating contact changes and reducing impact forces and jerk during contact changes
(Chapter 6).

Problem statement

Given a motion plan for a changing-contact manipulation task, the robot has to be able to
execute the task such that:

1. it follows the planned trajectory with minimum deviation while using minimum stiff-
ness (and thereby expending lower energy) whenever possible,
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2. it can handle continuously changing interaction dynamics that arise when the robot is
in continuous contact with an object/environment as part of the task,

3. it can handle the piecewise continuous nature of interaction dynamics caused due to
discrete changes in the interacting environment or due to making/breaking of contacts,

4. it can quickly learn to deal with previously unseen environments (interaction dynamics)
and use an appropriate adaptive controller for navigating it,

5. it can learn to anticipate collisions and contact changes in the task, and be able to learn
and switch to a control strategy that produce reduced impact forces and vibrations at
these transitions,

6. the robot should require as few trials as possible to learn to perform the task efficiently
(where ‘efficiency’ is defined in terms of trajectory-tracking accuracy, controller
stiffness, delays in task-completion, low impact forces, and overall smoothness of
motion).

Primary assumptions

For exploring the addressed research problems in a contained set-up, several assumptions are
made regarding other components involved in a general changing-contact manipulation task.
The primary assumptions made are:

• The robot is an open chain manipulator with the tool/object being manipulated fixed at
the end-effector. It has at least six torque-controllable revolute joints. We used 7 DoF
robots for our experiments in this thesis (except in certain simulation setups).

• The motion plan for the task is provided as a task-space trajectory by an external
planner or is obtained from demonstrations. The task plan is assumed to be a smooth
(jerk-free) time-indexed sequence of end-effector poses in the task-space of the robot
which the robot has to follow. In case the robot has to track a force target, this is also
assumed to be provided.

• Except for the object(s) being manipulated by the robot, the environment is static and
other objects involved are fixed in the workspace with respect to the base frame of the
robot. This assumption is valid in most industrial machining and tooling tasks, and
also allows for testing the repeatability of the developed framework.
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• The object being manipulated is assumed to be firmly grasped by the robot providing
stable grasp through all interactions in the task. This assumption avoids grasp planning
and associated challenges relating to grasp instabilities that could interfere with the
results of the developed framework.

• All involved objects are assumed to be rigid and inelastic. This is a valid assumption for
most industrial tasks, and allows for building reliable models for collision anticipation
and handling contact changes.

• The kinematic and dynamics models of the robot is assumed to be available and
accurate. These are available for most robot platforms and are factory-defined.

• The robot has access to measurements of joint positions, joint velocities, joint torques,
as well as forces and torques at the end-effector of the robot at all times.

1.2 Contributions

The thesis presents a unified incremental and adaptive framework for changing-contact
manipulation, which can be roughly divided into three parts (each of which correspond to a
chapter in this thesis):

1. An adaptive variable impedance controller with an incrementally updating feed-forward
model for continuous contact tasks (Chapter 4).

2. A hybrid hierarchical framework that can automatically and efficiently detect known
contact modes, recognise and model new modes, and incrementally learn a dynamics
model for variable impedance control in each mode, invariant to the direction of motion
and the magnitude of applied forces (Chapter 5).

3. A contact-change-handling module for dealing with discontinuities during contact
changes, comprising a Kalman filter-based contact anticipation model as well as a
transition-phase control strategy that ensures that the overall motion is C∞ smooth and
help achieve a desired force on impact (Chapter 6).

Publications

Chapters 4 to 6 are mostly expansions of our published work. The relevant peer-reviewed
publications are:
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I: M. J. Mathew1, S. Sidhik1, M. Sridharan, M. Azad, A. Hayashi and J. Wyatt, "Online
Learning of Feed-Forward Models for Task-Space Variable Impedance Control," 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019,
pp. 222-229.

II: S. Sidhik, M. Sridharan, D. Ruiken. "Learning Hybrid Models for Variable Impedance
Control of Changing-Contact Manipulation Tasks," Eighth Annual Conference on
Advances in Cognitive Systems (ACS 2020), August 2020, (Virtual). 2

III: S. Sidhik, M. Sridharan, D. Ruiken. "Towards a Framework for Changing-Contact
Robot Manipulation," International Conference on Intelligent Robots and Systems
(IROS), 27 September – 1 October 2021, Prague, Czech Republic (Virtual).

Chapter 4 is adapted from Publication I, and is modified based on part of the formulation
presented in Publication II as well as additional experiments demonstrating framework
validity. Chapter 5 is an expansion of Publication II with additional experiments to analyse
the need for incremental hybrid models. Chapter 6 is an extension of Publication III with a
more generalisable formulation and more experimental analyses.

Technical contributions

Several software interfaces and simulators had to be created during the research. A critical
piece of software that was used in almost all the experiments with the physical robot (Franka
Emika Panda) was the Franka ROS Interface software which was developed mainly to
provide low-level torque control of the robot using ROS; the low-level control interface
was needed for implementing the hybrid force-motion impedance controller which is the
basis for the overall control framework presented in this thesis. The Franka ROS Interface
library also provides Python (2 and 3) interfaces to control and monitor the robot in real-time,
which was used to write most of the code for this thesis. The library also provides the
functionality to interface multiple machines in a network to the same robot. This was needed
for synchronising independent control loop, learning process, and data recording process
running in different machines (see Appendix C). A unified Python library called PandaRobot
was built over this interface library to provide the base API for most of the code that ran the
experiments in this thesis.

During the COVID ’19 pandemic and the resulting lockdown, there was a need for a good
physics simulator to proceed with the research. This led to testing and developing several

1Equal contribution authors.
2Expanded version accepted in Advances in Cognitive Systems journal.
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simulation platforms using the model of the Franka Emika Panda robot in physics engines
such as Bullet [33], Mujoco [194], DART [109], and ODE [179]. A ROS-based Gazebo
simulator called Panda Simulator was specifically developed for continuing the experiments
with minimum change in the code used for the real robot. The simulator was written such that
it responded similar to the real robot when the Franka ROS Interface or PandaRobot libraries
were used. The results and experiments from the simulators were mostly not reliable due to
the vast difference in the dynamics in simulators compared to real world in changing-contact
tasks, and most experiments are not included in the thesis (see Appendix B.2).

All the above software are published online and are used widely for research around the
world. More information and links to the repositories can be found in Appendix D. Other
software that were developed during the research are also mentioned.

1.3 Thesis structure

The thesis begins with a primer on some of the basic concepts and background knowledge
required for understanding the remainder of the thesis (Chapter 2). Chapter 3 discusses
several related work from literature that are relevant to the research problem and to the
different components of the proposed framework.

In Chapter 4, we present Adaptive Variable Impedance Control (AVIC), our incremental
learning and control framework for continuously changing interaction dynamics, where
we describe its mathematical formulation and experimentally demonstrate its capability in
different continuously changing environments. The chapter also evaluates the need for having
incrementally updating models for handling continuously changing environments.

Chapter 5 then expands the AVIC framework for piecewise continuous systems, and
presents the experiments and results of using the proposed hybrid framework in different
piecewise continuous interactions. The chapter also experimentally justifies the choices made
in the development of the hybrid framework by using a long-term predictive model as a
baseline, and demonstrating the results of making incremental modifications to it.

The final components of the overall framework are presented in Chapter 6, where we
describe our incremental contact anticipation module and the ‘transition-phase’ control
strategies for producing smooth motion dynamics and minimising impact forces and jerk
during contact transitions. We also experimentally evaluate the overall framework in tasks
involving multiple collisions and mode transitions, as well as analyse its capability in handling
unforeseen contact changes.
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Finally, the thesis is concluded in Chapter 7 by critically analysing the overall framework,
discussing its limitations, major challenges that were tackled, and possible directions for
future research.



Chapter 2

Background

This chapter will briefly introduce basic concepts that can help better understand the remain-
der of the thesis. The sections are meant to refresh the basics of some relevant topics that
are explored in this thesis, and are in no way a complete guide to the subjects discussed.
Wherever possible, references are provided for interested readers to learn more about the
topics.

2.1 Manipulator dynamics and task-space impedance con-
trol

Kinematics is the study of the geometric relations in a moving system without considering the
effects of forces and acceleration, whereas dynamics focus on understanding and modelling
the relationship between forces and the resultant accelerations (and vice versa). For realistic
robotic systems, kinematic relations are important for obtaining mappings between joint and
task spaces of the robot in static (or quasi-static settings), while modelling and compensating
the motion and interaction dynamics is critical for reliable control of the robot.

For a robot manipulator interacting with the environment, it is more useful to consider
dynamics in the task/operational space of the robot instead of the generalised coordinate
space (joint space). A common operational space representation used in robot manipulators
is the pose of the robot’s end-effector (xxx) in the base frame of the robot.

Without loss of generality, consider an n degree-of-freedom robot whose joint positions
are denoted by the n-dimensional vector qqq, and its corresponding end-effector pose in the
task-space denoted by the 6-dimensional minimal vector xxx (see example Fig. 2.1). The
task-space dynamics of this robot can then be described by the following equation [199]:
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Fig. 2.1 A 3-link manipulator with joint positions denoted by qi and corresponding end-effector pose
x. Impedance control emulates the behaviour of a mass-spring-damper system at the end-effector of
the robot as it attempts to reach the target xdes.

ΛΛΛ(qqq)ẍxx+ΓΓΓ(qqq,,, q̇qq)ẋxx+ηηη(qqq) = uuu−WWW ee (2.1)

where ΛΛΛ(qqq) = (JJJMMM(qqq)−1JJJT )−1 is the 6× 6 operational space inertia matrix, ΓΓΓ(qqq,,, q̇qq) =
JJJ−TCCC(qqq,,, q̇qq)JJJ−1−ΛΛΛ(qqq)J̇JJJJJ−1 is the rotational effect wrenches including centrifugal and Cori-
olis effect, ηηη(qqq) = JJJ−T ggg(qqq) is the gravitational wrench, and JJJ is the Jacobian mapping
from joint to end-effector velocities (ẋxx = JJJq̇qq). MMM(qqq),CCC(qqq, q̇qq) and ggg(qqq) are respectively the
equivalent values defined in the joint space of the robot. The input joint torques τττ is mapped
to its equivalent end-effector wrench as uuu = JJJ−T

τττ ; and WWW ee is the external wrench applied to
the environment by the end-effector.

Consider the control law

uuu = ΛΛΛ(qqq)ααα +ΓΓΓ(qqq,,, q̇qq)ẋxx+ηηη(qqq)+WWW ee (2.2)

where ααα is a properly designed control input. This when cast into the robot dynamics
(Eq. (2.1)) gives ααα = ẍxx, proving that the control input has a meaning of acceleration in the
base frame of the robot.

Task specification for a robot can be represented as a kinematic trajectory (a time-indexed
sequence of end-effector poses or joint positions). Therefore, the approach of directly
following kinematic trajectories using direct position control fails for tasks which involve
interactions with other objects or application of specific forces with the environment as it does
not account for the system dynamics. Such control scenarios result in stochastic disturbances
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and hence is a challenging control problem. A solution for achieving goal tracking in these
situations is to use controllers in the impedance paradigm.

The objective of task-space control in general is to achieve a desired behaviour for the
end-effector for motion or force application. In case of impedance control, the objective is
to emulate the dynamic behaviour of a second-order mechanical system with six degrees
of freedom, characterised by a given mass, stiffness, and damping, known as mechanical
impedance [66]. A well-designed task-space impedance controller would therefore cause
the end-effector of the robot to behave as if it was a mass-spring-damper system whose
properties are controlled/controllable (Fig. 2.1).

Assume the choice

ααα = ẍxxdes +(Km)−1(Kd
∆ẋxx+Kp

∆xxx−WWW ee) (2.3)

where ẍxxdes is the desired acceleration of the end-effector, ∆xxx and ∆ẋxx are respectively the
displacement and velocity of the end-effector with respect to their references; Kp, Kd and
Km are 6×6 symmetric positive-definite matrices defining the desired impedance behaviour,
i.e., stiffness, damping, and mass (inertia) respectively.

This produces a closed-loop dynamics of the form:

Km
∆ẍxx+Kd

∆ẋxx+Kp
∆xxx =WWW ee (2.4)

Therefore any force WWW ee acting at the end-effector will produce a dynamic response of
the end-effector as if it was a mass-spring-damper that was defined. The final joint-space
torque command can then be computed using the equation τττuuu = JJJT uuu of inverse dynamics
and then be used for direct torque control of the robot. The control law can be shown to be
asymptotically stable using classic Lyapunov method [199]. A diagram of the impedance
control schema is shown in Fig. 2.2.

However, the above control law (Equations 2.2 and 2.3) requires accurate, noise-free
force-torque measurements WWW ee from the robot’s end-effector for reliable performance,
which in typical scenarios is hard to guarantee. Moreover, choosing an appropriate task-space
inertia matrix and performing real-time dynamic compensation of the robot dynamics by
transforming it to the joint-space for control (inertia shaping) can be notoriously challenging
[119].

2.1.1 Impedance control without force-torque sensor

In the absence of a reliable force-torque sensor, external wrench WWW ee cannot be measured in
the control law (Eq. (2.2)) and the configuration-independent impedance behaviour (Eq. (2.4))
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Fig. 2.2 A schematic of impedance control for a robot manipulator. Diagram adapted from [199].

cannot be obtained. However, a desired impedance behaviour can still be obtained using the
control law

uuu = ΛΛΛ(qqq)ẍxxdes +ΓΓΓ(qqq,,, q̇qq)ẋxxdes +ηηη(qqq)+Kp
∆xxx+Kd

∆ẋxx (2.5)

Observe that the control command uuu is a wrench in the base frame that has to be applied at
the end-effector of the robot to produce a desired motion of the end-effector. Substituting
this control law to the dynamics (Eq. (2.1)) produces the the closed-loop equation

ΛΛΛ(qqq)∆ẍxx+(ΓΓΓ(qqq,,, q̇qq)+Kd)∆ẋxx+Kp
∆xxx =WWW ee (2.6)

Note that by formulating the control law without making use of a force-torque sensor, this
impedance behaviour now preserves the actual configuration-dependent task-space inertia
matrix of the robot ΛΛΛ(qqq), which avoids the difficulties and complexities of performing inertia
shaping [119]. This control law can also be shown to be asymptotically stable using classic
Lyapunov stability analysis [199].

2.1.2 Compensating external disturbances using feed-forward control

In the absence of interactions with any objects, and therefore external wrench WWW ee, the control
law described above provides asymptotic stability with the equilibrium state (ẋxx = 0,∆xxx = 0)
for the closed-loop system. In the presence of non-zero WWW ee, however, a non-null ∆xxx will be
present at equilibrium.

For both fixed and non-stationary targets xxxdes, if the external force WWW ee is known to be due
to a known/modelled resistance, then forces against the direction of motion can be cancelled
out with an appropriate feed-forward term uuuff in the control law (Eq. (2.5)), such that the
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opposing interaction forces are selectively compensated in the direction of motion. For e.g.,
in a wiping task, the frictional force between end-effector and surface being polished can be
computed using a good friction model. Then, appropriate feed-forward terms can be used
to cancel out its effects so that the robot’s motion is not hindered by it. This is similar to
the gravity compensation term (ηηη(qqq)) which cancels out the constant force in the task-space
acting at the end-effector of the robot (the effect is not a constant in the joint-space due to
the non-linear mapping between the spaces). Therefore the control law can be modified to
include such a feed-forward term to be used if and when such a predictive compensation
model of external forces is available:

uuu = ΛΛΛ(qqq)ẍxxdes +ΓΓΓ(qqq,,, q̇qq)ẋxxdes +ηηη(qqq)+Kp
∆xxx+Kd

∆ẋxx+uuuff (2.7)

Feed-forward terms are also used to compensate for controller delays or other modelled
imbalances in the system (see Section 2.2). In our controller, we use an incrementally
updating forward model that predicts the wrenches acting at the end-effector, to provide the
feed-forward term in our controller to compensate for the predicted external disturbances
(explained in more detail later in Section 4.1).

2.1.3 Incorporating force control

A typical manipulation task is characterised by complex contact scenarios where some
directions are subject to end-effector pose constraints while others are subject to interaction
force constraints. For e.g., in an industrial grinding or polishing task, the robot has to
apply a force on the surface of the object while moving along a perpendicular plane. Such
tasks require both the generation of controlled force as well controlled motion. This can be
achieved using a hybrid force-motion controller.

The hybrid force-motion controller is constrained by the force-velocity duality: a direc-
tion of good velocity manipulability is a direction of poor force manipulability, and vice
versa [171]. In other words, it is only possible to control fully either velocity or force along
any given direction. For instance, consider a robot firmly grasping a door [119]. The task
space is n = 6 dimensional in SE(3), and the robot has 6 DoFs when free. However, when it
grasps the door, it has only 6− k = 1 motion freedom of its end-effector, i.e., rotation about
the door’s hinges, and therefore k = 5 force freedoms. This means that the robot can apply
any wrench that has zero moment about the axis of the hinges without moving the door.

The hybrid force-motion controller works by inherently defining natural and artificial
constraints to the robot’s end-effector [207]. Natural constraints are imposed on the robot by
the environment and/or task geometry, either as a velocity constraint or a force constraint.
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The robot can control only variables which are not subject to natural constraints (the hinge
naturally constrains motion along 5 of the 6 motion dimensions in the previous example). The
reference values for the variables in the remaining freedom dimensions are called artificial
constraints as they are imposed by the task planner for executing the task. The two sets of
constraints are complementary and cover the entire available degree of freedom for the robot
in the space, allowing the complete specification of the task. Therefore, it possible to control
motion along k direction and force along the other 6− k directions.

With this, we can include force control along directions complementary to that of motion
in our task-space control equation (Eq. (2.7)):

uuu = Sm(Kp
∆xxx+Kd

∆ẋxx+uuuff)+Sf(uuufc)+HHH (2.8)

where uuufc is the force control term, The term HHH is a shorthand denoting the other dynamics
compensation terms defined previously. Sf and Sm are binary vectors (comprising of 1s and
0s) complementary to each other so that the force and motion directions are orthogonal in
the operational space. The notations for these complementary vectors will be ignored in text
henceforth for easier readability, and the final control equation is simplified to

uuu = Kp
∆xxx+Kd

∆ẋxx+uuuff +uuufc +HHH (2.9)

where uuufc is to be understood to be force control commands in direction(s) orthogonal to its
motion counterparts.

Force control equation for uuufc

When the task requires applying specific forces and torques on the environment, the robot
needs to make use of a force controller. A straightforward way of achieving force control
is to make use of a force-torque measurements at the end-effector (either using an external
force torque sensor or by estimating end-effector wrenches from joint efforts). Pure force
control is something of an abstraction, since robots are usually able to move freely in at least
some direction. However, this generalisation ties comfortably to the hybrid force-motion
control described previously.

A typical force control law includes similar compensation terms for robot dynamics (at
least gravity) as described previously for impedance control (see for e.g. [119] for derivation).
A standard force control law used in many applications is a PI law of the form

uuufc =WWW des +Kfp
∆WWW +Kfi

∫
∆WWW (t)dt (2.10)
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where ∆WWW =WWW des−WWW ee is the difference between the target wrench WWW des and the measured
end-effector wrench WWW ee, and Kfp and Kfi are the positive definite proportional and integral
gain matrices respectively. The proportional term ensures that the force tracking error is
reduced, while the integral term reduces any systematic bias. The first term (WWW des) ensures
that the robot will measure the desired force at the end-effector when the force error ∆WWW is
zero. When a good gravity model is available and the robot is in stable contact, this control
law can be directly plugged in to Eq. (2.9) to achieve and maintain the contact wrench WWW des.

Although this control law is appealing, it can be potentially dangerous if there is nothing
for the robot to push against. When used in free space, such a control law will cause the robot
to accelerate to make contact with an object in that direction. Since typical force control
tasks require only small motion, one way to limit the acceleration is by adding a velocity
damping term

uuufc =WWW des +Kfp
∆WWW +Kfi

∫
∆WWW (t)dt−Kfdẋxx (2.11)

The last term in the above equation ensures that the robot experiences a viscous resistance
against high accelerations. Typically the value of Kfp is set to identity, while the others are
chosen depending on the task and the scale of the target force.

2.1.4 Closing notes on task-space controller implementation

Regarding Sf and Sm

The (6×6) matrix formats of Sf and Sm can be used instead of their vector forms (1×6) to
achieve force or motion control in any direction in the base frame of the robot when designed
correctly. Note that both the vector and matrix formulations allow for pure motion/impedance
control (without force control) as well as pure force control (without motion control) if the
appropriate active-direction vector is set to ones and its complementary to zeros.

Ignoring inertia term in the control law

The controller performance is extremely sensitive to the inertia term of the overall control
law (Eq. (2.7)). Therefore, reliable control requires precise dynamics model of the robot and
accurate acceleration sensors at the joints and/or end-effector. In practice, a perfect model
of the dynamics of the robot may not be available and sensors are noisy. It is also observed
that the inertia and control computations may be inefficient to calculate at the high controller
frequency [119]. In such cases, it is common (especially if the desired accelerations are
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small) to approximate Eq. (2.7) by removing the term ΛΛΛ(qqq)ẍxxdes, which is followed in our
implementations.

Null-space control

A side-effect of performing control in the task-space of the robot is the availability of null-
space due to redundancy in the joint-space when there are more than 6 controllable joints
for the robot. In these situations, the forces controlled in operational space have fewer
dimensions than the robot has degrees of freedom. The redundancy makes it possible to
accomplish a secondary goal along with the primary goal of tracking the target trajectory.

The null space of this primary controller is the region of the joint space where there is a
redundancy of solutions. In these regions, the robot can move in certain ways and still not
affect the pose of the end-effector. An example of this is the many configurations the elbow
can be in while a person holds their hand at a fixed position in space. In such scenarios, a
secondary controller can be designed to operate in the null space of the primary controller.
The full control signal sent to the robot then becomes the sum of the primary control signal
and a filtered version of the secondary control signal (for full derivation, refer to any standard
textbook on robot manipulator control such as [171]). So the final transformed joint-space
control command send to the robot is of the form:

τττ
uuu = JJJT uuu1 +(I− JJJT JJJ+T )uuunull (2.12)

where uuu111 is the primary control goal (for e.g. Eq. (2.9)), and uuunull is the secondary goal that
the robot will try to achieve as long as it does not affect the primary objective (this is the
function of the filtering term I− JJJT JJJ+T ). In our implementations for the experiments in this
thesis, we use a filtered secondary objective that tries to keep the robot away from joint limits
(by staying close the joint median positions).

2.2 Forward models in robotics

An agent in an environment will have to decide on its actions based on observations as well as
prediction about its own influence on the overall system. Therefore, the agent has to consider
two important problems: (i) deduce or predict behaviour of the system (agent + environment),
and (ii) use the information to decide on the action to be taken for manipulating the system.

In the domain of robotics, the first problem is seen as a pure modelling problem, where
the system has to either determine missing data or predict future states from observations or
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available data. The second problem is related to learning and developing control architectures
which may make use of such models.

Fig. 2.3 Graphical illustrations of different types of models. The white nodes denote observed
quantities, while the grey nodes represent inferred values. Image borrowed from [138].

Model learning provides a reference for the agent to deduce the evolution of the system
when an action is taken, which allows the agent to estimate missing information. Depending
on the type of observations and missing data, models can be distinguished as forward models,
inverse models, mixed models, and multi-step prediction models [138].

Given an observed current state sssk, and current action aaak, a forward model attempts
to predict the next state sssk+1. Inverse models, on the other hand, are used to infer the
current action from the current and desired/expected future state, i.e., (sssk,sssk+1)→ aaak. Some
approaches combine forward and inverse models to create mixed models. For applications
where it is desirable to predict a series of states for the next t steps, we would use multi-
step/long-term prediction models. Long-term prediction models can also be considered to be
a form of forward model where prediction is done for a larger horizon instead of a one-step
look-ahead. We do not discuss further about inverse or mixed models as they do not fall in
the scope of this thesis.

As mentioned previously, forward models predict the next state of a dynamic system
given the current state and action. Forward models also have a direct correspondence to state
transition (transfer) functions fs which typically describe the state evolution of dynamical
systems: sssk+1 = fs(sssk,aaak)+ ε f , where ε f is the noise component. In practice, while the
transfer function is used to express the physical properties and evolution of the system,
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forward models try to capture the causal relationship between actions and states, so as to
estimate/emulate the (unknown) transfer function.

Several studies in human motor control provides evidence of existence of forward-
models in human motor control [129, 203, 61, 49, 128], often referred to as a body schema,
i.e., a sensorimotor representation of the body used for action [65]. The predictions from
these models are used for different purposes such as feed-forward control, motor system
coordination, action planning and monitoring.

Forward models have been used in classical control since the Smith predictor, where a
forward model was used to compensate for the delays in the feedback loop [178]. Forward
models have since been widely used for developing model reference adaptive control (MRAC)
methods [189, 208], where actions are adjusted based on the difference between the desired
and current state of the system. Forward models (and long-term predictive models) have also
been used in model predictive control (MPC) strategies, where optimal actions are computed
by minimising some cost function over a certain prediction horizon in the future [158, 41].
(MRAC and MPC are discussed further in Section 3.2 along with some of their applications
in literature.) With the evolution of machine learning, however, forward models have been
modelled using different reinforcement and supervised learning settings. Several applications
of forward models in robotics and manipulation are discussed in Section 3.1.

In this thesis, we develop an incrementally updating forward model to predict the end-
effector forces and torques when the robot performs a manipulation task, which is used to
obtain the feed-forward term as well as to guide the selection of the feedback gains of our
controller online (see Section 4.1).

In problems such as open-loop control, it is more useful to have information of the system
for the next t-steps. This is the multi-step prediction problem where the objective is to predict
a sequence of states without the availability of measurements in the considered time frame.
Developing multi-step prediction models is difficult due to the lack of measurements in the
prediction horizon. A straightforward idea is to use single-step prediction models t times
in sequence to obtain the multi-step prediction. However, this approach is susceptible to
error accumulation due to prediction errors in previous values [138]. Alternative approaches
that overcome such issues include using autoregressive models (commonly used in time-
series prediction) where past predictions are used to predict future outcomes [9]. Since
parametric structures are too limited for multi-step predictions of complex robotic systems,
non-parametric models have also been explored in [84, 88]. However, due to the lack of
system measurements in the form of feedback from the system, long-term prediction models
are not suitable for real-time predictions of dynamical systems such as robot manipulation,
especially when the interaction dynamics can be different and discontinuous due to making
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and breaking of contacts. We explore this limitation of long-term predictive models in detail
experimentally by comparing it with our online incremental hybrid model in Section 5.3.1.

2.3 Hybrid Dynamical Systems

Manipulation tasks involve changing contact states where the robot (or the object being
manipulated by the robot) has to make or break contacts with other objects in the workspace.
This brings rise to high discontinuities in the overall system dynamics (robot motion, acceler-
ation, torques) as well as in the interaction dynamics (forces and torques at the end-effector
and contact points). It is reasonable to consider these dynamics to be smooth at the other
regions of the task where contact-changes do not occur. The evolution of the system state in
such scenarios depends on the contact mode that the robot is in, i.e. the same action taken
by the robot in different contact modes will result in different final states. This property of
having continuous system states that are dependent on the value of a discretely varying mode
makes robotic manipulation a prime example of a hybrid system. Hence, it is important to
understand the characteristics and properties of hybrid dynamical systems before choosing
a learning or control strategy to solve the challenges in a changing-contact manipulation
task. This section briefly describes the formulation of hybrid systems and explains the
main characteristics of such systems, which were utilised for developing the hybrid learning
and control framework for manipulation tasks presented in this thesis (Chapter 5). The
formulation closely follows the descriptions in [1], which is a comprehensive guide to the
theory and control of hybrid systems.

While forward models of classical physics (discussed in Section 2.2) are unique mappings,
there are several cases where one forward model alone do not provide sufficient information
to uniquely determine the next system’s state. In systems such as manipulation (as mentioned
above), the system evolution can depend on other conditionals that describe the system.
Hybrid systems fall under this category where the evolution of the continuous state s of the
system depends on another discrete state (or mode) m.

Hybrid dynamical systems are characterised by the interaction of continuous and discrete
dynamics [63]. As a simple example of a hybrid system, consider a temperature regulator in a
room. In a simplistic form, the heating system can be assumed to either work at full power or
to be turned off completely, hence becoming a system that can operate in one of two modes:
"on" or "off." In each of these modes of operation, the evolution of the temperature can be
described by a different continuous form. This system is then said to have a hybrid state
consisting of a discrete member (taking the discrete values "on" and "off") and a continuous
state taking values in the real numbers (temperature). In this example, the switching between
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the two modes of operations is controlled by a thermostat, and depends directly on the current
temperature value (continuous state). The thermostat switches the mode from "on" to "off"
whenever the temperature reaches a pre-set threshold temperature. Vice versa, when the
reaches a minimum value, the heating mode is switched "on."

This example can be used to explain the main properties and features of a hybrid system:

• The system is hybrid because it has a discrete state m (modes "on" and "off") and a
continuous state s (temperature). The hybrid system can then be described using its
state (s,m).

• The evolution of the continuous state s depends on the discrete state m, i.e., s ∈ Sm

is an element in the continuous subspace Sm ⊆ Rd (where the dimensionality d = 1
in the example) associated with the discrete mode m. (Depending on whether the
heating mode is "on" or "off", the temperature change is reversed, and thereby the
mode governs the evolution of the temperature.)

• The mode change of m depends directly or indirectly on the continuous state s and
different conditions on the evolution of s can trigger the mode change of m. In the above
example, the mode change between "on" and "off" is triggered by the temperature
reaching the prescribed high or low limits.

In the simple example of the thermostat, the continuous state s does not ‘jump’ to a
new value when the mode m changes, instead its velocity changes and it starts moving in
a different direction. This is not generally the case in typical hybrid systems. A general
hybrid system can have its continuous state s discretely move to a new disjoint value in a
new continuous state Sm j when it switches to a new mode m j.

An example behaviour of a typical hybrid system with state (m,s) is shown in Fig. 2.4. It
can be seen that the evolution consists of smooth phases in which the discrete state (mode)
remains constant while the continuous state is smoothly varying. The discrete state m
changes at the transition times (t1, t2, t3). Simultaneously, the continuous state s can ‘jump’ to
a discontinuous value far from its previous value. For instance, at time t1 the state s changes
abruptly from s(t−1 ) to s(t+1 ), which are values of s just before and just after the state jump,
respectively.

At this point, it has to be made clear that the transitions are not necessarily prescribed
by some clock (‘time-driven switching’), but could also depend on other events such as
some condition on the evolution of the discrete and/or the continuous state (‘event-driven
switching’. For instance, in the thermostat example these transition times were determined
by the temperature reaching some pre-defined minimum or maximum values (state events).
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Fig. 2.4 Sample behaviour of a hybrid system with 1-dimensional continuous state s and discrete
mode states m.

Similarly, in the task shown in Fig. 1.1, the robot experiences different interaction forces as
it slides from one surface to the other (motion ‘2’ in figure). Here the forces experienced by
the robot can be considered to be smoothly changing when it slides on one surface, and it
discretely switches to a new ‘contact mode’ when it slides across the boundary to the next
surface. Similarly the contact modes also change when the robot makes or breaks contacts
with different surfaces (e.g. at the end of motion ‘1’ and ‘4’ in figure), as it experiences
different interaction forces for the same motion in these different modes.

In general, the trajectories of the hybrid system are partitioned into time intervals within
which the continuous state evolves smoothly while the discrete state remains constant. At the
boundaries of the intervals, the discrete state changes and the continuous state can ‘jump’ to
a new state and follow a new pattern for continuous evolution.

2.3.1 Mathematical formulation of hybrid systems

Like any dynamical system that has some form of actuation, state evolution is usually also
a function of some action aaa that the an agent takes. Without loss of generality, assume
a d-dimensional system whose state sss evolves according to the differential equation ṡss =
fff (sss(t),aaa(t)). In a non-actuated system, aaa = 0 at all times.
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For a hybrid system, however, the transition vector field fff depends on the currently active
mode (discrete state) m, and hence the state evolution of a hybrid system can be represented
as:

ṡss = fff (sss(t),aaa(t),m(t)) (2.13)

As mentioned previously, the switching of the mode m could be time-driven or event-
driven. In case of time-driven switching, the current mode is a function of time, and therefore
the hybrid system state evolution (Eq. (2.13)) simplifies to ṡss = fff (sss(t),aaa(t), t).

The switching can also be triggered by the continuous state sss reaching a value in the
guard region, G, i.e., a mode switch from mi to m j can happen when sss(t)∈ G(mi,m j). In the
thermostat example, the guard region for G("on","off") was a single-element set containing
the maximum temperature for switching off the heating; when the temperature reaches this
threshold, the operation mode changes to "off" and the temperature drops.

Another important phenomenon associated with hybrid systems is the autonomous state
jumps that was described previously. At some time t̄ when the mode transition occurs (such
as at t1 in Fig. 2.4), the state may jump from sss(t̄−) to sss(t̄+) abruptly. Another intuitive
example is that of a bouncing ball whose velocity reverses (instantaneously) when the ball
hits the ground. Typically, another relation called reset map R decides the value of sss(t̄+)
after a mode transition.

With this intuition, a hybrid dynamical system can be fully defined using the following:

• S ∈ Rd is the continuous state space where the d-dimensional continuous state vector
sss operates.

• M is the discrete state space for all possible modes of operation m for the system, for
e.g.,M = {0,1,2, ...}.

• fff is a set of vector fields that describes the continuous dynamics of all separate modes
m ∈M.

• Init is a set of initial values (m0,s0) of the hybrid system state.

• G is a set of guards describing when a discrete state transition occurs. For e.g., the
guard G(m0,m1) poses a condition on the state sss which has to be satisfied for triggering
the mode transition m0→ m1.

• δ is the discrete state transition function which describes the change of mode m to a
new mode at G.
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• R is a set of reset maps that defines the state jumps during transitions. For e.g., if a
hybrid system enters the guard region G(m0,m1) at t̄, then the reset map R(m0,m1)

defines the jump sss(t̄−)→ sss(t̄+) during the transition. Another common way of repre-
senting the reset map as a function is: sss(t̄+) =Rm0,m1(sss(t̄

−)).

In some formulations, another set called the invariants (Inv) is described along with
guards for technically differentiating the sufficient and necessary conditions for triggering a
mode change [63]. In these descriptions, invariants and guards play complementary roles:
while guards serve as an ‘enabling’ condition which denotes when a particular transition may
occur, invariants describe when a transition must take place.

With the above formulation, any hybrid system can be considered to start with an initial
hybrid state (m0,s0) which lies in the set defined by Init. From here, the continuous state
sss evolves according to its vector field ṡss = fff (sss(t),aaa(t),m0) with sss(0) = sss0, and the discrete
state m remains constant. If at some point sss enters a guard region within the set G, say
G(m0,m1), the transition m0→m1 is enabled. The discrete state may then change to m1, and
the continuous state will jump from its current sss− to sss+ according to the reset mapRm0,m1 .
The continuous state sss will then follow the evolution according to ṡss = fff (sss(t),aaa(t),m1). This
process is repeated till the system procedure completes. Therefore, in a hybrid system, the
operating mode may switch between many discrete states where each mode is governed by
its own continuous vector field. Mode transitions are triggered by some variable(s) crossing
specific thresholds (state events) and/or by duration (time events) depending on the guard
regions or invariants. With a change of mode, discontinuities or jumps in the continuous
variable may occur defined by the corresponding reset map.

2.3.2 Relation to hybrid automata

The formulation of piece-wise continuous system described above directly leads to another
common formulation in hybrid model theory called the hybrid automaton, which is often seen
in robotics research [84, 108] for making use of the piecewise continuous nature of robotic
tasks. Several definitions of hybrid automata exist in literature, but the difference is only in
detail. A hybrid automaton is a more constrained formulation of the hybrid model described
above, and the main difference is that while hybrid models work in a state space that is
infinite, hybrid automata is defined in a finite spaceH. Additionally, a hybrid automaton H
is a tuple defined as:

H = (M,S , fff , Init, Inv,δ ,G,R)
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where the terms are as previously defined. The main difference is thatM has to be a finite
set of labelled discrete states called control locations, and S is a finite set of continuous
variables. The hybrid state of the system H is given by (m,sss) ∈H which exist in the finite
state space H =M×Rd . For more details about hybrid automata, readers are referred to
[96].

2.3.3 Closing notes on hybrid systems

Note that this section described hybrid systems using deterministic notations. However, it
is important to understand that realistic systems are stochastic and practical applications
use stochastic representations of hybrid systems for formulating problems and their control
solutions. Stochastic formulation of hybrid system accounts for randomness and process
noise in the state evolution, typically by formulating all the sets described above as proba-
bilistic distributions with Gaussian white noise of appropriate dimensions. The stochastic
formulation of hybrid systems follows directly from the discrete setup described above;
interested readers are referred to [26].

Also, hybrid systems can depend more on system inputs aaa [63]. In such systems, the
time at which the discrete mode changes, the value of the discrete mode after transition, the
evolution of the discrete state, etc. can all be affected by the values of the input. The discrete
mode changes in the hybrid systems considered in this report are assumed to not be affected
by any inputs directly, or if they are, we consider them as an independent system evolving
autonomously, over which the robot has no direct control.

The next chapter reviews some works from literature that are relevant to the presented
framework as well to the different topics discussed in this thesis.



Chapter 3

Related Work

This chapter looks at different attempts in the research community to tackle the main
challenges addressed in this thesis. Section 3.1 discusses some ways in which forward
models have been used for robot manipulation. Section 3.2 then goes through different
control strategies explored in literature for the purpose of tracking a prescribed target. In
Section 3.3, we then look at some of the methods attempted to learn and apply variable
impedance control for different robotic tasks. Some attempts at controlling hybrid dynamical
systems are then considered in Section 3.4. We then discuss common methods that are seen
in literature for handling collisions and contact changes (Section 3.5). Finally, we discuss the
different state spaces used for learning and control in robot manipulation in Section 3.6. The
chapter is concluded by briefly mentioning and justifying our choices for the learning and
control spaces used in the development of the framework presented in this thesis.

3.1 Forward models for changing-contact manipulation

A typical manipulator robot will have to interact with the environment through contacts that
can be either continuous (tasks like polishing, deburring etc) or discontinuous due to making
or breaking of contacts (tasks like assembly). Such interactions will require some knowledge
about the environment to understand how the interaction would affect the state of the robot,
and to select or modify appropriate actions for achieving the objective. One way to tackle
this problem is by enabling the robot to learn from its own experience, i.e., the robot observes
(measures) the changes to the environment through its interactions and creates a model of
the action-effects by using suitable machine learning/optimisation techniques. Access to
such a forward model which can predict the effect of applying an action in a particular state
(see Section 2.1.3) would help the robot anticipate/simulate the effects of its interaction in
advance. In many practical cases, the response of the environment can be different from the
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predictions of the learned model due to dynamic changes in the environment or due to unseen
regions of the environment. In such cases, the robot would have to be able to incorporate new
information as it observes them so as to modify its model of the environment, i.e., the learning
framework should have the ability to adapt its model when new measurements cannot be
explained by the current model of its environment. The ability to learn such adaptive forward
models is important for a robot framework for it to be more generalisable, adaptable and
autonomous [36]. The importance of learning models from observation to meet the demands
of novel situations which cannot be met by traditional solutions is explored in [17].

Forward models have been applied to different fields of robotics; some of the applications
include online sensor calibration [126], learning occupancy grid maps [192], and prediction
of intent in human-robot collaborative works [37]. In [184], the authors used forward models
for predicting the effects of a robot’s action, and showed how such forward models lead to
more efficient, robust and effective behaviour for achieving the objective in different task
scenarios.

Several works in literature have used forward models to improve performance in robot
manipulation tasks. In [193], a forward model created from high bandwidth tactile sensors
is used to augment sensor measurements for better manipulation. A Bayesian framework
was used to create forward models from the demonstrated samples in [170] to generate skills
for a robot in real-time. Forward models have also been used for aiding push manipulation
tasks [183, 13]. For an extensive survey on learning models for control in robots, readers are
referred to [138].

In general, forward models are used to predict the behaviour of the robot [100, 69]
and/or the objects [44] being effected while performing the task. The main challenge in the
development of such a forward model is the selection of relevant state features of the task.
Effective learning and performance of a forward model relies very much on the choice of the
feature vector. forward models broadly fall into three categories (i) analytic models - which
are typically modelled mathematically using Newtonian physics; (ii) learned models - built
from data using techniques from machine learning; and (iii) hybrid models - a combination
of learned and analytic models.

Analytic models are informed by the knowledge of mechanics to make predictions about
robot and object motions [44, 116]. They assume that Newtonian mechanics govern the
dynamics of the object and estimate parameters like the mass, inertia, Coriolis component and
gravity effects using regression techniques [122, 123, 118]. However, most methods make
unrealistic assumptions such as quasi-static mechanics, zero slippage and point contacts to
make the derivations tractable [29, 45]. Hence analytic methods often suffer from the problem
of inaccurate prediction. Many of these approaches also require an explicit representation
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of its intrinsic parameters, such as friction, mass, mass distribution, and coefficients of
restitution, which are not trivial to estimate [93].

The second approach is to use techniques from machine learning to build forward
models of the system. These techniques learn an action-effect correlation either using
data obtained from expert demonstrations [100, 69] or from self experience using trials
[112, 105]. Many methods have been developed to address the learning and control problems
in robot manipulation [99], especially methods based on reinforcement learning (RL) [185]
and those combining deep networks and RL for learning flexible behaviors from complex
data [12, 62, 117].

Learning a prediction model in a contact-rich environment poses several unique chal-
lenges to model learning approaches. Under rigid-body assumptions, establishing contacts
is often mathematically modelled as discontinuous dynamics with an impulsive update of
velocity, acceleration, and force [18]. This is usually overlooked by existing learning methods
which leads to their poor performance. Furthermore, applying traditional model learning
algorithms (such as from model-based reinforcement learning) requires large number of
training trials, often collected through multiple repetitions of the task by the robot. These
requirements are difficult to satisfy in practical domains, especially on a physical robot due
to wear and tear of hardware. Therefore, such methods are data-inefficient and, in case many
real-world changing-contact tasks, impractical. Also, the training process optimises several
parameters, and the internal representations and decision-making mechanisms are opaque,
making it computationally expensive to learn action policies and difficult to transfer them
to new tasks. Although these methods do not require explicit mathematical representations
of the task, robot, or the objects involved, the choices regarding the model representation,
learning algorithm and state representation are challenges that need to be tackled. As men-
tioned, these methods are also not well-suited for modelling hybrid dynamics because they
implicitly or explicitly consider a single model for the entire manipulation task [99]. RL and
optimal control methods for robot manipulation often assume the task dynamics are smooth,
which will result in poor performance in changing-contact tasks.

Recently, several attempts have been made to use deep neural networks (DNNs) for end-
to-end learning of manipulation tasks which bypass the step of learning a separate policy for
modelling dynamics and a control policy [12, 133, 6]. DNNs by design can easily overcome
some of the issues of analytical methods such as knowledge of robot-environment models,
physical parameters of models, and expertise is mechanics and optimisation. Their flexibility
also circumvents making restrictive assumptions such as object rigidity, simplistic friction
models, and inelastic impacts. However, they also introduce challenges that are unique to
DNNs due to their high-dimensional optimisation setting. The most obvious and difficult
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challenge is its need for a large amount of training data collected in almost all possible
scenarios so as to cover the maximum region of the high-dimensional state space. This often
requires a lot of training hours and high-end computing resources. Another unique challenge
is its tendency to entangle complex physical attributes in the optimisation manifold. For
instance, stiffness in the learned dynamics brings both stiffness and local minima into the
optimisation landscape [144]. Analytical system identification methods attempt to solve this
by exploiting second-order [90] or global [64] optimisation strategies. But it is not straight-
forward to apply such strategies to the high-dimensional parameter spaces of DNNs. Another
important issue arises due to the feature (advantage and limitation) of DNNs which is their
ability to approximate any dynamical system by selecting the smoothest interpolation of the
training data, which conflicts with the inherently discontinuous nature of contact changes and
impact dynamics. This behaviour is prevalent in common training methods such as stochastic
gradient descent, and is the primary goal of including regularisers such as weight-decay in
the optimisation algorithms. This smoothing nature is harmful and counterproductive for
modelling discontinuous systems such as changing-contact manipulation. Some applications
and limitations of DNNs used for end-to-end learning of manipulation tasks are discussed
later in Section 3.6.

The third approach is to use a combination of both analytical and learning approaches
discussed above. These forward models tend to learn the difference between analytical models
and the true dynamics of the interactions, capturing the improvements to the analytical model
needed to match the observed environment (Gandhi et al. [53]). The main advantage of
these forward models is low requirement of data since only the difference in dynamics are to
be learned. However, these strategies still rely on several restrictive assumptions regarding
the type of contacts, friction models, object dynamics, etc., require significant knowledge
about the mathematical models to be used, and also require at least a few trials and examples
of the real-world possible scenarios to be modelled. Although sim-to-real strategies have
been developed to further reduce the training on real robots, aspects such as the dynamics
of rigid bodies with friction are too complicated to be modelled in a real-time dynamics
simulator [79]. Often, even with reduced training on real robots, several hundreds of trials in
the real world is then required for fine-tuning the models for transferring to a physical robot
[6]. The main disadvantage of using physics simulators as proxies for physical robots lies in
the difficulty in modelling contacts accurately and imitating real-world interactions between
physical objects (discussed further in Section 3.5).

There have also been works which makes use of the piecewise continuous nature of
changing-contact tasks by modelling such tasks as hybrid systems or hybrid automata (see
Section 2.3). The models learnt in such fashion typically have a hierarchical structure, with
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a high-level model that selects or identifies the current mode, and a gating strategy to use
a corresponding low-level model which models the dynamics of that mode [108, 23, 95].
Such methods are also commonly used for bipedal locomotion [134]. Planning methods for
manipulation also often take the discontinuous nature of manipulation into account [195, 75],
but they assume prior knowledge of the models of the system, and of the actions and modes
of interest. The disadvantages of such approaches are that they often require the knowledge
of the number of modes and their sequence beforehand. In fact, several methods require
generating synthetic training data to account for the sparseness of data at the guard regions
[108].

In contrast to the above works, our framework (see Chapters 4 and 5) can learn dynamics
of robot-environment interaction as a hierarchical model without assuming any prior knowl-
edge about the system. The model is learned online, makes no assumptions on the structure
of the dynamics, and can incrementally learn to model new scenarios as it sees them.

3.2 Control strategies for path-following

The research on developing controllers for establishing stability in different dynamical
systems has been popular for almost two centuries. Several methods have been developed for
controlling systems in a stable and robust manner. The most basic plant system are linear
time-invariant (LTI) systems, for which methods from classical control theory can produce
the desired performance. Such methods have been reviewed in many works in literature (eg:
[58]).

In most real-world systems including robot manipulators, however, the model of the plant
(robot and/or interacting objects) is non-linear and/or unknown. In case of manipulators,
the model sometimes can be unmodelled or difficult to model due to interactions with other
objects, unknown tools/objects at the end-effector, environment dynamics, etc. Research
in classical control has developed many methods to achieve precise movement during
interactions with the environment, e.g., hybrid force control [164], parallel force control [31],
and impedance control [66]. These approaches require accurate knowledge of the system’s
dynamics and/or precise feedback schemes. For a manipulator robot, it is possible to achieve
accurate motion tracking and better rejection of perturbances by using a constant high
stiffness controller, but being very stiff expends more energy and the robot will not be
compliant to external forces, hence making interactions unsafe. Such classical robot control
methods characterised by high gain negative error feedback control are not suitable for tasks
that involve interaction with the environment (possibly humans) because of possible high
impact and interaction forces [3]. To overcome this at the low level, this is usually handled



30 | Related Work

by bringing a state-dependent or time-dependent variability in the controller parameters or
the dynamics model of the system. These non-linearities in the dynamics raise the need for
control schemes that are capable of handling system uncertainties, or are adaptive and can
change according to the system’s response and/or observations (measurements).

Model Predictive Controllers (MPCs) have shown remarkable results in systems whose
models are known but the parameters are unknown constants [137]. MPC aims to predict the
future behaviour of the process during execution to obtain the optimal closed-loop control to
minimise the objective function in a limited span of time horizons within certain constraints
[41]. MPCs have been widely used in controlling mobile and aerial robots [10, 11, 158].
They have also been used as control schemes for manipulation systems. For instance, in
[72], an MPC formulation is used for controlling a 24-DoF pneumatically actuated soft
robotic hand. MPCs have also been used for providing position and force tracking for
robot-environment interactions [56]. The disadvantages of model predictive control are that it
requires knowledge of the structure of the system model, and relies on it being fixed, which is
not a valid assumption in dynamic environments where the interaction dynamics can change
or if the robot has to make or break contacts with other objects in the environment. Moreover,
the MPC algorithm can become complex and would need longer computation time than other
controllers in many situations [41].

In scenarios where the system parameters can vary, but one knows the extent or bound
for the parameter change, there are methods for developing a fixed controller which is able
to handle such parameter changes and can guarantee stability as long as they are within in
the pre-defined bounds. This type of control is referred to as robust control (see [39] for
review). However, robust control strategies are generally known to be less efficient and has
been shown to be limited in the extent of uncertainty it can handle even for simple first-order
linear systems [209].

Adaptive control [14] is a popular class of controllers for dealing with systems whose
dynamics are unpredictable, unmodelled, or variable. Adaptive control adjusts itself to
manipulated systems whose parameters can change constantly or are unknown beforehand
using feedback from the system. Non-adaptive controllers require the control system to be
modelled on the basis of the prior knowledge regarding the system, i.e., the system is known
and the controller is intended for that system by assuming that the system will not change.
In contrast, adaptive controllers do not have to rely on the prior data from the system and is
able to handle system changes by adjusting their parameters automatically. It is used when
the controlled plant faces uncertain interference, or it is anticipated to experience changes in
its parameters in a fashion that is unknown at the start [208]. There are typically two popular
adaptive control strategies seen in control literature: (i) model reference adaptive controllers
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(MRAC), and (ii) self-tuning regulators/controllers. Recently, however, a third strategy has
become popular in many fields such as robotics: (iii) gain scheduling.

The basic idea of the model reference adaptive controller (MRAC) is to compute control
signals which will force the controlled system to behave as a specified reference model
[191, 208, 151]. It is an example of indirect control whereby the control law is adapted
so as to mimic a reference model which has the same order as the original system [206].
The advantage of MRAC is that one does not have to exactly know the plant parameters,
rather, approximations can be employed and the adaptive control system can use prior
input/output data to improve these approximations. However, there are significant challenges
for successfully deploying this type of control. The control system’s stability performance is
crucial because it is hard to develop a stable adaptation rule. Furthermore, the MRAC system
depends on cancelling the non-linearities of the system dynamics via the reference model
[189]. In practice, complete cancellation cannot be ensured and control engineers try to bring
the non-linear segments to small points in the dynamics space where they can be neglected.
Although the exact knowledge of the system dynamics is not needed for developing MRAC,
it still requires a good understanding of the system and its model for defining a sensible
reference model. Providing a wrong or incompatible reference model can produce instability
in the system and have devastating effects (see Section 4.4.1). A comprehensive review of
works from literature which employ MRAC to robotic manipulators is presented in [208].

Self-tuning regulators differ from MRAC in that they typically represent the controlled
plant as a linear time-varying system, and tries to either (a) vary the controller parameters
online based on system feedback, or (b) try to estimate the parameters of the controlled
system during task execution for substituting in the control law [151, 89]. It has been
demonstrated that under certain conditions, a self-tuning controller tracking a target point,
designed using estimated system model parameters, can converge to the optimal controller
obtained for the model with the true parameter values [55]. However, for manipulation tasks,
the objective is transient instead of fixed, since the goal is not to reach a single point but to
follow a trajectory. Therefore, the convergence of the parameter estimates and controller
gains of traditional self-tuning controllers may not be achieved during the finite time over
which the motion takes place, or it is possible that the values in one point of the trajectory
is not sensible at other points due to different system dynamics [89] (see Section 4.4.2
for experimental validation). In repetitive tasks, however, the estimates of the parameters
from the previous run can be used as the initial estimates, which can then be improved in
subsequent trials. Thus, the controller is ‘trainable’ in repetitive tasks, resulting in a more
accurate performance for systems whose dynamics vary in a fixed pattern across all trials.
Under such situation, a controller can be designed or trained for every single anticipated
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operating point. This type of control adaptation falls under the next category of adaptive
control, called gain-scheduling.

Gain-scheduling is not commonly seen in classical control literature, but has become
more popular with the adoption of imitation learning and reinforcement learning in robotics.
Standard strategies for gain scheduling involve learning a time-indexed sequence of control
parameters that are either learned by repeating the task and iteratively updating the gains
by minimising some cost (e.g. [21, 80, 204, 97]), or by learning time- or state-dependent
gain profiles from pre-collected training data (e.g. [100, 113, 107, 162]). Many of the
variable impedance strategies mentioned in Section 3.3 using reinforcement learning or
learning-from-demonstrations can be considered to be in this category.

The adaptive variable impedance control (AVIC) framework presented in this thesis (see
Chapter 4) can be considered to be closest to the self-tuning adaptive control paradigm
mentioned previously. However, the presented control framework uses the accuracy of a
forward model (which is learned incrementally during task execution) for guiding the online
adaptation of the controller parameters (Section 4.1.3). And unlike other online learning
methods [204], our control framework does not require a periodically repeating trajectory,
nor does it learn a time-series of controller parameters to be used in a repeatable dynamic
environment. In Section 4.4, the performance of AVIC is experimentally compared with the
three classes of adaptive control discussed in this section.

3.3 Variable impedance control for robot manipulation

Impedance control provides a feasible solution for overcoming position uncertainties and
in avoiding large forces due to interaction since the full impedance control law for robot
manipulators are designed to modulate their motion and/or compliance based on real-time
system feedback. As explained in Section 2.1, an impedance controller resembles a virtual
mass-spring-damper system between the environment and the robot. Impedance control
has been used in the Cartesian space to control the interaction of the end-effector with the
environment [172, 24, 115], as well as in the joint-space for improving safety [114]. However,
in many real-world tasks robots may need to vary their impedance during the execution
of the task. Consider a scenario where a domestic robot has to navigate an unstructured
environment (eg. homes, industrial floors, etc.) where they have to interact with different
objects. Such tasks demand the application of different control forces and torques depending
on the different mass, friction, etc.

Variable impedance control in general provide a time-varying impedance profile for the
robot controller during task execution; by definition, such control strategies belong to the
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class of gain-scheduling adaptive controllers described in the previous section. In variable
impedance control methods, the impedance parameters could change as a function of time,
robot state, or other observations/measurements of the interacting system.

Many existing methods for robot manipulation use machine learning algorithms to
compute suitable values of the impedance parameters for the task at hand [21, 80, 68, 104, 38].
These methods either represent the desired stiffness profiles as a time series or as a task-
specific policy, and need large labelled training datasets. Several methods learn impedance
profiles or impedance models from demonstrations that are provided in the form of kinesthetic
teaching (e.g. [100, 2]), which is then used to obtain the desired impedance behaviour during
task execution. If the provided demonstrations from the teacher do not overlap perfectly, it
is possible to derive a policy that imitates the average motion of the demonstrated dataset,
and the robot can then vary the stiffness according to the coherence of the trials [25, 100] or
based on the force sensed during replay [2]. Such use of variable impedance as an action
representation has been shown to be successful for adaptive grasping [113], manipulation of
deformable objects [107], and human-robot collaboration [163]. In [2], a variable impedance
controller is learned from demonstrations and sensed forces using tensor-based Gaussian
Mixture Models (GMM), which is then used to provide a time-varying stiffness profile
that allows the robot to react satisfactorily to new conditions. GMM was also employed
by Kronander and Billard [100] to directly encode full stiffness matrices using Cholesky
decomposition. However, the approach requires the teacher to wiggle the robot during
training to make it more compliant, or increase the pressure with which the robot is held to
make it stiffer. Such approaches may not be feasible in all cases and is not suitable for tasks
that involve external physical contacts. Saveriano and Lee [165] uses a similar approach
while exploiting the constraints derived by Khansari-Zadeh and Billard [86] to guarantee
the convergence of the trajectory retrieved via Gaussian Mixture Regression (GMR). In
[113], GMM was used to encode the pose of the end-effector, after which the impedance
parameters and reference trajectory were estimated using optimisation. Rozo et al. [162]
proposed a framework for learning stiffness profile in a cooperative assembly task which used
visual and haptic sensor data, which was used to build Task-Parameterised GMM (TP-GMM)
where each Gaussian component corresponds to an independent stiffness matrix. This was
later extended to reformulate the stiffness estimation as a convex optimisation problem for
ensuring optimality of the stiffness matrices in [163]. Peternel and Ajoudani [150] proposed
a method based on Dynamic Movement Primitives (DMP) where a ‘novice’ robot can learn
variable impedance behaviour from an ‘expert’ robot through collaborative task during online
execution.
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Some works propose iterative learning approaches where the agent is assumed to be
able to repeat a task till some measure of ‘good performance’ is achieved [30, 52, 204, 97].
Conventional methods try to reduce trajectory tracking error as well as improve rejection of
periodic disturbances. This typically involves learning a corrective term for the control law
that linearly depends on tracking error, measured disturbance, and/or time. Such strategies
can be included in the class of RL-based gain-scheduling adaptive control mentioned in
Section 3.2.

Many learning methods often depend too much on the control strategy that it becomes
difficult to define a clear separation between the controller design and task planning. In
addition to modifying the controller parameters during execution, many such methods tend to
also adapt the reference trajectory, while typically relying on constant inertia matrices [3]. An
active learning control strategy for estimating variable stiffness is proposed by Calinon et al.
[25]. However, their approach also requires demonstrations to have variability in position
which is used to capture stiffness information. This does not arise in scenarios where the
robot is constrained to follow a predefined plan. Khansari-Zadeh et al. [87] proposed the
Integrated MOtion Generator and Impedance Controller (i-MOGIC) which derives the robot
trajectory and variable impedance profile from a GMM which is then used to compute the
control input. Khader et al. [85] proposed an RL-based variable impedance controller built
over i-MOGIC for a robot peg-insertion task, where stability is guaranteed by bounding
rollouts to the state-space and ensuring that they tend towards the goal of the task. Buchli
et al. [21] used Dynamical Movement Primitives (DMP) to encode both reference and joint
impedance trajectories in different simulated and physical robot experiments. A mixture of
proportional-derivative systems is used for representing and learning a policy for flipping
pancakes in [94].

Some approaches vary stiffness from the perspective of the object being manipulated [113,
166, 202]. These methods have mostly been designed for grasping and require accurate
analytic models of the object; it is challenging to provide such models in dynamic domains.
A variable impedance controller which varies stiffness based on the friction coefficient
(estimated via prior exploration) is proposed in [7].

The stability of a variable impedance control scheme depends on how the impedance
gains vary. Although stability issues of impedance control have been studied from the begin-
ning [66], stability in VIC is not a trivial problem and has only been recently considered in
literature [3]. Stability of variable impedance controllers have been shown using biomimetic
controllers which are capable of automatically adjusting controller stiffness [54, 204]. How-
ever, these methods requires a fixed repeatable reference trajectory. Analysis of interaction
stability of variable impedance controllers using Lyapunov-based tools becomes intractable
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when the environment dynamics are unknown or too complex [3]. This is clearly the case
when a robot physically interacts with a dynamic environment or with a human operator.
Therefore, researchers quickly converged on using passivity-based proofs for investigating
stability. In simplified terms, the passivity theory provides a mathematical method to describe
and verify that a dynamical system is not producing more energy than it receives. For more
information regarding passivity, the readers are referred to [197]. One such method where
passivity-based approach is used to ensure the stability of time-varying impedance controller
is [46], where passivity is ensured by incorporating a virtual energy tank and checking that the
energy dissipated to the task is greater than the energy pumped into the system. Several other
works have also used the strategy of constraining variable impedance matrices using passivity
theory to guarantee the stability on the desired impedance dynamics (e.g. [101, 187, 87, 85]).

A robot can use a variable impedance controller to change the impedance parameters to
match the desired motion profile. Most variable impedance control methods reviewed in this
section are time-dependent or include joint space parameters as a part of the state description.
This dependence can make the task model out of sync with task execution in the presence
of unforeseen perturbances, limiting the ability to adapt impedance intelligently to dynamic
and/or unseen environments.

Human motor control literature provides evidence that humans exhibit task-dependent
varying impedance behaviour [141, 57, 50, 190, 200]. The impedance modulation in humans
is achieved by co-contraction of muscles [160]. Studies have also shown that the motivation
for this modulation of stiffness is to deal with unstable dynamics [22] and sensorimotor
noise [167]. Yang et al. [204] proposed a controller based on this idea, which was later
extended by Ganesh et al. [54]. The controller provided a constant feed-forward force for
predictable perturbations and increasing stiffness in directions of unpredictable perturbations.
Studies performed by Ajoudani et al. [8] report that human-assisted stiffness modulation via
tele-operation outperforms constant or low stiffness behaviour for a given task. It has also
been suggested that forward model-based control is often easier to learn [128].

We used these insights to develop our AVIC framework (Chapter 4) which uses an
incrementally updating feed-forward model that compensates for continuously changing
environments, and varies feedback gains based on the accuracy of the learned model.

3.4 Control for hybrid systems

Several control methods have been proposed in the control theory literature for specific
classes of hybrid systems. For instance, a wide range of literature can be found for switched
systems where stabilising controllers are developed using Lyapunov arguments [77, 34, 130].
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Optimal control theory has been used for developing control approaches for hybrid systems
in the context of manufacturing [34, 149]. Recently, model predictive control (MPC) has
also been extended to some classes of hybrid systems [127, 34].

Benefits of incorporating modes or phases in the design of controllers for manipulation
is evident in grasping tasks (e.g. [159]) where the controller has distinct objectives and
behaviour requirements for phases such as ‘approach’, ‘grasp’ and ‘release’. Different
strategies for sequencing motion primitives have also been used to solve manipulation tasks,
but they assume the existence of a library of modes or motion primitives, or alternatively
segment a sequence of primitives from human demonstrations [140]. These methods do not
consider the interaction dynamics or try to reduce effects of impact. Therefore, this type
of modelling makes the learned policy dependent on the environment, movements and the
sequence of modes.

Motivated from the effectiveness and flaws from the works discussed in the previous
sections, the framework proposed in this thesis uses independent task-space adaptive variable
impedance controllers for each identified mode in the task. The framework also learns
transition-phase controllers to handle contact changes so as to minimise impact forces and
jerk on collision, while trying to minimise the errors in tracking accuracy. This makes the
framework more generalisable and adaptable to new environments.

3.5 Modelling and handling impacts & contact changes

Collisions and impact dynamics introduce critical challenges to planning, modelling and
control of robots in applications such as locomotion [201] and manipulation [83]. Even a
single collision is a complex interaction where object interpenetration is prevented by material
deformation, and which often occurs on a scale far below the resolution of practical sensors
[60]. Capturing these processes accurately requires an impractically precise set of knowledge
regarding the materials, geometries, and initial conditions, on top of the complications in
predicting dynamics using these information [28]. To avoid these challenges, most robotics
approaches make several coarse approximations of contact dynamics such as the rigid-body
assumption to make the problem more tractable (see [20] for background). When impacts
occur, rigid-body models approximate the event as an instantaneous change in velocity due to
an impulsive force. Even so, seemingly minor changes in the mathematical models can result
in significantly different predictions from identical initial conditions, and in many cases, they
are unable to capture real-world behaviours with any available model [45, 182].

There have been several attempts to analytically model the relation between relative
motion between two colliding objects and their impact dynamics. The problem has mainly
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been treated as the linear complementary problem (LCP) for the velocities and impulses
[152] or the accelerations and forces [205] at contact points. Although such formulations
can guarantee a physical consistency between motion (velocities and/or accelerations) and
impulses, their computing cost is large because the LCP has to be solved at every time step
of motion, and they assume the contact forces are uniquely determined for a motion. A
different LCP formulation for evaluating velocities of colliding bodies is employed by Routh
et al. [161], where they use a discrete model based on the law of conservation of momentum,
Newton’s law, Poisson’s Hypothesis etc. Several formulations of the impact transition
problem use continuous-time models that are based on equations of motion, with assumptions
and simplifications such as approximating impulse to finite forces and finite impact time
[71, 132]. A method for applying sums-of-squares verification to rigid bodies undergoing
discontinuous, inelastic impact events is presented in [156]. These methods however require
defining the compliances at contact points for preventing bodies from penetrating each other,
which are difficult to determine. In [90], dynamics in robot manipulation is posed as a
joint optimisation of both trajectory and model parameters, and is solved using Newton’s
second-order optimisation method. In all these studies, the static model of Coulomb friction
is used, which can be unrealistic in many cases due to approximations made for overcoming
its discontinuities. In [135], the authors use the LuGre model [35] which is dynamical friction
model, for modelling contact transition in robot manipulation, which was shown to produce
more realistic simulations although it requires several more parameters of the system to be
known.

Unrealistic contact models is a primary reason for the gap between simulated and real-
world performance in robotics problems [144]. When objects collide in the physical world,
materials deform on an imperceptibly small spatial and temporal scale, preventing inter-
penetration. The underlying material property driving this is mechanical stiffness, which
significantly influence the equations of motion of these systems [144]. Even small errors in
the initial conditions or model parameters can produce significantly different predictions.
Furthermore, velocity measurements are extremely sensitive to the measured time, as they
change almost instantaneously during impacts. These issues become even more significant
when learning a model of a real system from noisy sensor measurements. Many simulators
allow users to specify several physics parameters and physical properties of objects such as
mechanical stiffness (e.g. MuJoCo [194], Bullet [33]), which can produce relatively realistic
simulations. However, even with a perfect simulator, this requires accurate knowledge about
object parameters such as material stiffness.

Impacts affect the interaction dynamics due to the almost instantaneous changes to the
values of velocity, acceleration and forces. The smoothing effect of deep neural networks
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mentioned in Section 3.1 is therefore particularly harmful for modelling impacts and col-
lisions. This is especially significant due to the sparsity of reliable data points that can
be collected during and around impact which is pronounced by the lower reliability of an
average sensor in these regions. Parmar et al. [144] provides an excellent discussion on
the main challenges of using deep learning systems (as well as analytical methods) for
modelling contact dynamics, an important one being the degradation of model performance
with increasing stiffness.

Therefore, deep learning models are unsuitable for contact modelling and prediction for
these reasons while analytical approaches generally require information about the physical
properties such as mass, restitution and frictional properties of the objects as well as, in many
cases, detailed 3D object models. The information regarding the physical properties of all the
involved objects may not always be readily available, and they are cumbersome to collect for
different tasks/objects. Even with these information, analytical methods may not be reliable
in real-time applications for providing accurate estimates due to the complex computations
that are often required. However, instead of modelling contact dynamics directly, the robot
can decouple the problem by first approximating the positions of contact points, and then
using a ‘safer’ controller in the predicted regions. Static contact properties such as contact
positions and direction of impact can be estimated more reliably (if the task plan is known
beforehand) using either tactile/force-torque sensors or coarse depth images/point cloud
models of the objects. Acquiring training samples for such measurements are also usually
easier than performing an analytical analysis of the interaction. In [196], a robot is shown
to acquire the training samples’ labels autonomously by interacting with objects to learn
high-level rules for the objects that can be used for planning. Such interactive perception
techniques have been used in several scenarios such as to estimate constraints or physical
properties of objects [81, 16]. The benefits of interactive perception are that they do not
necessarily need pre-training and they help disambiguate between scenarios as well as in
observing otherwise latent properties [99]. For instance, a robot can figure out if an object
is fixed or movable by pushing it. However, such methods usually require the robot to
perform the task multiple times to build models or optimise model parameters, especially
when trying to model dynamics properties of the interaction. In our contact-anticipation
model (Chapter 6), we focus on interactively improving the knowledge of the robot about the
locations of the contacts involved in the task using a Kalman-filter based update algorithm.
These estimates of the locations of contacts are then used to define ‘transition’ regions in the
workspace of the robot, where it can expect contact-changes to occur, and therefore use a
safer control strategy in such regions.
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Using separate controllers is a common strategy for handling contact changes. Methods
that use a transition-phase controller for changing-contact manipulation tasks focus on
minimising the discontinuities in the dynamics such that the controller is stable and tracks
accurately after transition [131, 120, 175]. However, these methods generally switch to a
different controller only after a contact is detected, which can result in significant disruptions
in the dynamics when the switch is made. These transitions results in the intake of large
amount of energy into the system large spikes in forces and acceleration, and could potentially
damage the robot or the domain objects. In contrast to these methods, our contact-handling
module aims to predict the contacts and use it to transition to a safer ‘transition-phase’
controller smoothly on-the-fly by interpolating between the control outputs before collision
occurs. The ‘transition-phase’ in our approach uses a low-stiffness controller and follows
a slower velocity profile which would produce lower discontinuities at contact. Hyde et al.
[73] uses a transition-phase controller with constant low velocity to reduce impact effects in
the guard regions of manipulation tasks modelled as hybrid systems. However, unlike their
approach, our framework also uses a low-stiffness controller to reduce impact on collision,
and can also automatically update the choice of approach velocity based on a desired impact
force (Section 6.4).

For the least delays and deviation from the original plan, the new approach velocity of
the transition-phase controller should come into effect only when the robot is about to make
a contact. Modifying the velocity requires modifying the timeline of the provided kinematic
plan. To ensure that the trajectory plan is smooth, it is necessary for both the velocity
profile and the geometric path to be continuous. When executing a planned trajectory, two
of the most important factors are smoothness and accuracy of tracking. Since the velocity
of motion has to be modified for safer collision, the tracking accuracy (in terms of time
to task completion, but not in deviation from the path) has to be sacrificed. However,
motion smoothness (motion derivatives at least up to jerk) can be guaranteed by making
the transition trajectory continuous. To make the motion smooth in acceleration and jerk,
a motion profile that is at least C4 smooth is required. For kinematic time-optimal motion,
different variants of trapezoidal velocity profiles are commonly seen [19]. For avoiding
overshooting and undershooting of trajectories that happens with these methods due to lack
of consideration the length of the original displacement trajectory, the motion constraints and
total displacement can be recalculated iteratively [59, 92]. Several methods that create C4

smooth trajectories using multiple trajectory segments have also been developed [5, 136].
However, the complexity of such methods can become high for obtaining a feasible trajectory
plan at every iteration of the task and often has multiple task-dependent hyperparameters to
tune. Several minimum-jerk motion profiles are also found in literature [153, 106, 51, 70].
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A trapezoidal C4 smooth motion profile for point-to-point motion has been described in
[59] using a seventh-order C3 polynomial function as the velocity profile. In contrast, our
transition-phase controller uses a novel velocity profile which is simpler in formulation with
no additional hyperparameters and has continuous derivatives of all orders at every point of
the function, making it C∞ smooth (Section 6.5.2).

3.6 On state spaces for learning and control

Performance in a manipulation task is significantly affected by the choice of state space used
for learning and control. Several earlier works have focused on applying learning methods in
the joint-space of the robot for solving manipulation problems. The two most popular choices
for learning in the joint-space are learning joint torques directly [40, 111, 155], and learning
reference positions for a joint-space PD controller [12, 148]. Using joint-space as the action
space is favourable because they are easy to implement, and inject very little bias into the
learning problem [198]. On the other hand, learning in the joint-space require learning to
compensate for dynamic effects (e.g., inertial, gravitational, and centrifugal forces), which
could otherwise have been modelled separately or, in most cases, are directly available.
This raises the need for larger training examples and training time to accurately learn the
dynamics model for reasonably good performance. Even then, it often becomes necessary to
implement gravity compensation separately to learn successful manipulation strategies when
using torque control [80].

Learning and optimisation methods work best in the space where the task objectives are
defined directly. In a standard contact-rich manipulation task, the objectives are directly and
easily defined in the Cartesian task-space of the robot in terms of end-effector trajectory,
obstacle locations, end-effector target wrenches, etc. This intuitively supports the choice
of learning policies in the task-space of the robots. Furthermore, task-space definitions
(e.g. trajectories) are inherently independent of the robot kinematics and provides better
transferability to other robots since the correspondence problem is solved by the robots’
native forward and inverse kinematics models.

Surprisingly there are relatively fewer works that formulate the action space of a learning
task in terms of the low-level Cartesian space of a robot. Some tasks that have been
demonstrated and transferred to robot in the task space include pancake-flipping [94], block
stacking [76], pick and place [176], peg-in-hole [102], and pouring water [145]. Martín-
Martín et al. [121] showed that a control policy learned in the end-effector space transfer to
different robots better than policies in any other space since the representation and policy are
independent of the robot embodiment. They also demonstrated that the policies learned in the
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task-space have higher task success rate and sample efficiency for contact-rich manipulation
tasks compared to policies learned in the joint-space. Learning policies in the task-space
tend to require fewer training samples and uses smaller state space if the task objectives can
be represented in the task-space.

Although policies in the task-space are easier to learn and more transferable in most
cases, the advantages of learning in the task-space can vanish if the reward-functions are
complex, non-linear and non-separable [43]. Furthermore, generation of smooth trajectories
are theoretically easier in the generalised coordinates of a system (joint-space in case of
manipulators), as ultimately control commands are sent in the lower configuration space
of the joint motors. However, research in task-space trajectory planning and generation
have advanced enough that the difference is almost negligible [91, 59]. Similarly, planning
and execution of trajectories are easier and more meaningful in the joint space if there
are obstacles in the workspace that are to be avoided by parts of the robot other than the
end-effector. Therefore, the choice of the space for control and learning in manipulation
depends mostly on the objective of the task and trade-off that the user is willing to make.

Recently deep learning has been used to tackle the problem of changing-contact manip-
ulation by using end-to-end strategies where all the intermediate problems such as contact
dynamics, controller formulation, interaction dynamics, etc. are bypassed by training a
unified ‘black-box’ model which learns a mapping from observations to control commands.
Generally, this requires a large amount of training time with a simulated and/or physical
robot. In-hand reorientation of a cube using a 24-DoF robotic hand was demonstrated in
[12] where the system was entirely trained in simulation and transferred to a real robot.
However, in addition to using a complicated vision and tracking system, the training data
comprised of 3 years worth of experience which they compressed to 1.5 hours of training
time using high-end computing power and resources. In [133], a similar 24-DoF hand was
used to rotate two free-rolling spheres in the palm using 2 - 4 hours of purely real-world
training data. In [6], a physics engine is augmented using an object-based neural network for
performing a multi-object pushing task. Although using the physics engine helped reduce
the training time, the task still required collecting over 1000 push trials from the physical
robot to fine-tune the model. Similarly, a (relatively) shallow network architecture which
fuses the inputs from three sensors (RGB camera, force-torque sensor, robot end-effector
states) is presented in [110], where the model learns controllers for a peg-insertion task. The
network is trained end-to-end using self-supervision with physical robot trials that took about
5 hours of wall-clock time. The authors demonstrated the effectiveness of the trained system
in generalising to different instances of peg-insertion (different hole shapes) with reasonable
accuracy.
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In this thesis, we chose to define our learning and control problem in the task-space of
the robot for the following reasons: (i) learning in the task-space is more sample-efficient
[43] and is therefore more appropriate for online learning; (ii) learning interaction dynamics
is more meaningful in the task-space as the robot is interacting with the environment using
the end-effector and feels the interactions directly at its end-effector (iii) learning interaction
dynamics in the task-space allows for using the learned model as a feed-forward model in the
task-space controller (see Chapter 4); (iv) task-space impedance control is more meaningful
for manipulation tasks as the Cartesian representation allows the robot to be selectively com-
pliant along certain directions; and (v) contact anticipation and handling is directly suitable
in the task-space of the robot as contact locations are independent of the robot configuration.

In the next chapters, we describe our framework and experimentally evaluate its perfor-
mance in the context of a robot (simulated and/or real) performing a manipulation task in
varying dynamical environments.



Chapter 4

Adaptive Variable Impedance Control
for Continuous Interactions

Manipulation tasks such as polishing, deburring and grinding involve complex contact
interactions with the environment. These tasks require following desired trajectories while
maintaining target contact forces. Resistive forces on the robot influence the controller
performance due to surface properties such as friction. Therefore, control in such tasks
requires the knowledge of the dynamics of the robot and environment under interaction.

Industrial robots working in closed cages typically use arbitrary high stiffness since they
work in a structured and perfectly repeatable environment (i.e. specially designed environ-
ments) where all changes are predictable or modelled. However such pre-programming
become cumbersome as robots are applied in unstructured environments and/or have to
collaborate with humans. In principle, a motion planner can design and execute a plan
for an entire interaction task accurately, if the complete interaction model of the robot and
environment is available. However, it is impractical to assume that such models of the
environment will be available for dynamic tasks. Errors in modelling leads to planning
error and subsequently causes deviation from the desired trajectory, mainly due to incorrect
estimation of contact forces. Such inconsistencies and environment unpredictabilities make
the generated plans unusable without a proper adaptive controller.

It is safe to assume that the interaction dynamics when a robot is in a continuous contact
mode is smooth and continuous. For instance, the forces experienced by a robot polishing
an even surface will be relatively smooth as long as the robot’s motion is smooth. For a
robot pulling springs, the forces it feels are a continuously changing effect depending on
its position in the workspace (Fig. 4.1b). Similarly, if a robot is moving through a viscous
liquid, the forces it feels will be a continuous function of its velocity. The dynamics will
also be smooth even if the viscosity of the liquid was to change smoothly; this phenomenon
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(a) Surface-polishing task where
the robot experiences continuous re-
sistive forces at the end-effector due
to surface friction as it slides along
the table.

(b) The end-effector is attached to
three springs of different stiffness
(‘multi-spring’ environment) result-
ing in continuously changing forces
as it moves.

(c) The robot is attached to a Moog
HapticMaster which emulates an
environment whose viscosity in-
creases as it moves (‘porridge’ en-
vironment).

Fig. 4.1 Example tasks with continuously changing interaction dynamics.

can be observed when heating certain non-Newtonian fluids, such as porridge which gets
thicker as it gets cooked (Fig. 4.1c). Performing contact manipulations therefore demands
reasoning about the forces and torques that are measured during task execution. Measuring
contact wrenches is a straightforward way to describe environment interactions in the state
space of a Cartesian controller. Usually, force measurement is achieved using a force-torque
sensor mounted between the wrist and the end-effector. Prediction of environment dynamics
(interaction forces) in such scenarios would clearly result in better control. It is argued that
humans can handle such unforeseen and varying dynamics by adapting stiffness [22] and by
building forward models [129] for the task.

This chapter presents a control framework inspired by these insights. The proposed
Adaptive Variable Impedance Control (AVIC) framework incrementally learns a forward
model of the interaction dynamics in the task space and uses it to adapt the parameters of a
variable impedance controller on-the-fly such that the robot is stiff only if it has not modelled
the interaction forces accurately. It forms an adaptive control strategy that can follow a
provided task-space task plan accurately while navigating through continuously changing
environment dynamics using lower controller stiffness (expending lower energy).

The chapter begins by describing the formulation of the AVIC framework in Section 4.1.
A primitive formulation of this framework was published in the International Conference
on Humanoid Robots (Humanoids, October 2019) as joint first-author with Dr. Michael
Mathew [124]. The key differences from the original framework are briefed in Section 4.2.
The performance of the proposed framework in different continuously varying dynamic
environments and the need for incremental models in such environments is evaluated in
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Section 4.3. In Section 4.4, the proposed controller is experimentally compared to a few
baseline adaptive control strategies from literature. The chapter is concluded in Section 4.5
by discussing the advantages and limitations of the proposed control framework.

4.1 AVIC framework formulation

Existing work on robot manipulation use control strategies which learn or compute stiffness
values based on large labelled training datasets or require comprehensive knowledge of the
domain dynamics, impose unrealistic assumptions or hardware requirements, or use state
representations that make it computationally expensive to estimate the stiffness parameters
online. On the other hand, research in human motor control indicates that when performing
a new manipulation task, humans initially use higher arm stiffness to accurately follow the
desired trajectory in the presence of unforeseen external disturbances. This behaviour ensures
that they can complete the task without being hindered by unknown effects. With sufficient
experience, humans can then perform the same task accurately with much lower stiffness.
Such a behaviour is achieved by building internal models of the task dynamics to predict the
configurations of the object and the hand, and the forces, during task execution [48, 82, 78,
168]. Our Adaptive Variable Impedance Control (AVIC) framework draws inspiration from
these insights to make a significant departure from existing adaptive control methods.

4.1.1 Basic structure

With AVIC, the human designer either provides a desired operational-space motion pattern
(i.e., profile) for the task or teaches a trajectory via kinesthetic demonstration. The robot
learns a forward model of the task online from the demonstration or during an execution of
the task trying to follow the motion profile. The learned model predicts the forces and torques
that can be expected in the next state and determines a feed-forward term in the control
command. The forward model is continuously revised and the prediction error guides the
selection of the gain (i.e., impedance) parameters of the controller that provides the feedback
term in the control command. The hybrid force-motion controller separately controls force
along the direction(s) in which compliance is desired. A simplified block diagram of the
AVIC framework is shown in Fig. 4.2.

The AVIC framework builds on the task-space hybrid force-motion impedance controller
form derived in Section 2.1:

uuut = Kp
t ∆xxxt +Kd

t ∆ẋxxt +uuuff
t +uuufc

t +HHH (4.1)
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(a) Simplified block showing in-
put and output of the incremen-
tal forward model during predic-
tion (Section 4.1.2) (b) Block diagram of framework

Fig. 4.2 Simplified block diagram of AVIC framework. Note that the internal robot dynamics
compensation and force control components of the controller have been omitted from the figure for
clarity.

Note that the control law is the same as Eq. (2.9), but with the subscript t denoting instanta-
neous values of the parameters at time t. The force control term uuufc is used when a target
force has to be applied along some direction.

The next sections will explain how the feed-forward model is learned and updated
incrementally, and how it is used for determining the feed-forward term uuuff

t and feedback
impedance parameters Kp

t and Kd
t on-the-fly.

4.1.2 Learning forward model of interactions in task-space

The forward model of a contact mode in the AVIC framework is learned as the robot attempts
to follow the desired trajectory in the task space for the given task. To avoid explicit
dependence of the forward model on time, a Gaussian Mixture Model (GMM) is fit over
points of the form [SSSt−1,DDDt ], where SSSt can be any combination of features that uniquely
represent the robot’s state for the task, and DDDt is interaction effects felt by the robot at its
end-effector at time t. SSSt can contain information about end-effector pose (xxxt), velocity (ẋxxt),
forces (FFFee

t ), etc. while DDDt would be measurable interaction effects such as end-effector
forces (FFFee

t ) and torques (τττee
t ).
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In our framework, we aim to predict the end-effector forces and torques from previous
measurements of end-effector velocities and wrenches. However, instead of their 3D vector
representations we use the magnitudes of force, torque, and end-effector velocity (linear and
angular separately) for learning and prediction. Since the magnitudes of frictional forces
and torques are independent of the direction of motion (for objects having consistent friction
properties) and depend only on the relative speed of motion of the objects, such simplified
representation is sufficient to learn and predict the end-effector forces and torques along the
direction of motion. This reduced representation of forces and torques makes the learning
process simpler, more computationally efficient, and also independent of the direction of
motion. The learned model always predicts the forces and torques along (or against) the
direction of motion. Since the end-effector’s direction of motion is always known, the
components of force and torques along the axes of motion can be recovered when needed.
The final state space where the forward model is learned can therefore be represented as
Xt = [SSSt−1,DDDt ] where

SSSt−1 =
[
∥ẋxxlin

t−1∥,∥ẋxxrot
t−1∥,∥FFFee

t−1∥,∥τττee
t−1∥

]
(4.2)

DDDt = [∥FFFee
t ∥,∥τττee

t ∥] (4.3)

To incrementally update the model using new measurements during task execution,
we used an online variant of GMM called the Incremental GMM (IGMM) [180, 42, 4].
IGMM can update model parameters and incorporate additional components to the mixture
model using a measure of closeness and frequency which are defined by the user using
hyperparameters. For more information regarding the incremental algorithm used, readers
are referred to [42]. IGMM internally uses a variant of the Expectation-Maximisation (EM)
algorithm to fit the model and maximise the following likelihood function:

L(θ) = p(X|θ) =
T

∏
n=1

p(Xn|θ) =
T

∏
n=1

[
M

∑
j=1

p(Xn| j)p( j)

]
(4.4)

where θ = (µ j,σ j, p j) for j = 1...M are the parameters of the M components of the GMM.
X = (X1, ...,XT ) represents the points to be fit, with Xt = [SSSt−1,DDDt ]. Each point contains
information about the previous end-effector state, along with the current wrench.

Once trained, the forward model provides a function:

ffm : SSSt 7→ DDDt+1 (4.5)
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that predicts Dt+1 at the next time step as a function of the current (measured) value of
SSSt , using Gaussian Mixture Regression (GMR) [188]. Recall that in our work, the primary
sensor is the force-torque sensor at the end effector, and that the motion pattern, forward
model, and control law are defined in the Cartesian/task space instead of the joint-space of
the manipulator.

Note that although we described our forward model using Eq. (4.5), this formulation
still follows the structure of standard forward models described in Section 2.2: the forward
model ffm estimates the next state ssst+1 given the current state ssst and the current action aaat . In
our case, this would translate as ssst = [∥FFFee

t ∥,∥τττee
t ∥] and aaat =

[
∥ẋxxlin

t−1∥,∥ẋxxrot
t−1∥

]
. The forward

model can then equivalently be represented as:

ssst+1 = ffm(ssst ,aaat) (4.6)

There are a few options to set the initial values of the parameters of a dynamics model. In
our implementation, the robot sets the initial values based on sensor measurements collected
in a short time interval at the beginning of the task. This is then modified continuously if the
measurements do not fit the model as the task progresses.

4.1.3 Using dynamics model for variable impedance control

Many manipulation tasks can be accomplished using a very high stiffness (Kp
max), but this

expends energy. On the other hand, if the robot has to perform a task in free-space, accurate
trajectory following can be achieved with a much lower stiffness (Kp

f ree). If the robot has
a good forward model that can predict and compensate for the interactions in a task, the
predictions should be able to provide a feed-forward term to cancel out the external forces,
effectively reducing the motion to that in free-space. Similar to human behaviour with a
familiar manipulation task, the feedback gains can then be closer to Kp

f ree. We use a similar
strategy to modify the parameters of the task-space controller (Eq. (4.1)) in our framework
online.

Since the final control output uuu is a wrench, the feed-forward term uuuff must also be a
wrench. The interaction dynamics model described in Section 4.1.2 provides exactly this
by predicting the end-effector forces and torques that can be expected in the next instant.
Therefore, we use a weighted form of the predicted wrenches to provide the appropriate
feed-forward term, while using the prediction accuracy to guide the choice of the feedback
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gains of the variable impedance controller:

uuuff
t = λt−1WWW pred

t (4.7)

Kp
t = Kp

f ree +(1−λt−1)(Kp
max−Kp

f ree) (4.8)

where WWW pred
t is the predicted wrench provided by the forward model; and λ ∈ [0,1] is a

measure of accuracy of the learned model. The measure is also used for guiding the choice
of the instantaneous stiffness matrix in the feedback control law (Eq. (4.8)). λ can be any
function that maps the accuracy of the model prediction to a value between 0 and 1 such as
the logistic function:

λt = 1− 1
1+ e−r(εt−ε0)

(4.9)

Here, the weighting factor is based on the error in the prediction (εt), while the growth rate r
and sigmoid midpoint ε0 are hyperparameters tuned experimentally. In our implementation,
ε0 is a simple Euclidean error between the predicted and measured values of the force-torque
values in the last step, although other sensible measures such as model likelihood can be
used.

The damping term in the control law is updated using the known constraint of the damping
factor for a critically-damped system [100]:

Kd
t =

√
Kp

t

4
(4.10)

This formulation of the control law (defined in Eqs. (4.1), (4.7), (4.8) and (4.10)) provides
online variation of feedback and feed-forward terms of the controller based on the instanta-
neous accuracy of the dynamics model. When the dynamics model predicts accurately, λ is
closer to 1 and the feed-forward term can cancel out the external disturbances in the task.
This allows the robot to complete the motion task while using lower stiffness (closer to Kp

f ree)
as if it was moving in free space. Similarly when the model accuracy is low, the weightage
of the feed-forward term is reduced and the controller will rely on the feedback component
of the controller as it follows the trajectory more precisely using higher feedback gains.
This high-stiffness state also allows the robot to improve its dynamics model online due to
more reliable measurements from the sensors, which in turn allows the robot to use lower
impedance. This strategy ensures that the tracking accuracy of the robot is not compromised
even when the model is not accurate, while allowing the robot to use lower impedance gains
when the model is reliable.
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4.2 Key modifications made to previous framework

Forward model learning and state space

In our published work [124], we had explored two representations for SSSt for predicting
end-effector forces. The first is of the form SSSt = [ẋxxlin

t ,FFFee
t ], where ẋxxlin

t corresponds to the
translational (linear) component of the end-effector velocity. The second, motivated by
studies of animal motor control [168], is of the form SSSt = [ẋxxlin

t ,FFFee
t ,uuut ] where, uuut is the task

space control command. This is similar to the ‘efferent copy’ mechanism in animal motor
control, where a copy of control signals is fed back to the central nervous system and are
used by internal forward models to predict the effects of actions. In that work, we showed
that the efferent signals produced no significant improvement in performance in comparison
with the forward model that does not use the efferent copy. The reason for this could be
that the forward model is able to obtain enough information for force prediction from the
current end-effector velocity and forces, making the information encoded in the efferent copy
redundant. This observed performance, and the fact that adding dimensions to the state-space
makes the learning more computationally demanding, led us to not use the efferent copy
in the subsequent experiments. The final model learned was a mixture model learned in a
9-dimensional space (6 for SSSt−1 and 3 for DDDt) without the efferent copy1.

In contrast to the feature space used in the above work, the modified framework also
included rotational velocities (ẋxxrot) as well as torques (τττee) in the state space. This helps
in compensating for torsional effects due to contacts in manipulation tasks, such as when
the robot is pivoting an object about its edge or sliding an object while maintaining an edge
contact with another surface (see Section 5.3.3). For instance, the torsional strain felt at the
wrist of the robot is different when sliding a block on its face as opposed to when sliding it by
its leading edge (see Fig. 5.2). To capture these effects and to compensate for such torsional
strains, the forward model was improved to include the predictions about the end-effector
torques as well (this concept is explained with figures later in Section 5.2.1). This also
required incorporating rotational velocities in the input space of the GMM, since changes
in rotational velocities (acceleration) contribute to end-effector torques when the robot is in
continuous contact.

Furthermore, the modified framework used magnitudes of the velocities and wrenches
as dimensions for the state space as explained in Section 4.1.2. This improved the learning
efficiency by reducing the size of the state space even when learning to predict more infor-

1These are the maximum number of dimensions learned for any task. In practice, only the dimensions along
which motion control is applied are used for learning forward model since the force along the other directions
is due to the force controller itself and would ideally be the commanded target force.
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mation by incorporating end-effector rotational velocities and torques. The final state space
is 6-dimensional with 4 for SSSt−1 and 2 for DDDt . This reduces the computational complexity
since the Expectation Maximisation (EM) algorithm includes inversion of covariance matrix
which has a complexity that is cubic in the number of dimensions O(d3).

Controller formulation

The controller formulation in the published work defined the overall controller as a PD con-
troller with a feed-forward term, ignoring the robot’s dynamics. The dynamics formulation
and the control law was modified to provide a complete impedance control law which also
considers the robot dynamics (Eq. (4.1)).

The previous formulation also did not include the weighting term λ for the feed-forward
term (in Eq. (4.7)). This meant that the feed-forward term was wrongly used even when the
model’s predictions were not reliable.

Furthermore, the feed-forward term in the new version was improved to incorporate
torques to provide the balanced control equation in the task-space. The original formulation
ignored the feed-forward torques, thereby having several limitations such as not being able
to differentiate between the type of contacts and not compensating for torsional effects at the
end-effector. The advantage of incorporating torques in the state space for differentiating
different types of contacts is explained in Section 5.2.1.

4.3 Experimental evaluation

We established the advantages of the variable impedance control formulation in [124] using a
7 DoF robot in different continuous contact tasks (Fig. 4.1). When used in conjunction with
the continuously-revised forward models, the gain parameters are adapted automatically to
account for changes in dynamics within the mode, minimising the corresponding prediction
errors. In addition, the hybrid force-motion controller provides compliance in the direction
of force control while following the desired motion pattern. As a result, the manipulator
is able to adapt its gain parameters automatically if, for instance, the surface is tilted or
raised during task execution. We evaluated the dynamics learner and variable impedance
controller in three different continuous-contact settings: (i) a board polishing task which
requires the robot to move along a trajectory against friction while applying a normal force
(Fig. 4.1a), (ii) a spring pulling task where the robot has to move in an environment against
the unmodelled forces of three different springs (Fig. 4.1b), and (iii) a porridge stirring task
where the robot has to move along a trajectory while the viscosity of the environment changes
continuously (Fig. 4.1c). In all cases, it was shown that the framework was able to provide
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tracking accuracy similar to the baseline high-stiffness strategy while using significantly
lower impedance parameters.

This section includes further experiments for (a) testing the convergence of the variable
impedance controller experimentally in the presence of continuously changing interaction
dynamics; (b) analysing the advantages of having an incrementally updating model for
learning and predicting continuously changing dynamics; and (c) comparing the performance
of the control framework with respect to three other adaptive control strategies from literature,
in terms of their tracking accuracy in and ability to handle continuously changing dynamics.

(a) Robot tracking a fixed target. The green circle
represents the target pose for the robot.

(b) Robot attempting to follow a trajectory. The blue
circle indicates the target trajectory for the robot to
follow.

Fig. 4.3 Screenshots of the custom-built simulated ‘Multi-spring environment’. The red block denotes
the end-effector of the robot which can move in the workspace (black region) using task-space control.
The 3 green lines indicate that 3 springs are attached to the end-effector of the robot which exerts
dynamically changing forces due to the combination of their individual extensions on the end-effector
as it moves.

These experiments are conducted in a simulated custom-built 2D environment using
Box2D physics engine [27, 143]. The robot’s end-effector is represented using a block mass
on which different dynamically changing forces act as it follows a predefined trajectory
(see example Fig. 4.3). The main measures of performance that were used are accuracy in
trajectory tracking, controller delay, and prediction accuracy of forward model wherever
applicable. It has to be noted that the units used (SI) in the figures and results are purely for
convenience of the reader, and are not to be taken as an equivalent of a real physical system2.

The incremental forward model is built during task execution in most cases (unless pre-
training is specifically mentioned). In the simulated 2D setup, the state space of the forward

2In the simulator, applying 10 units of force on a free body (point) of mass 5 units, for instance, will produce
an acceleration of 2 units (Newton’s second law: F = ma). This can be interpreted as [F = 10N,m = 5kg,a =
2m/s2], or [F = 10mN(milliNewton),m = 5g,a = 2mm/s2], or any other balanced combination of appropriate
units.
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model does not include the rotational components (i.e., rotational velocity and end-effector
torques) since the end-effector is assumed to maintain a fixed orientation for simplicity. In
experiments with the real physical robot in subsequent experiments in the next chapters, the
original state space described in Section 4.1.2 is used.

4.3.1 Evaluating controller convergence

This experiment was designed to test the hypothesis that the presented adaptive variable
impedance control framework ensures that the end-effector of the robot can converge to a
fixed (non-transient) goal smoothly in the presence of any continuously changing dynamics.
The experiments are designed with the notion that any continuous interaction can be modelled
as a spring-damper system.

The system was subjected to two different environments in which the robot had to follow
a pre-defined trajectory while experiencing continuously changing forces at the end-effector.
The first environment emulates the dynamics of a non-Newtonian fluid such as a porridge,
where the viscosity of the environment increases continuously till it reaches a limit (similar
to the physical robot experiment shown in Fig. 4.1c). The second environment has 3 spring
forces acting on the end-effector of the robot along with a constant damping (similar to
Fig. 4.1b). In both cases, the robot was unaware of the environment beforehand and was
only provided with a starting pose and a single fixed target pose. As baselines, we compared
the position tracking when using a fixed high-stiffness controller and a fixed low-stiffness
controller.

In the first experiment, the robot had to move from a starting point and move to the target
while the viscosity of the environment continuously increases from 0.1 Ns/m2 to 100 Ns/m2

as time progresses. Fig. 4.4a shows the trajectory tracking along the X and Y axis when the
robot uses a constant high stiffness (40 N/m), constant low stiffness (20 N/m), and when
using the proposed control framework. It can be seen that the system is able to converge
quickly to the target when using the proposed adaptive variable impedance controller (AVIC)
comparable to the high-stiffness strategy, whereas the low-stiffness approach fails to converge
to the goal in the allowed time. The AVIC has the added advantage that it requires much
lower stiffness to achieve the same goal within a similar time as the high stiffness strategy,
especially towards the end of the task (see Fig. 4.4b). The stiffness values can also be used to
understand the accuracy the forward model as they are related proportionally (Eq. (4.8)).

In the second task, the robot end-effector was attached to 3 springs of different stiffnesses
(10 N/m, 15 N/m, 12 N/m) and having bases fixed at different positions in the world (see
Fig. 4.3a). The robot experiences completely different forces as it pulls them along different
paths. The target position for the controller was the same as in the previous experiment.
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(a) Position tracking along X (top) and Y (bottom)
directions when using a high stiffness controller (or-
ange), low stiffness controller (blue), and the proposed
AVIC framework (green).

(b) Controller stiffness along X (top) and Y (bottom)
directions when using a high stiffness controller (or-
ange), low stiffness controller (blue), and the proposed
AVIC framework (green).

Fig. 4.4 Trajectory tracking and stiffness profile adaptation for point-to-point motion in ‘Porridge
Environment’. The trajectory tracking performance when using the proposed control framework
AVIC (green) is comparable to the high stiffness control strategy (orange) but requires much lower
stiffness to achieve the objective.

The effectiveness of having an adaptive feed-forward model is more evident in this task (see
Fig. 4.5a) because the combined stiffnesses of the 3 springs produce large resistive force as
the robot pulls on them, such that even the high-stiffness controller is unable to bring the
robot to the target position (orange curve). This is because the the pre-defined maximum
value of allowed stiffness is not high enough to counter the external spring forces. It has to be
understood that by increasing the value of the constant high stiffness, a tuned PD controller
would have been able to counter these external forces. The purpose of this experiment was to
demonstrate that AVIC uses much lower stiffness for tracking the trajectory than what would
be needed otherwise in such extreme environments. Due the incremental learning nature of
the dynamics model in AVIC, the system quickly learns to model the forces acting on the
robot and uses its predictions to compensate for the additional external disturbances as the
robot pulls the springs. This allows the robot to reach the target and hold that position using
much lower stiffness than the high-stiffness strategy (Fig. 4.5b).



4.3 Experimental evaluation | 55

(a) Position tracking along X (top) and Y (bottom)
directions when using a high stiffness controller (or-
ange), low stiffness controller (blue), and the proposed
AVIC framework (green).

(b) Controller stiffness along X (top) and Y (bottom)
directions when using a high stiffness controller (or-
ange), low stiffness controller (blue), and the proposed
AVIC framework (green).

Fig. 4.5 Trajectory tracking and stiffness profile adaptation for point-to-point motion in ‘Multi-Spring
Environment’. The trajectory tracking performance when using the proposed control framework
AVIC (green) is better than other baseline constant stiffness strategies due to feed-forward model.

4.3.2 Importance of incremental models in continuously changing dy-
namics

An important feature of the framework that allows the robot to use lower stiffness is its
ability to adapt the forward model online and incrementally. This provides the robot with the
capability to update its knowledge as the environment smoothly changes and hence provide
more reliable predictions and thereby use lower impedance to proceed with the task.

To demonstrate the importance of having an incrementally adapting model when the
environment is different to the previously experienced dynamics, we compare our incremental
GMM forward model with a fixed GMM model that is created using the same training data.
Note that the experiment was conducted in the same simulated setup with perfect noiseless
measurements for objective comparison of the strategies.

For the first experiment, the forward model was trained in the ‘multi-spring’ environment
mentioned previously (with individual spring constants 10 N/m, 15 N/m, and 12 N/m). For
collecting the training data for the forward models, the robot was made to move around
(with a fixed constant high stiffness controller) in a circular trajectory in this environment
(Fig. 4.3b). The measurements from this experiment was used to build a fixed GMM model
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(a) Predictions from a pre-trained fixed GMM forward model. Top: Predictions and measurements along X;
Bottom: Predictions and measurements along Y.

(b) Predictions from the incremental GMM forward model. Top: Predictions and measurements along X;
Bottom: Predictions and measurements along Y.

Fig. 4.6 Comparison of predictions from fixed and incremental GMM models in ‘multi-spring’
environment. Red: Predicted values; Green: Actual measurements.

for one-step prediction of end-effector forces from previous end-effector velocity and force.
The fixed GMM consisted of 15 Gaussian components (chosen from the gradient plot of
Bayesian Information Criteria scores (see Appendix A.1)) and the EM algorithm converged
in ≈ 300 iterations. This model was then used as forward model for the same trajectory but
when the springs were made stiffer by increasing their spring constants to 12 N/m, 20 N/m,
and 18 N/m respectively. The robot moved in this new environment with the same constant
high-stiffness controller and the predictions from the forward model was compared with the
measured values. The results of the prediction provided by this forward model is shown in
Fig. 4.6a. It is evident that the model predictions are only reliable when the experienced
forces are within some bounds of the training data. This is expected and is because the
GMM is able to provide predictions by conditioning only if the measurements are within its
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components in the state-space. It is unable to extrapolate its predictions due to the properties
of Gaussian conditioning whereby the predictions tend towards the mean of the mixture as
the query point moves beyond the model in the state-space. On the other hand, when using
the incremental variant of the GMM on the new environment, the model is able to adapt
quickly to incorporate the new batches of measurements and provide reliable predictions in
continuously changing environments (Fig. 4.6b).

(a) Predictions from a pre-trained fixed GMM forward model. Top: Predictions and measurements along X;
Bottom: Predictions and measurements along Y.

(b) Predictions from the incremental GMM forward model. Top: Predictions and measurements along X;
Bottom: Predictions and measurements along Y.

Fig. 4.7 Comparison of predictions from fixed and incremental GMM models in ‘porridge’ environ-
ment. Red: Predicted values; Green: Actual measurements.

The need for an adaptive model is easier to observe in the case of the porridge environment
where the model has to be continuously adapted since the viscosity of the environment keeps
increasing and is therefore difficult to model using pre-training unless the exact pattern of
change is known beforehand. For this experiment, the robot was made to move along the
same circular motion but in an environment whose viscosity increases continuously from
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0 Ns/m2 to 80 Ns/m2 in steps of 0.1 Ns/m2 every simulation step (the total circular trajectory
had 600 steps). The GMM had 21 components and the EM algorithm converged in ≈ 370
iterations. The trained GMM was then used in an environment whose viscosity increased
from 0 Ns/m2 to 200 Ns/m2 in steps of 0.1 Ns/m2. The predictions from this model in the
new environment is shown in Fig. 4.7a. As expected, the model is able to predict the forces
accurately when the input forces have been modelled, but as in the case of the previous
experiment, the model fails to predict the feed-forward forces when the measured forces are
beyond the training data. It also has to be mentioned that the accuracy of this model in the
other regions is because of the constant high-stiffness controller that is being used. When this
model is used to provide the variable impedance behaviour (using the relation in Eq. (4.8)),
this causes unreliable trajectory tracking as well as worse predictions (Fig. 4.8).

(a) Predictions from the pre-trained fixed GMM forward model. Top: Predictions and measurements along X;
Bottom: Predictions and measurements along Y.

(b) Trajectory tracking error (Euclidean) in metres. The tracking becomes unstable as the model prediction
error increases and the controller gains vary.

Fig. 4.8 Controller based on a fixed forward model is not reliable when it used for providing variable
impedance control. The predictions from the forward model are less accurate, and the trajectory
tracking accuracy drop.
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These results clearly indicate the need for using an incremental model as a feed-forward
model for predicting interaction dynamics. Additionally, it has to be mentioned that pre-
training a fixed model requires training data that covers a considerable region of the state
space. This requires training time as well as memory depending on the complexity of the
model. Although the fixed GMM models took less than 30 seconds for training in each of the
above case, realistic training sets would be much larger and would have higher-dimensional
data points. Incremental learning becomes all the more important when the robot experiences
a previously unseen environment and it has to quickly build a new model from scratch (see
Chapter 5).

4.4 Comparing AVIC with other adaptive control methods
from literature

This section aims to compare the performance of the proposed control framework with
three other adaptive control strategies from literature in a continuous dynamics setting.
The objective is to demonstrate that the online nature of the forward model along with the
adaptive variable impedance strategy presented in this chapter provides better trajectory
tracking performance without any pre-requisite knowledge about the task or the environment.

Adaptive controllers are able to adjust their parameters according to the manipulated
systems whose parameters change constantly, or for systems whose parameters are not known
beforehand. As discussed in Section 3.2, adaptive control strategies fall broadly into three
categories:

1. Model reference adaptive control (MRAC): An indirect control strategy where the
control law is adapted online to mimic a user-defined reference model which has the
same order as the original system.

2. Self-tuning controllers: Controllers which adapt the parameters of the control law (or
the system model parameters used in the control law) online based on the real-time
system feedback.

3. Gain-scheduling: Controllers which have a time-indexed sequence of controller param-
eters to be used during task execution. The sequence of parameters are either learned
from pre-collected data from the same system, and/or iteratively improved by repeating
the task multiple times.

This section compares the performance of the proposed AVIC framework with one
strategy from each of these categories. The implementations of these methods are chosen
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based on the ease of implementation, reproducibility (of presented results), and the tasks
presented in the respective published work. In some cases, the implementations had to be
modified to fit the experimental setup and for providing an objective comparison (such as
changing joint-space representation to task-space form for the MRAC implementation).

4.4.1 Comparison with MRAC

As described previously, model reference adaptive control (MRAC) works by trying to
adapt its control law based on a pre-defined desired reference model. The implementation
of MRAC we used for comparison is based on the work presented by Tarokh [191]. The
original formulation was described for an n-DoF manipulator in the joint-space and was
only formulated theoretically. The formulation was adapted to the task-space (2D without
orientation consideration) for our implementation. This can be seen as equivalent to a 2-DoF
manipulator defined in the joint-space (since we don’t consider orientation), where the 2D
positional coordinates x and y can be considered equivalent to the joint positions q1 and q2.

In brief, the MRAC implementation uses as reference model a second-order spring-
damper system for each dimension i which are parameterised using user-defined values for
desired natural frequency ωi and damping ratio ζi. The control law consists of a ‘feedback’
term, a ‘cascade’ term, and an ‘auxiliary’ feed-forward term, which loosely imitates a PID
control behaviour. The ‘feedback’ component is dependent on the current position and its
derivative, the ‘cascade’ term varies based on goal position and velocity, and the ‘auxiliary’
term depends on a modified tracking error. Each of these three terms in the control law have
gain matrices which are adapted online using separate adaptation laws based on separate
error measures consisting of tracking error, goal positions, etc. For the full description of the
MRAC formulation, the readers are invited to refer [191].

The main complication with the implementation of the MRAC was the number of
hyperparameters that are to be tuned for it to work well for any task. For an n-dimensional
system, the user has to first define an n×1 vector each for ω and ζ for defining the reference
model, along with an n×n positive semidefinite matrix which is critical for ensuring system
stability. Furthermore, the update rule for the gains of each of the three control terms
(‘feedback’, ‘auxiliary’, and ‘cascade’) have six n×n matrices (proportion, derivative, and
integral update gains) each, which have to be defined by the user. Finally, the initial values
for the gains (three n× n matrices) have to be provided as well. Therefore, even for a
2-dimensional system, this requires empirical tuning of about 40 hyperparameters (even
assuming all matrices to be diagonal)3.

3Many of these parameters are often set to zeros or ones, as suggested in the original formulation [191].
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Fig. 4.9 Performance of MRAC is highly dependent on the design of the reference model. Here small
variation in the value of natural frequency ω resulted in instability and failure in completing the task.

The performance of MRAC is best observed in the ‘multi-spring’ environment where the
robot had to move along a circular trajectory three times. The tuning of the hyperparameters
was found to be quite cumbersome, especially for a continuous changing dynamic setup such
as the ‘multi-spring’ environment. This is clear in Fig. 4.9, where the trajectory tracking is
significantly affected by the choice of the natural frequency parameter ω of the reference
model (with all other hyperparameters fixed). It can be seen that by changing the value of ω

from 1.5 to 1 has adversely affects the performance and leads to controller instability. Once
the hyperparameters are correctly chosen, however, the tracking performance is comparable
to that of our AVIC framework (Fig. 4.10).

Discussion

As expected, MRAC can perform well if the reference model and other hyperparameters are
defined correctly by the designer. However, this can be quite challenging and wrong values
can quickly lead to poor performance. On the other hand, AVIC has minimal hyperparameters
to tune (mainly the parameters for IGMM) and can be tuned quite intuitively. With properly
tuned hyperparameters, MRAC showed similar performance when the spring constants in
the ‘multi-spring’ environment were changed. However, hyperparameter selection for the
‘porridge’ environment proved difficult and a comparable performance could not be achieved
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Fig. 4.10 Trajectory tracking comparison of MRAC and AVIC. With correctly tuned hyperparameters,
performance of MRAC can be matched with that of our AVIC framework in the simulated ‘multi-
spring’ environment. The performance of the correctly tuned MRAC (green) matches AVIC (blue)
almost exactly.

with the MRAC. This is because it proved to be difficult to tune the hyperparameters of the
reference model to match the varying viscosity of the ‘porridge’ environment.

4.4.2 Comparison with a self-tuning controller

As mentioned previously, due to the online adaptation nature of the controller parameters,
our AVIC framework fits most closely in the category of self-tuning controllers. However,
in contrast to typical self-tuning methods which do not make use of external force-torque
measurements, AVIC has an incremental forward model that models end-effector wrenches
online so as to counter the external disturbances more directly.

As an example of self-tuning controller for comparison, we chose a formulation called
Active Inference Control (AIC) as presented by Pezzato et al. [151]. AIC is formulated
using a Bayesian representation for the system state evolution such that the ‘free energy’ of
the system is minimised. It iteratively updates its belief about the state of the system using
the measurements it gets from system feedback at each instant. It is an adaptive control
strategy which continuously updates for unmodelled environment dynamics. The control
command is then selected which fulfils a prior expectation about a desired goal, by refining
the internal belief about the system (implicit state estimation) using measurements. The
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control parameters are therefore iteratively updated to account for unaccounted energy in the
system so as to reach a single fixed target.

Fig. 4.11 Given time, AIC converges smoothly and stably to a fixed target.

(a) Trajectory tracking comparison between AIC and AVIC.

(b) A screenshot of the robot
end-effector (red square) lagging
behind the target (green circle)
when using AIC.

Fig. 4.12 For trajectory tracking, AIC parameters fail to converge in time before target updates which
results in delays.

Although it is difficult to prove convergence in a dynamically changing system, AIC
achieves convergence in practice. Given time, AIC converges to the target smoothly with-
out any appearance of instability for any type of dynamically changing environment (see
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Fig. 4.11). However, this is not useful when the robot has to follow a trajectory in such an
environment as the parameters of the controller in general will not converge in time before
the target changes to the next point in the trajectory. Since the optimal control parameters are
dependent on the target, this means the same parameters may not necessarily apply for the
new target as the trajectory progresses. Therefore, the robot always lags behind the target
when following a transient or changing goal trajectory (see Fig. 4.12).

Discussion

Self-tuning regulators are good adaptive control methods that work well when the set-point
being tracking is fixed till the controller converges. However, for trajectory tracking, this
behaviour produces delays in following the plan. This effect is pronounced in AIC as the
control law does not have an intuitive form (such as a PID) with parameters that can directly
influence delays and trajectory tracking performance. Instead the control law produces
commands based on its belief of where the system is and where it should be by assuming
that the target is fixed. The AVIC framework on the other hand, compensates for external
disturbances by directly predicting and cancelling out the forces, and hence minimises lag in
trajectory tracking.

4.4.3 Comparison with gain-scheduling adaptive control

Gain-scheduling can either be done using data collected previously to fit a profile model
(supervised), or by iterative updating time-indexed control parameters online (RL-based).
For comparison, we implemented an RL-based iterative update strategy called Biomimetic
Adaptive Control (BAC) [204] where control parameters for each instant in a repeating
trajectory are iteratively updated in each trial. This obviously means that it requires multiple
trials of the task, or alternatively a periodically repeating trajectory. The algorithm then
iteratively updates controller parameters at time t using their values from previous iteration
at time t based on the tracking error at t.

The authors of BAC tested their controller in a 2D simulated environment (similar to the
2D block-world presented in this chapter) in three different environments: (i) presence of a
constant force in one direction, (ii) the previous environment with an additional position-based
divergent field (spring environment), and (iii) further adding a velocity-dependent divergent
field (viscous environment with constant viscosity/damping) to the previous environment.
The controller learns T -dimensional vectors for each of the controller parameters (stiffness,
damping, and feed-forward terms) where T is the total time-steps in the trajectory. The
trajectory is repeated multiple times till the values converge or when it reaches a maximum
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number of trials. At timestep t ∈ T , the controller parameters at time t is updated from their
previous values to minimise a cost function based on tracking error.

Fig. 4.13 Trajectory followed using BAC by robot
in the 30th trial when bad initial parameters were
provided. Dotted line indicates the target trajec-
tory; the solid line is the actual path followed by
the robot. The controller instability does not allow
for further improvement of parameters.

Fig. 4.14 Trajectory followed using BAC by robot
in the 30th trial of the ‘multi-spring’ environment.
Dotted line indicates the target trajectory; the solid
line is the actual path followed by the robot. BAC
parameters fail to converge in 30 trials for com-
plex environment dynamics.

It was observed that good initialisation of the parameters is necessary to ensure that the
learning converges. With bad parameter initialisation, the parameters never converge due
to instabilities and tracking irregularities that accumulate as the trajectory progresses. Such
accumulation of errors and temporal relation to previous control commands are not accounted
for in the algorithm. Therefore, BAC is unable to recover from such failures as it updates
parameters at each time instant based only on their previous values in the last iteration of
the task and the current computed cost. One such effect of wrongly initialising the stiffness
parameters is shown in Fig. 4.13. Here, the robot is subjected to a constant downward
force, while a single spring is attached to it from the centre of the circular trajectory. Due
to bad initialisation of parameters, the trajectory tracking is not improved even in the 30th
iteration (trial) of the task because the controller has become unstable, which hinders further
improvement.

As with most reinforcement-learning-based algorithms, BAC requires multiple trials
of the task and depends on the environment to be the same as in the previous trials. With
reasonably good parameter initialisation and enough trials (≈ 30), BAC is able to converge
to and provide good tracking in the environments presented by the authors (see [204] for
results). However, with more complex environments such as the ‘multi-spring’ environment,
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the parameters of BAC has a more difficult time to converge to good set of parameter values
within the specified number of maximum trials (30) – see Fig. 4.14.

Discussion

The main disadvantage of RL-based gain-scheduling strategies is that they usually require
significant training data or repetitions on the real system, and still relies on the system
being exactly the same during task execution. Furthermore, it is difficult to ensure smooth
trajectory tracking when learning a time-indexed parameter profile since such strategies do
not typically account for the temporal relation of the parameters within each trial. The value
of a parameter at time t affects the choice of its value at time t +1 since the system dynamics
is a function of the control command. Although, gain-scheduling methods that fits models on
pre-collected data implicitly account for this by training on sequential data, RL strategies
such as BAC which updates parameters based on their values from the previous trial of the
task can be adversely affected by the lack of explicit temporal considerations. Furthermore,
such methods rely on the duration of the task (total number of time steps in each trial) to be
fixed across trials.

4.5 Summary and discussion

This chapter introduced the Adaptive Variable Impedance Control (AVIC) framework for
performing manipulation tasks in continuously changing dynamical environments. The
framework uses an incremental GMM to continuously learn to predict end-effector wrench
during a task, which is then used to adapt the parameters of a task-space variable impedance
controller online. The learning process and the control parameter adaptation were described.
A previous base version of the framework had been published previously in collaboration with
another researcher, and hence the results from the original publications were omitted. The
framework presented in this chapter is based on this work, but has significant improvements
and modifications which were also explicitly mentioned.

The framework was experimentally evaluated in a custom-built 2D simulated environment
for performing objective noiseless comparisons. First, the performance of the framework
in several challenging continuous dynamics was evaluated in terms of its convergence to a
target. The experiments also proved that the framework allows the robot to use much lower
stiffness to reach the goal smoothly compared to the baseline high-stiffness controller. It
was also showed that having the feed-forward model allowed the system to counter extreme
environments which could not be tracked even with a constant high-stiffness controller.
Next, the necessity of having incrementally updating forward models was experimentally
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demonstrated by comparing the online learning model with a fixed pre-trained Gaussian
Mixture Model for the same data. It was made clear that incremental models are important
for handling dynamically varying environments and for handling new environments.

The AVIC framework was then experimentally compared with methods from 3 classes of
adaptive control which were implemented based on state-of-the-art formulations in literature.
The advantages and limitations of these methods in the context of continuously changing
environments were discussed.

The proposed AVIC framework performed better than the baseline methods in all the
dynamically changing environments that were considered. It is able to quickly learn to
predict end-effector wrenches and thereby rely on lower impedance parameters for providing
accurate trajectory tracking. The method also has very few hyper-parameters that can be
tuned easily depending on the task. Maintaining a consistent learning thread and a separate
controller loop that makes use of these predictions are the only implementation challenges
that had to be solved. The main issue was that it required a separate learning thread which
independently and continuously learns to predict the end-effector wrenches. However, since
the controller parameters are updated online based on the error in prediction, trajectory
tracking is not sacrificed even when the learner is not reliable (due to lack of data points,
noisy sensor measurements, etc.); it simply uses higher impedance parameters when the
model is not predicting accurately, which results in precise tracking as well as helps in
improving the forward model.

The experiments in this chapter were designed to test the effectiveness of the framework
in a contained, objective, and controlled setting which is not affected by external factors such
as sensor noise or delays in communication; hence a simple 2D simulated environment was
selected. Results from real-robot experiments were not included in this chapter also because
similar experiments were already presented in the collaborative publication mentioned
previously. Furthermore, subsequent chapters in this thesis include other experiments done
on a physical robot making use of the AVIC framework presented in this chapter.

The main limitation of the proposed AVIC framework is that it relies on the interaction
dynamics to be continuous. It performs poorly when there are discrete changes in the
environment. The next chapter describes this limitation further and proposes a hybrid
learning framework for handling such discontinuities in dynamics.



Chapter 5

Hybrid Model Learning for Discretely
Changing Interaction Dynamics

A manipulation task can be modelled as a hybrid system (see Section 2.3), wherein the
dynamics of the system is continuous within each of a number of discrete dynamical modes
[99]. The dynamics then become piece-wise continuous, where the system ‘jumps’ between
these distinct modes depending on the current state. In manipulation tasks, these mode
switches often correspond to making or breaking of contacts or discrete environment changes
(sudden changes in environment forces, types of contacts etc.). The mode switches provide
a modular structure to manipulation tasks where the mode transition can be considered
to be sub-goals or triggers for identifying a need for changing the current model of the
environment.

Unfortunately, having distinct modes also makes the interaction dynamics of manipulation
tasks inherently discontinuous, which makes it difficult to guarantee smoothness when
learning a policy; small changes in the state can have significant effect on the task if the
system is near a transition. It is therefore important that the robot monitors its actions for
unexpected and undesired mode transitions, and is able to update its knowledge about the
environment modes online. Therefore, an ideal manipulation framework should be able to
detect mode transitions and be able to deal with it without causing dynamical or performance
instability.

Using this knowledge about the inherent discontinuity in the system dynamics in a
manipulation task, it is more meaningful to have a framework that is at least aware that the
dynamics of the system can be discrete. The most straightforward way to capture this while
learning is to have separate models for the discrete modes. Each of these low-level models
may correspond to one distinct manipulation mode (e.g. type of contact, environment forces,
etc.), which can provide the required behaviour to navigate that mode successfully.
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Each individual model is continuous and learns the environment in that mode, but a
higher-level discrete mode-identification and switching model should be present that captures
the high-level task mode information. Such model representation is known as hybrid model
representation, where a continuous model is learned for a discrete sub-task [139] while a
transition model learns to choose the appropriate low-level model to use for the observed
state. This approach allows the robot to exploit the modularity of the distinct sub-tasks for the
discrete high-level transition model [108]. Planning approaches for manipulation domains
often explicitly take this multi-modal structure into account for planning. Many works on
learning continuous models for individual skills or sub-tasks can be seen as learning part of a
larger hybrid model. The model learned by the AVIC framework (Chapter 4) can be seen
as one such low-level model that works for one manipulation mode (all tasks considered in
Chapter 4 had continuous contact without discrete mode switches). The framework, due to
its reliance on a single continuous model, will not be sufficient for handling discrete changes
in dynamics (see Section 5.3.1).

Hybrid models have been used for performing various manipulation tasks [32, 98, 177].
Most works make use of the discrete ‘jumps’ between modes that arise due to making or
breaking of contacts, which capture the changing dynamics and constraints caused by the
changing contacts. The dynamics within a mode can be learned using standard continuous
model approaches. The ‘guard regions’ (transition regions) can be modelled as explicit sets
of states or using classifiers [99]. More flexible models, such as non-parametric and neural
network models, may also be able to implicitly capture hybrid dynamics of manipulation
tasks [47]. However, exploiting the modularity of the hybrid system becomes more difficult
when using an implicit continuous model of the hybrid structure.

This chapter introduces our hybrid framework for learning and control of a robot ma-
nipulator performing tasks with piecewise-continuous dynamics. It is an expansion of our
publication [175] to the 2020 journal, Advances in Cognitive Systems, with additional experi-
ments and baseline comparisons. The chapter begins by formulating manipulation as a hybrid
system in Section 5.1. The proposed hybrid framework and the feature representations used
are then described in Section 5.2. The framework is experimentally evaluated in Section 5.3
with a 7-DoF robot performing different changing-contact tasks. The importance of having
incremental learning for hybrid systems is demonstrated in Section 5.4 by using a fully
offline long-term prediction model as the baseline. The chapter is concluded in Section 5.5
by discussing the advantages and limitations of the presented hybrid framework.



70 | Hybrid Model Learning for Discretely Changing Interaction Dynamics

5.1 Manipulation as a hybrid dynamical system

Consider a robot manipulator (Fig. 5.1) that has to slide an object over a surface along a
given motion pattern. The interaction dynamics of the robot performing these tasks are
discontinuous when a contact is made or broken and continuous elsewhere. The dynamics
also varies based on the type of contact (e.g., surface or edge contact), surface friction,
applied force, and other factors.

Fig. 5.1 Manipulator sliding an object in a pattern along three surfaces with different friction. The
interaction dynamics switches discretely when the robot moves across the boundary between the
surfaces.

As explained in Section 2.3, the state of a piecewise-continuous hybrid system can
be described using the tuple (m,sss). In the context of manipulation, m ∈M is a contact
mode from a discrete set of modesM, and sss ∈ Sm is a d−dimensional element describing
the interaction dynamics in the continuous subspace Sm ⊆ Rd associated with m. For
our formulation, we assume that continuous subspaces do not intersect or overlap, i.e.,
Sm∩Sn = /0 ∀ m ̸= n. The evolution of sss within a mode is determined by some discrete-
time continuous function fff , but the state transition is discrete and discontinuous at the
boundaries between modes. In the guard regions Gm,m′ ⊆ Sm between modes m and m′, sss
is transported to ssst+1 ∈ Sm′ through a reset function Rm,m′(.). In a stochastic setup, the
evolution of interaction dynamics in a changing-contact manipulation tasks is thus governed
by the following state propagation law:

ssst+1 =

Rmt ,mt+1(ssst)+wt if ssst ∈ Gmt ,mt+1

fff (ssst ,aaat ,mt)+wt if ssst ∈ Smt

(5.1)

where wt is additive (Gaussian) process noise in sensor measurements.
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In the context of the manipulation tasks considered in this thesis, the forces, torques,
and velocities measured by the robot at its end-effector constitute the observable state sss of
the system that can describe the interaction dynamics and varies continuously within each
contact mode. This formulation makes the reasonable assumption that properties such as
friction are continuous across the surface of each object. Several factors such as the physical
properties of the interacting objects, the control strategy used, etc. can determine the state
transition fff (sss,aaa,m) governing the evolution of sss in the mode m. When mode changes occur
in the guard region Gm,m′ between modes m and m′, the dynamics corresponds to a new state
in a mode m′ where the state evolution is then guided by function fff (sss,aaa,m′).

For changing-contact tasks, measurements within the guard region are typically pro-
nounced and significantly different when compared with the readings within a dynamic mode.
For instance, when a robot makes a new contact with an object in its environment, there
will be significantly disruptive discontinuities in its end-effector force-torque measurements.
The mode switches thus impose a hybrid structure on manipulation tasks; as we describe in
Section 5.2.1, the transitions can be considered as triggers for changing the current dynamics
model of the domain. The types of mode switches observed in manipulation tasks and
strategies for detecting them are discussed later in Chapter 6 when describing our contact
anticipation and handling module.

5.2 Hybrid model learning framework

In our framework, a mode-detection model learns to identify the interaction mode that
the robot is in, where each mode comprises a: (i) forward (dynamics) model that predicts
part of the observable state (end-effector forces and torques) as described in Section 4.1.2;
(ii) an adaptive variable impedance control law as explained in Section 4.1; and (iii) rel-
evance condition that (in)validates a mode based on the magnitude of changes in sensor
measurements.

The performance of the framework is experimentally evaluated on a robot performing
changing-contact tasks where multiple discrete modes are involved. The robot has to identify
the mode and use appropriate dynamics models and controllers to navigate the identified
mode. A simplistic mode-detection model could have just one mode or use an ad hoc strategy
to assign particular models to corresponding parts of the motion pattern. Our formulation,
however, seeks to account for changes in relevant factors in order to improve: (i) performance
within each dynamic mode through online adaptation of the parameters of the forward model
and the control law; and (ii) overall performance by automating the recognition of mode
changes and the learning of models for previously unseen modes.
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5.2.1 Mode identification and learning

Our approach for recognising known modes and identifying new modes in changing-contact
tasks is based on the observation that any change in mode is accompanied by a sudden
significant change in the sensor readings. In our framework, the robot responds to pronounced
changes in force-torque measurements by briefly using a high-stiffness control strategy while
quickly obtaining a batch of sensor data to confirm and respond to the transition. The robot
learns a new dynamics model if a new mode is detected, and transitions to (and revises) an
existing dynamics model of a known mode if transitioning to a known mode.

The management of modes is based on an online incremental clustering algorithm called
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [210, 211]. This
algorithm incrementally and dynamically clusters incoming data for given memory and time
constraints, without having to examine all existing data points or clusters. We used the
implementation of BIRCH in the Scikit-learn library [147]. Each cluster is considered to
represent a mode in a feature space (more details below), with the clusters being updated
using batches of the feature data. The fraction of the input feature vectors assigned to any
existing cluster determines the confidence in the corresponding mode being the current mode.
If the highest such confidence value is above a threshold, the dynamics model of that mode is
used and revised until a mode change occurs. If the feature vectors are not sufficiently similar
to an existing cluster, a new cluster (i.e., mode) and the corresponding dynamics model are
constructed and revised (as described in Section 4.1.2) until a mode transition occurs.

The dynamics model of each mode is a separate incremental model that uniquely tries
to capture the interaction dynamics of the current mode. This formulation builds and
stores one forward model in memory for each identified mode, i.e. ffm|mi ∀ mi ∈M,
where each ffm|mi is a separate IGMM model providing the forward model for that mode
according to Eq. (4.6). Once the current mode is identified by the mode-detection module,
the corresponding forward model is used in AVIC for navigating the mode in the task.

Reduced state-space representation

The key factor influencing the reliability and generalisability of the mode-detection module
is the choice of feature representation for distinguishing between the modes in the clustering
algorithm. This representation is task-dependent but the objective is to identify one or
more properties that vary substantially when change occurs while concisely and uniquely
representing the modes. For instance, the torques experienced while performing a screwing
task can be used to identify the tightness of the coupling and the appropriate control strategy
for the task.
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For the task of sliding an object over surfaces with different values of friction, the property
that strongly influences the end-effector forces (Fee) is the friction coefficient between the
object and the surface. When two objects slide over each other at constant velocity, Fee is
proportional to the applied normal force (R) and the friction coefficient (µ) (assuming the
relative orientation of their surface normals do not change); µ can then be estimated as:

µ ∝
∥Fee∥

R
(5.2)

A concise feature representation for this task is thus ∥F
ee

t ∥
Rt

, which has the effect of making
mode classification independent of the magnitude of the applied force.

Fig. 5.2 The torque measured at the pivot (τ) varies for different relative orientation of the object (θ ),
unlike the force at the tip (Fr). The object is moving along ẋ resulting in a frictional resistance Fr at
the point of contact in the opposite direction.

In a similar manner, for changes in the type of contact, end-effector orientation is a useful
feature, but small changes in orientation may require different modes. A more reasonable
feature is the magnitude of the end-effector torques that can be measured using the force-
torque sensor in the wrist:

τ = Frl sinθ (5.3)

where Fr is the force at the tip, l is the length of the pivot arm, and θ is the orientation
between the surface normals. Fig. 5.2 indicates that for any object, τ is different for the
different types of contacts.
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(a) The black curve indicates the tra-
jectory the robot has to follow while
applying a predefined force on the sur-
face.

(b) Different contact modes used for comparing force-torque values
during sliding.

Fig. 5.3 Task setup used for comparing torques when the robot uses different types of contacts for
sliding on a surface.

To verify that torque patterns are indeed more distinguishing of different contact modes
than force patterns, a simple experiment was devised using the 7-DoF Rethink Robotics
Sawyer robot. The robot was made to slide a rigid object against a fixed surface along a
predefined trajectory (Fig. 5.3a). The experiment is repeated using different contact modes
(Fig. 5.3b), and the end-effector force and torque patterns were compared. It can be seen from
the results (Fig. 5.4) that the torque patterns (especially about Z axis) show more variation as
compared to the forces, and are more distinguishable between contact types.

Fig. 5.4 Left: Force readings along X and Z axes (Y is force-controlled). Right: Torque measurement
readings about the 3 axes. Torque patterns are more varied across the different contact modes
compared to the forces.

An important note to be made here is that torque measurements allow distinguishing
between contact types only because the geometry of the object is assumed to be fixed across
the trials. As depicted in Fig. 5.2, the torque felt is a function not only of the orientation
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between the contact surfaces (θ ), but is also dependent on the length of the moment arm (l)
which varies if the geometry of the object changes. In this work, we assume the object being
manipulated by the robot is rigidly fixed and non-deformable, as are other objects that are in
the workspace and involved in the task.

With the magnitude of the torques (∥τ∥) as the feature representation, modes can be
classified independent of the motion direction and object orientation. This representation
would not work when the magnitude of the applied force differs. If we instead assume that
the force measured at the wrist (Fee) approximates the force at the tip of the object (Fr),
Equations 5.2 and 5.3 imply that ∥τt∥

Rt is invariant to the magnitude of the applied force for a
fixed relative orientation between the objects in contact since:

τ = µRl sin(θ)

Ideally, ∥τ∥R is constant for each mode (based on θ ) provided object geometry (l) and
friction (µ) do not change. Experimental analysis revealed that this parameter by itself is
insufficient to distinguish between contacts when the applied normal force changes because
the assumption about kinematic friction (Fr = µR) often does not hold in many real-world
situations [15]. We thus use [∥τ∥R , ∥F

ee∥
R ] as the feature representation for this task to provide

more information regarding the current mode; it supports better generalisation over different
normal forces while reliably distinguishing different changing contacts.

5.2.2 Framework algorithm

Algorithm 5.1 is an overview of the framework’s control loop for a changing-contact manipu-
lation task, e.g., sliding an object on a surface. It proceeds until a desired motion pattern is
completed. Our control, adaptation, and learning methods are not used when the manipulator
is moving in free space (lines 11-13); they are only used after there is contact with a surface
(lines 2-10). The robot detects mode changes when there are substantial changes in the sensor
measurements (line 3). The robot responds by setting a high stiffness (line 4), collecting
sensor measurements, determining the transition to a new or existing mode (line 5), and
creating new models if necessary (lines 6-8). In the absence of a mode transition (e.g., the
detected change in sensor measurement was an anomaly), the robot continues with the current
mode and dynamics model (line 10). A video demonstrating the operation of our framework
and some results discussed in this chapter can be found online1.

1https://youtu.be/m210rxIDZ7Q

https://youtu.be/m210rxIDZ7Q
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Table 5.1: Control loop of framework
Input :Desired motion pattern as sequence of task space way-points, Control

parameters: Kp
f ree,K

p
max; Dynamics models corresponding to modes

M = { fi : i ∈ [1,N]}; Current mode: m = 0.

1 while Motion pattern not complete do
2 if mode transition detected then

// Set high stiffness
3 Kp

t ←Kp
max

// Detect (new/existing) mode
4 m = detect_classify_mode()

// Populate new model for new mode
5 if new mode found then
6 M =M∪ fm
7 end
8 end
9 Update ffm|m online and use it for control in AVIC (Eqs. (4.1), (4.7), (4.8)

and (4.10))
10 end

5.3 Experimental Evaluation

We used a 7-DoF Franka Emika Panda manipulator robot for our experiments in this section.
The robot had to slide an object on a surface along an assigned motion pattern provided by
an external planning module or encoded based on a single demonstration of the task by the
human designer, e.g., human moves the manipulator along a desired path. We experimentally
evaluated the following hypothesis:

H5.1: Building separate dynamics models for the different modes results in better perfor-
mance than using a single model that is revised continuously.

H5.2: Our hybrid framework provides reliable and efficient performance for changing-
contact manipulation tasks.

H5.3: Our hybrid framework’s performance is robust to changes in motion direction and
changes in applied force.

H5.1 explored the need for learning different dynamics models for different modes;
H5.2 and H5.3 examined whether the framework can reliably and efficiently transition to
the appropriate mode (and dynamics model) in the presence of changes in direction of
motion and applied forces. We mainly used the root mean squared error (RMSE) in related
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measurements (e.g., end-effector position, forces, and stiffness) as the key performance
measure. Unless stated otherwise, each data point in the results below is the result of 10
repeated trials on the robot.

5.3.1 Need for hybrid models in manipulation tasks

The Adaptive Variable Impedance Control (AVIC) framework introduced in Chapter 4
is designed for handling smoothly changing interaction dynamics during manipulation,
and cannot handle discontinuities. This is mainly because the feed-forward model that is
incrementally built using IGMM is a continuous model and cannot model discontinuities
reliably. Furthermore, the direct application of the weighted prediction from this model as
a feed-forward term (Eqs. (4.1) and (4.7)) to the controller also means that the predicting
wrong values during a discontinuity can have adverse effects on the robot and/or the objects
involved.

Discontinuities in robot manipulation are typically caused due to the robot making
or breaking contacts with an object in its workspace, or due to a physical or geometric
discontinuity on the surface of the object that the robot is interacting with. For instance, if a
robot is polishing a surface whose material friction changes discretely, the AVIC framework
may not be able to handle the discontinuity in the forces safely. This was also observed when
a physical had to slide from a surface of high friction to that of considerably low friction
using the AVIC framework – see Fig. 5.1 (left). Here, the high friction of the first surface
causes the framework to predict high forces even at the boundary between the surfaces,
which results in the robot overshooting when it enters the low friction surface. This is also
experimentally tested below.

We ran two experiments to evaluate hypothesis H5.1, i.e., the need for separate dynamics
models for different modes of changing-contact tasks. The robot’s task was to slide an
object (rigidly fixed to the end-effector) over a flat surface, and the surface friction was
changed to obtain two distinct surfaces. In the first experiment, the robot had a dynamics
model for the first (rougher) surface but not for the second (smoother) surface. We expected
the robot to overshoot the trajectory and experience a sudden increase in the joint torques
when it transitioned from the first surface to the second. Experimental results matched these
expectations. In 90% of the trials, the robot was unable to complete the task; it stopped
before the trajectory was completed. The feed-forward values predicted by the model for
the rougher surface were much higher than the actual values for the smoother surface. This
discrepancy made the robot overshoot when it transitioned to the smoother surface; the joint
torques reached safety limits and the robot stopped moving.
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Purple: Tracked trajectory; Green: Desired trajectory

Fig. 5.5 Trajectory tracking for the surface polishing task when adapting a single model to a new
surface. The vertical line indicates where the surface friction changes during the task.

Fig. 5.5 shows the position tracking for one of the few attempts where the robot was
able to finish tracking when sliding from a surface of low friction to that of high friction.
It can be seen that the tracking accuracy falls from the point of change. This is due to the
forward model predicting the frictional resistance of the previous surface instead of the new
surface and providing disruptive feed-forward terms to the control command. It was also
observed that the model tries to explain the new observations by increasing the number of
Gaussian kernels in its GMM model, which can slow down prediction and learning (see
Appendix A.1).

In contrast, having separate models and switching to the second model when the pre-
dictions are inaccurate proved to give better results (mean prediction error: 1.97 N (±
1.1) as opposed to 8.52 N (± 6.2) in the previous case). The position tracking and stiff-
ness adaptation for this strategy is shown in Fig. 5.7. These results indicated that a single
incrementally-revised dynamics model was unable to handle pronounced, discrete mode
changes.

In the second experiment, the robot repeated the same task starting with a single dynamics
model but used a high stiffness controller to build a new model from scratch when a change
to the second surface is detected; the robot does not initially have a forward model for
the second surface. We considered both transitions (i.e., rougher to smoother surface and
vice versa), and the robot performed better than using a single dynamics model that is
incrementally revised; the task was completed successfully in all the trials. Fig. 5.6 shows
the position tracking performance in one such trial. Operating with a high value of stiffness
until a reliable forward model is constructed results in more energy being expended than
when the dynamics models for the two modes are available. When the dynamics models
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Fig. 5.6 Performance when a dynamics model is constructed from scratch for a new mode. Top:
position tracking; Bottom: variation in controller stiffness. Robot spends considerable time under
high stiffness when transition to new mode occurs (dashed vertical red line).

Fig. 5.7 Performance when separate dynamics models are available for two distinct modes. Top:
position tracking; Bottom: variation in controller stiffness. The robot spends very little time under
high stiffness when the transition between modes occurs (dashed vertical red line).

for the two surfaces are available, the robot is able to switch between them when needed,
spending much less time under high-stiffness, as observed by comparing the stiffness plots
in Fig. 5.6 and 5.7. The difference in performance is statistically significant, e.g., the robot
had to spend ≈ 3.5 seconds in high stiffness to build a new model from scratch while it only
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Fig. 5.8 Modes detected and their confidence values; red vertical lines on the x-axis indicate actual
mode transitions. The number on top of a peak (in green) indicates the confidence with which the
transition was identified; the number below a peak (in red) corresponds to the mode with the next
highest confidence. ‘N’ indicates a transition to a new mode.

required ≈ 0.2 seconds to detect and switch to a previously learned model; RMSE for the
position tracking plots in Fig. 5.6 and Fig. 5.7 are 0.017 and 0.015 respectively. We repeated
these experiments for other combinations of surfaces (with different friction) and for motion
patterns executed over more than two different surfaces with different surface friction. In
each case, the robot was able to detect the new mode and incrementally revise the parameter
values of the new mode, and to transition to using the existing models when appropriate.
These results support hypothesis H5.1.

5.3.2 Detecting discretely changing surfaces

To evaluate hypotheses H5.2 and H5.3, we first considered the changing surface task. The
robot was asked to slide an object along a desired trajectory, and it experienced three
previously unseen surfaces with different values of friction (Fig. 5.1). We expected the
robot to identify a transition to each new mode (i.e., each surface) and incrementally build
a dynamics model for the mode while operating under high stiffness. Once the dynamics
models for a mode had been built, we expected the robot to respond to subsequent transitions
to this mode by using the corresponding dynamics model.

Fig. 5.8 shows the robot’s ability to detect mode changes in one trial of this experiment.
The robot was able to identify transitions to existing or new modes with high confidence. In
each instance, the second best choice of mode was associated with a much lower value of
confidence. The results also show that our hybrid framework and feature representation make
performance robust to changes in the direction of motion, i.e., a new mode is not identified
when the manipulator moves over a previously seen surface in a new direction. There was
some similarity in the confidence values for surfaces 2 and 3 (S2 and S3 in the plot) because
of the similarity in their friction values. This is clear in Fig. 5.10 where it can be observed
that the frictional force due to surfaces 2 and 3 are similar.
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Fig. 5.9 Performance for changing-surface task. Top: controller stiffness. Bottom: absolute error
in trajectory tracking. The spikes during trajectory tracking correspond to a temporary, incorrect
feed-forward prediction by the previous model after the guard regions.

Fig. 5.10 End-effector force measured along the axis of motion. The change in sign of forces indicate
change in direction of motion. The dotted vertical lines indicate the points where the surfaces change.

Fig. 5.9 shows the trajectory tracking error and the values of the stiffness parameters of
the controller during the trial. The peaks in the trajectory error plot correspond to a sudden
change of surface. During each such instance, the predictions made by the dynamics model
of the previous mode caused a momentary error in the trajectory tracking ability, until the
robot switched to the high-stiffness mode and identified the current mode; the robot then used
suitable low(er) stiffness to complete the task. As discussed earlier, switching to a previously
seen mode requires a much shorter period of high stiffness compared with building a new
dynamics model. These results support hypothesis H5.2 and to some extent, H5.3.
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Fig. 5.11 Illustrative trial of changing contact type task. Top: Contact types when the end-effector’s
motion is towards the right; Middle: Forces measured along the direction of motion; Bottom:
Torques measured about axis parallel to surface and perpendicular to direction of motion. Spikes in
the measurements correspond to contact transitions; dashed (brown) vertical lines indicate when the
framework managed to build a reliable dynamics model of the corresponding mode.

5.3.3 Testing framework robustness and generalisability

To further explore hypotheses H5.2 and H5.3, we ran trials with the changing contact-type
task. The robot’s task was to slide an object along a desired trajectory on a surface while
experiencing each of the three different types of contacts shown in the top part of Fig. 5.11.
As stated earlier, the motion pattern was extracted from a single demonstration of the task;
the robot did not have prior knowledge of the different dynamic modes. During each trial, the
robot approached the table to execute a particular type of contact while maintaining a normal
force of 10 N. Contact with the surface triggered a transition, and the robot proceeded to
slide the object along the surface with a normal force of 10 N. As before, we expected the
robot to confirm any transition to a previously seen mode using data from a brief period of
high stiffness motion, and to use the corresponding dynamics model. Also, we expected any
transition to a previously unseen mode to require data collection over a longer period of high
stiffness to build a dynamics model of the mode. We also expected the robot to be robust to
changes in sequence of contacts, motion direction, and normal force.
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Fig. 5.12 Testing previously constructed dynamics models for the changing contact type task, but
with contacts appearing in a different sequence. Top: Torques measured about the axis parallel to
surface and perpendicular to motion direction; spikes in measurements correspond to contact; Middle:
End-effector forces predicted by forward model for the current mode; Bottom: Variations in the
controller stiffness based on errors in the predicted forces.

Fig. 5.11 summarises the learning of dynamics models for a particular trial consisting
of the three different modes. It shows the incremental construction of dynamics models for
each mode, along with the variation of end-effector force and the torque measured along the
axis that is most affected by the motion. We observe that separate models were learned for
the three contact types (i.e., three different modes) with high confidence.

Next, Fig. 5.12 shows the results of testing the existing dynamics models with the same
overall trajectory but with a different sequence of contacts. We observed that the robot was
still able to recognise the modes quickly and accurately, regardless of the order in which
they occurred. The second plot in Fig. 5.12 shows the end-effector forces predicted by the
dynamics model for the current contact mode. The feed-forward term was used and revised
online when the model is reliable, but the term’s value was zero when the robot had not
identified the mode. Similarly, the stiffness parameters of the impedance controller were
varied according to the prediction error of the dynamics model; recall that high stiffness
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Fig. 5.13 Testing previously constructed dynamics models for the changing contact type task, but
with motion in a different direction. Top: Torques measured about the axis parallel to surface and
perpendicular to direction of motion; Middle: End-effector forces predicted by forward model for the
current mode; Bottom: Variations in the controller stiffness based on errors in predicted forces.

Normal Force = 10 N Ground Truth
Detected Mode Contact 1 Contact 2 Contact 3

Contact 1 83 9 16
Contact 2 2 88 1
Contact 3 14 2 79

New Mode 1 1 4
Normal Force = 20 N Ground Truth

Detected Mode Contact 1 Contact 2 Contact 3
Contact 1 81 10 17
Contact 2 3 86 1
Contact 3 15 2 77

New Mode 1 2 5
Table 5.2 Probability of match computed by algorithm (in %) over 10 trials of mode recognition based
on previously constructed dynamics models for the three types of contacts (top part of Fig. 5.11). Top:
Normal force of 10 N; Bottom: Normal force of 20 N.

values are used temporarily when the robot is collecting data to build the dynamics model for
the mode.
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Fig. 5.14 Testing previously constructed dynamics models for the changing contact type task, but
with a different normal force (20 N instead of 10 N). Top: Torques measured about the axis parallel
to surface and perpendicular to direction of motion; Middle: End-effector forces predicted by current
mode’s forward model; Bottom: Variations in the controller’s stiffness values due to errors in
predicted forces.

Next, Fig. 5.13 demonstrates the robustness of the framework to motion along a direc-
tion different from that used during training. The feed-forward model predictions and the
corresponding variable impedance behaviour for one of the trials is shown, along with the
dynamics model chosen with the highest confidence (bottom of the figure). The modes were
always identified correctly.

The framework was then tested for the same task and set of contacts but with the manip-
ulator applying a different constant normal force on the surface. The robot’s performance
in one experimental trial of identifying the modes and adapting the the existing dynamics
models is summarised in Fig. 5.14. These results match those in Table 5.2; although the
confidence associated with the modes was slightly lower and the robot took a little longer to
recognise the modes when the normal force was changed, the hybrid framework was able to
recognise the modes correctly and complete the task successfully using variable impedance
control.
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Fig. 5.15 Visualization of the feature representation used for learning the transition models for
recognizing different types of contacts. Left: 2D features from one trial of the three different contacts
with 10 N normal force; Right: 2D features from when combining the data for 10 N and 20 N normal
force; feature vectors are less separable.

The reason for the worse performance when different normal forces come into play can
be attributed to the kinetic friction assumption (µ = F/R) being unrealistic in many real
world tasks. Fig. 5.15 (left) shows a sparsely populated feature space for a single trial of
the changing contact type task when applying a constant normal force of 10 N. The ellipses
denote the mean and covariance of the features for the three contacts. The ellipses are distinct
and separable using clustering in this space. However, when data from another trial of the
task where the applied normal force is 20 N is added to the dataset, the clusters are less
separable (Fig. 5.15, right). This indicates that the feature representation is less capable of
distinguishing between these types of contact modes when the applied normal forces are
varied. The results in Figs. 5.11 to 5.13 also indicate that the time taken to recognise modes is
longer if the modes under consideration are similar, e.g., modes 1 and 3 in these experiments.
These results support hypotheses H5.2 and H5.3, but indicate the need for further research on
the choice of the abstract feature representation for the dynamic modes of changing-contact
manipulation tasks.
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5.4 Evaluating the need for online learning in hybrid sys-
tems

This section will try to motivate the need for having an incrementally adaptive and reactive
framework for predicting and handling discontinuous dynamics. The intention is to show
that the overall performance of the our hybrid framework presented in this chapter can be
attributed to: (i) learning in the task-space of the robot as opposed to the joint-space, (ii)
having a feedback mechanism (albeit noisy) for obtaining the last measured values of forces
and torques, (iii) a reactive mode-change detection component that identifies mode changes
based on actual real-time force feedback instead of relying solely on historical training data,
and (iv) having an incremental learning style that not only relies on training experiences but
can also use new information to improve knowledge about the interaction dynamics.

As the baseline for comparison, we choose a fully offline long-term dynamics predic-
tion framework (hereafter referred to as ‘baseline framework’) developed by Khader et al.
[84] which learns a set of probabilistic Gaussian Process (GP) models corresponding to the
different modes identified from a dataset. The baseline framework automatically identifies
different dynamic modes in the task from a provided training dataset, builds separate dy-
namics models for each identified mode, and uses a probabilistic algorithm for multi-step
prediction of joint-space state variables for a contact-rich manipulation task. The framework
is originally proposed as a data-efficient way of predicting long-term state evolution of
joint-space dynamics for tasks involving discontinuous dynamics such as changing-contact
manipulation, and is not proposed as a solution for real-time control of a robot in such tasks.
However, by making incremental changes to the framework and algorithm set up, it was
possible to show the benefit of having a short-term predictive model, real-time feedback, and
an incremental hybrid model learning framework in the task-space for practical manipulation
tasks. Another important factor for selecting this framework as baseline is the similarity
of the tasks that were selected by the authors for demonstrating their framework. The next
section provides a brief overview of the original baseline framework, before proceeding to
the experimental evaluation.

Overview of the baseline framework

The original baseline framework learns a hybrid model from a training set of demonstrations
of a task done with a few variations across trials to capture the variability. The training
data consists of several sequences (corresponding to trials of tasks) of joint positions, joint
velocities, as well as 3D positions and velocities of three points on the end-effector of the
robot. The main components of the framework are:
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1. Mode discovery through clustering: Modes are clustered from the training data using
the feature vector defined by concatenating the positions and velocities of three non-
collinear points at the end-effector of the robot expressed in Cartesian coordinates.
This representation acts as a proxy for capturing the rotational information of the end-
effector in addition to its position. The clustering method used is the Dirichlet Process
Gaussian Mixture Model (DPGMM) automatic clustering method which automatically
infers the number of modes in the clustering data given an upper bound. This method
often results in over-clustering (clustered modes are more than the actual interaction
modes in the task) due to the feature representation, but the authors claim that “such
over-identification is practically advantageous since it reduces the GP training time”
for the individual clusters.

2. Mode dynamics: Individual mode dynamics (for each cluster of modes) are learned
from the training data using Gaussian Process Regression (GPR). For each mode, a
corresponding multi-output GP learns the function p(ssst+1|ssst ,uuut), where ssst = [qqqt q̇qqt ]

is the state vector comprising of joint positions and velocities, and uuut is the control
command at time t. The dynamics model learns to predict the state of the system in
the next timestep given the current state and command.

3. Guard functions: The guard function is a deterministic classifier that is trained to
predict the next mode mt+1 as a function of (ssst ,uuut). A multiclass support vector
machine (SVM) is used for building the guard function using the labels obtained
previously through clustering (see point 1 above).

4. Reset maps: Reset maps are a critical component in the baseline framework for
handling the discontinuities in the dynamics. The reset map learns to predict the
evolution of states across the boundaries of the modes (guard regions) as it transitions
across modes mi → m j. For every (i, j) in the set of observed mode sequences, a
multi-output GP is learned to approximate the reset map state transition p(ssst+1|ssstuuut)

across the guard regions.

In addition to the above, the framework also has a method for propagating uncertainty
through the learned hybrid model using a particle-based method which makes use of un-
scented transform (UT), as well as a strategy for probabilistic switching between modes for
long-term prediction, but these will not be described further as they are not directly relevant
to our discussions, although they are a critical contribution of the paper. For more details
regarding the overall framework and its components, the readers are referred to the original
paper [84].
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5.4.1 Experimental setup

Fig. 5.16 The simulated task setup used for comparison with baseline framework. After approaching
the table from top, the robot slides its end-effector (green) along the table (brown) till it collides with
a wall obstacle (red), after which it slides along the wall while maintaining contact with the table.

As explained in the previous section, the baseline framework learns to predict the evolu-
tion of joint states (joint positions and velocities) from training data. By training the model
with multiple trials (≈ 40) with different controller stiffnesses, the authors were able to show
that the framework can predict the long-term joint-space dynamics reasonably well using
a new controller stiffness. The task considered was a changing-contact task where a robot
(with a block fixed at the end-effector) approaches a table making contact with it, and slides
along the table till it collides with a wall, after which it has to slide on the table along the
wall. The contact changes occur when the robot makes contact with the table, and then when
it collides with the wall. We replicated a similar task in simulation (using PyBullet physics
– see Fig. 5.16), and were able to achieve similar results for the experiments stated in the
original paper (these results are not included here).

It is to be noted that the clustering, individual GP training, and SVM training together
requires significant training time depending on the density & length of data in the training set,
and the implementation of GP used. We used a sparse multi-GP implementation provided
by Matthews et al. [125]. Our re-implementation of the baseline framework required ≈ 55
minutes training time on an 8-core, 16GB RAM computer without using a GPU, for a dataset
consisting of 40 trials of the task mentioned above; the long-term prediction process during
testing takes ≈ 20 minutes.

For demonstrating the need for an incrementally updating model in the task-space for
handling the dynamics of changing-contact tasks, the baseline framework was incrementally
modified after each experiment to test the following hypotheses:
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H5.4: Long-term prediction of joint-space dynamics in terms of joint-positions and velocities
is unreliable for discretely changing dynamics unless the robot is always using high-stiffness
control.

H5.5: Long-term prediction of dynamics requires the system to be trained with the same
environment that it will be tested on, since the prediction does not make use of real-time
system feedback during each step of the prediction.

H5.6: Consecutive one-step prediction of task-space dynamics (in the form of end-effector
wrenches) is more reliable than one-shot long-term prediction, but an incrementally updating
model is required to model unseen environments.

5.4.2 Long-term prediction of joint dynamics

Fig. 5.17 Long term prediction of two joints’ positions produced by the baseline framework. The
system was trained with wall friction 0.6, and tested on a wall of friction 0.9. The dotted vertical line
indicate when the robot made contact with the wall obstacle.

For testing hypotheses H5.4 and H5.5, we modified the task so that the friction coefficient
of the wall (second collision – red block in Fig. 5.16) can vary across trials. The training data
now contained trials from when the robot performed the same task (using a fixed medium-
stiffness controller) but for different friction values of the wall. The system was first trained
with fixed controller stiffness values, but with a fixed wall friction (0.6). Testing was then
done with an unseen higher friction value (0.9) and the same controller. Fig. 5.17 shows the
prediction and actual values of the most relevant joint positions in the task (joints 1 and 3).
Being unaware of the change in friction, the offline framework predicted the joints to move
as freely as it did during training. The true joint positions were, however, affected by the
higher friction resulting in the "true" values lagging behind the "predicted" values.
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Fig. 5.18 Long term prediction of two joints’ positions produced by the baseline framework. The
system was trained with wall friction values 0.1 through 0.7, and tested on a wall of friction 0.9. The
dotted vertical line indicate when the robot made contact with the wall obstacle.

For further exploration, the training set was modified to include wall friction values
between 0.1−0.7 at increments of 0.1; the system was then tested on a wall with friction
0.9. This results in a prediction that is similar to the previous set of experiments, but with a
wider band of uncertainty around the prediction due to the larger variability in the training
data (Fig. 5.18). The predicted band just covers the true value in its uncertainty band, but the
mean is still off from the actual joint values. This showed that the framework learns to model
the differences in measurements across trials as uncertainty in prediction.

Fig. 5.19 Long term prediction of two joints’ positions produced by the baseline framework. The
system was trained and tested using a constant high-stiffness controller (friction values same as in
Fig. 5.18). The dotted vertical line indicate when the robot made contact with the wall obstacle.

However, when the controller used for training and testing is changed to a high stiffness
controller, the predictions are more accurate (Fig. 5.19), since the trajectory tracking is now
more accurate and robust to external forces due to different friction. The robot therefore
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follows the trajectory quite closely regardless of friction value. This results in lower variability
across trials (marked by the narrower uncertainty band around the prediction), and also
matches the actual values during testing.

Discussion

Although the example used for the above experiments is a case where the surface friction
changes, similar prediction errors will be observed if any other dynamics properties of the
environment are changed, such as the mass of an object being handled or the viscosity of a
fluid the robot is interacting with.

The main reason for the poorer performance of the framework in the presence of unseen
environments is the fact that the system is not aware of the dynamics properties of the
environment (in this case, frictional coefficient of the wall) before it performs the prediction.
This is not a direct flaw of the framework as it was not designed for such use cases. It can
also be argued that by making the prediction depend on the friction coefficient (or some
other proxy for differentiating the surfaces), the predictions can be improved. This may be
possible, but would still require training the system with surfaces of different friction, as well
as being aware beforehand what the value of the friction coefficient is.

The experiments in this section showed that for accurate long-term prediction of joint-
space dynamics, the environment has to be fixed and/or the robot has to use a high-stiffness
controller at all time, hence supporting H5.4 and H5.5. For predicting long-term dynamics
for a variable environment, the system will at least have to be trained with several examples
of possible environments and will need a way of knowing the environment before performing
prediction. Some of these issues can be partially addressed if the robot learns the dynamics
in the task space and has access to a more direct measurement of the interaction dynamics
such as end-effector force-torque measurements.

5.4.3 Long-term prediction in the task-space

The baseline framework was now modified to learn interaction dynamics in the same space
as the forward model of our AVIC framework, so as to make the comparison easier and more
intuitive. This required modifying the mode dynamics GPs and the reset map GPs of the
framework to now learn the task space dynamics p(Feet+1|Feet , ẋt ]) similar to our dynamics
learner (see Section 4.1.2). The other parts of the original framework were left mostly
unchanged.

The same experiment was then repeated with the new state-space. The system was again
trained with examples of the state evolution when the surface friction is between 0.1 and
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Fig. 5.20 Long term prediction of end-effector force along Y (along the wall). The system was trained
with wall friction values 0.1 through 0.7, and tested on a wall of friction 0.9. The dotted vertical line
indicate when the robot made contact with the wall obstacle.

0.7, and then was compared with the measurements taken when the surface friction is 0.9.
Fig. 5.20 shows the measured and predicted force measurements along Y axis (the direction
along which the friction of the wall acts). The spikes at ≈ 400 along the X-axis corresponded
to when the robot made contact with the table, and the spikes between 700−800 corresponded
to when the robot collided with the wall. We observed that the actual values of friction force
after contact with the wall did not fall within the predicted band of uncertainty. Also, the
effect of different levels of friction was more observable in the task space, indicating that it
is more meaningful to represent the interaction dynamics for changing-contact tasks in the
task space.

As another intuitive example to show the effectiveness of such a task-space representation
of dynamics in identifying modes and mode changes, consider a robot approaching a movable
object from a side with a constant velocity v. If the object is movable (and light enough),
the robot can continue to move at velocity v while pushing the object. With the original
joint-space representation used in the baseline framework, the mode change due to the new
contact will not be captured. On the other hand, the modified task-space representation
which uses end-effector wrenches will recognise the contact change due to the spike in
the measurements, and identify the subsequent pushing motion as a new mode due to the
markedly different interaction dynamics (the new end-effector wrench pattern after contact
will be a function of the weight of the object, friction, etc.).
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The region in the figure where the collision occurs has large variability across trials.
This is again because the system has no knowledge of the actual environment properties,
i.e. friction of the surface, and blindly predicts a long-term profile from the initial state,
based on the training data. This experiment also supports hypothesis H5.5, and suggests that
interaction dynamics cannot be reliably predicted without using real-time system feedback.

5.4.4 One step prediction in task-space using real-time feedback

(a) Prediction from the modified baseline framework. (b) Predictions from our hybrid framework.

Fig. 5.21 One-step prediction of end-effector force along Y-axis (along the wall). Each system was
trained with wall friction values between 0.1− 0.7, and tested on a wall with friction 0.9. Dotted
vertical line indicates when the robot made contact with the wall (obstacle).

For the next experiment, real measurements from the robot ([Feet , ẋt ]) was provided as
feedback to the system online during testing. At each timestep, the system then only had to
predict sensor values for the next timestep using the dynamics model for the identified mode.
This is more similar to our predictive learner which does online prediction based on previous
measurements from the system. Although this strategy produced better results (Fig. 5.20) by
using the current newly seen values to predict corresponding outputs by extrapolating from
the learned model, the predictions are still not accurate. This is because the model is not
incrementally updated to account for the new environment dynamics2. Our hybrid framework
(AVIC), on the other hand, supports incremental, real-time updates to the dynamics models.
This resulted in more reliable predictions for the same experiment (see Fig. 5.21b) and
thus more accurate trajectory tracking in the presence of discretely changing dynamics and
previously unseen environments. These results support H5.6.

2It is also affected by the fact that Gaussian model representations such as GP and GMM tend to move
towards the mean of the output dimensions of the models on conditioning, especially when the query points are
far from the training data.
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Inference and Conclusion

The above experiments showed that prediction of dynamics is more useful for changing-
contact tasks when the learning is done in the task-space, and when a good feedback of
the system state is available for predicting the next state. Feedback from the actual system
during task execution provides relatively better predictions even in unseen environments by
extrapolating from the learned model. This is also largely due to the feature representation
and state-space used for learning. However, even with real-time feedback, having a fixed
learned model cannot provide accurate predictions when the environment is too different
from the training data. Furthermore, the disadvantages of having a fixed learned model in the
context of continuously changing environments (such as the spring environment or porridge
environment from Chapter 4) as well as in discretely changing environments (changing
surface friction as in Section 5.3.2) has been previously demonstrated (Section 4.3.2). These
experiments show that a hybrid control framework that supports such control and learning
is better able to adapt to previously unseen variations in the dynamics and provide smooth
control of changing-contact robot manipulation tasks.

5.5 Summary and discussion

This chapter described a computational framework for changing-contact manipulation by
formulating changing-contact manipulation tasks as a piece-wise continuous hybrid system.
Any such task is considered to be made up of discrete modes with continuous dynamics and
distinct control strategies. Each mode comprises a forward (predictive) model, a hybrid force-
motion (feedback) control law, and a relevance condition. The use of different representations
for a mode’s components enables the robot to automatically, reliably, and efficiently identify
mode changes and incrementally adapt the dynamics models for the modes. Unlike data-
driven methods that require many labelled training examples, our framework is able to build
and revise the dynamics model for each observed mode from very few examples. Unlike
existing control methods for manipulation tasks, our method is not limited to the sequence
of modes seen during demonstrations, and it does not require prior information about the
number of modes in the task.

The proposed framework was experimentally evaluated on a physical robot performing
the representative changing-contact manipulation task of sliding an object held in its end-
effector along a desired motion trajectory on a surface. Experimental results illustrate the
ability to reliably follow the desired motion trajectory in the presence of changing surface
friction, type of contacts, and applied force, invariant to changes in the motion direction
and magnitude of applied forces. In addition, the framework formulates changing-contact
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manipulation tasks such that it can be applied to other tasks in this category such as peg-
insertion, block pushing, stacking, etc. Furthermore, our hybrid framework may be adapted
to other dynamics and control problems such as a mobile robot navigating, exploring, and
collecting samples from different terrains.

The necessity of having an incrementally adapting learning framework for handling
the discontinuous dynamics of changing-contact tasks was explored by comparing with a
baseline framework from literature. The baseline was a long-term prediction framework for
hybrid systems which learned to cluster different modes of dynamics from pre-collected
data and then used a probabilistic method to predict the evolution of dynamics. By making
incremental changes to this framework, we were able to show that the prediction performance
improves when real-time system feedback is used for consecutive single-step predictions of
task-space dynamics, but for reliable prediction of dynamics in changing contact tasks in
new environments, an incrementally adaptive model is required.

The presented hybrid framework relies on the incremental mode detection module and the
capability to learn separate dynamics models for each mode. However, the current approach
for detecting mode changes will be difficult to use in tasks with many more modes. Further
research in the choice of feature representations and the state space used for learning could
help tackle such issues. It would also be interesting to explore the automatic selection of the
abstract feature representation suitable for the modes of each changing-contact manipulation
task.

The final objective of this thesis is to enable reliable, efficient, and smooth control
in the context of a robot manipulator performing complex assembly tasks with multiple
objects in complex domains. The next chapter will try to address some of the limitations
of the current framework and explore new directions. For instance, the current strategy of
switching between modes (and dynamics models) is not smooth, with large spikes in sensor
measurements in the guard (i.e., transition) regions due to collisions and mode changes
that are not predicted or otherwise accounted for using an appropriate control strategy. The
next chapter will investigate the possibility of accurate prediction of the time and location
of contact, and try to use this information to achieve smooth overall motion dynamics in
changing-contact tasks.



Chapter 6

Contact Anticipation and Handling
Contact Changes

Many core industrial assembly tasks, e.g., peg insertion and stacking, and human manipu-
lation tasks, are changing-contact tasks whose discontinuous dynamics can result in poor
transition-phase behaviour or instability [146]. Handling these discontinuities smoothly with
minimum energy intake to the system is very important to reduce damage to the robot and/or
the domain objects.

As discussed in Section 3.5, several attempts to model contacts and use switching
algorithms to change controllers have been attempted for many years [120, 131]. Smooth
motion along a desired trajectory can be achieved in a changing-contact manipulation task
using an accurate analytical model of the transitions or a learned model that predicts the
transition dynamics. However, analytical models of the impact dynamics of a system of
objects require comprehensive knowledge of the objects’ physical and geometric attributes,
and often impose assumptions not satisfied in practical domains [71, 135]. Methods that
learn the attributes of the objects, build object classifiers based on these attributes, and/or
learn sequences of parameters (e.g., joint angles) to achieve the desired trajectory, find it
challenging to acquire sufficient examples of different objects, contacts, and attributes to
learn generalisable models [16, 67].

Another approach is to use a transition-phase controller that has properties such as
low velocity and stiffness to reduce impact forces, vibration, and jerk on impact. Existing
transition control strategies switch to a different controller after a contact is detected. This
switch can cause substantial discontinuities in the interaction dynamics, damaging the robot
or the objects [131, 175]. Instead, an ideal framework should be able to predict contacts and
adapt the velocity and stiffness during the transition phase to minimise discontinuities, with
the robot switching between controllers smoothly to produce smooth motion overall.
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With these insights as motivation, we extend our online learning and control framework to
include a contact-change-handling module that decouples the contact prediction and control
problem into independent components. The contact anticipation module tries to predict
when a contact change will occur, while a separate ‘transition-phase’ controller is used while
approaching these regions. The transition phase controller has some set of ideal properties
that would help reduce the effects of impacts and contact changes while ensuring that the
overall motion is smooth. To ensure that the modules fit in with the overall online framework,
both components need to have intuitive task-specific parameters that can be easily tuned from
task specifications and/or improved from very few repeats of the task.

This chapter presents a contact-change-handling module that respects these requirements.
Instead of building a unified model for predicting contact dynamics and learning a sequence
of control commands, we seek to improve the estimates of contact locations in a few trials
and adapt the velocity and stiffness during the transition phase to minimise discontinuities.
The formulation tries to answer the following questions: (Q1) How best to predict contacts
accurately? (Q2) When to activate the transition-phase controller? (Q3) How best to adapt
the transition-phase controller’s parameters to the task? and (Q4) What representation and
strategy to use for reliable and efficient control with limited examples for providing smooth,
jerk-free motion?

This chapter is an expansion of the paper published at the 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) ([? ]). The chapter starts by explaining
the two types of mode changes that could occur during manipulation in a static environment
(Section 6.1). We then describe the contact prediction model that is used to estimate the
‘regions of anticipated mode transition’ in a task (Section 6.3). Then in Section 6.4, we
discuss the properties and structure of our ‘transition-phase’ controller which would be used
when the robot enters a region of anticipated mode transition. Section 6.5 describes how
the framework can smoothly transition between the default controller and the ‘transition-
phase’ controller by ensuring smooth and jerk-free motion during the transition. Section 6.6
describes how the task-space controller stiffness matrix of the transition-phase controller
is rotated such that the robot is compliant along the direction of impact. We then evaluate
our framework on a physical robot and in simulation, using the motivating example of
sliding tasks that involve making and breaking contacts with objects and surfaces of different
attributes (Section 6.7). The chapter is concluded in Section 6.8 by summarising and critically
analysing the advantages and limitations of the presented contact-change-handling module in
the context of real-world changing-contact tasks.
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6.1 Types of mode transitions

As explained previously, mode transitions bring about discontinuities in the interaction
dynamics for a robot performing any manipulation task, making it a piecewise continuous
hybrid system. These discontinuities can occur due to making or breaking contacts, or due
to discrete changes in the physical properties of the environment/object that the robot is
interacting with. In a static environment, therefore, the robot may experience discontinuities
in dynamics (mode transitions) of two types: (i) impact transitions (collisions), and (ii) impact-
less transitions. The robot experiences these in different ways, and each has distinguishable
effects on its dynamics. The control strategy required for the robot to handle these changes
so as to produce a smooth motion is dependent on the effect each has on the robot and the
overall dynamics. The following sections discusses these two types of mode transitions and
their characteristics, which would help us design ideal control strategies to deal with each
so as to incorporate a contact-change-handling module to our incremental framework for
changing-contact manipulation.

6.1.1 Impact transitions (or collisions)

The most easily observable type of mode transition for a robot performing changing-contact
tasks is collision. Collisions occur when a moving robot (end-effector) comes in contact with
a fixed object in its workspace. Given that a task plan is known in a fixed static environment,
there are several methods of estimating the contact locations for such mode changes. Unless
occluded or visually indistinguishable, visual sensors are prime candidates for providing
rough initial estimates of where collisions can occur in a planned motion.

Characteristics of impact transitions

• An important characteristic of collision-based mode change is that it will always re-
move at least one degree of freedom (DoF) of the robot in a functional coordinate space.
Suppose qqq= (q1, ...,qn) be the set of joint positions of an n-DoF robot manipulator, and
let xxx = PFK(q) be the 6-dimensional mapping to a functional coordinate system such
as the end-effector frame or contact frame, which describes position and orientation
in the most intuitive way for any particular task, for e.g. xxx = (x,y,z,θ ,φ ,ψ). When
motion along a direction is blocked, say, by an obstacle, a constraint is introduced. If
we suppose that a contact restricts k DoFs in the functional space, then k coordinates
from the set xxx reduce to zero, creating a separation xxx = (xxx f ,xxxc), where xxx f is the set of
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6− k free coordinates and xxxc is the set of k constrained coordinates expressed in the
functional coordinates as xxxc = Pc

FK(q) = 0.

From our original problem formulation where we assume that all objects in the
workspace of the robot are fixed in its base frame, it is straightforward to see that
colliding with an obstacle in the world will always bring a motion constraint on the
robot, which will always be along the direction of the normal impact force. Using the
constraint representations explained above, if making contact with a table constrains
motion of a freely moving robot along the z axis in a functional coordinate frame, then
xxxc = z = 0, which restricts k = 1 dimensions of the full functional coordinate space,
leaving xxx f = (x,y,θ ,φ ,ψ).

• Collisions are marked by large spikes in force-torque measurements as a function
of the relative velocity of approach as well as material properties such as coefficient
of restitution and hardness of the objects involved. Furthermore, collisions also
bring about a discontinuity in the velocity of the end-effector by forcing at least one
dimension in the functional coordinates to go to zero. This causes spikes in acceleration,
jerk etc. All these effects can be attributed to the sudden loss in a degree of freedom in
the functional coordinate space.

• In our framework, the robot will have to switch the direction of force control after a
collision. Typically, some force target is now to be achieved along the direction of the
new contact, while following a motion trajectory along the remaining free coordinates.
In general, after a collision, the robot will have to break contact if it has to continue
with the previously active control representation (i.e. to keep the direction of motion
control and force control unchanged). In the example above where the robot makes
contact with a table and loses a DoF along z, the robot will either use this collision to
mark the end of the task, or will switch to force control along the z direction, so as to
follow a motion pattern on the surface of the table (x− y plane) to proceed with the
task. If it has to continue with the previous controller (motion control without force
control in any direction), the robot will have to break contact with the object.

Detecting collisions

With the use of an end-effector force-torque sensor, it is straightforward to identify large
spikes as potential contact changes. However, to differentiate collisions from impact-less
contact changes, we have to use our knowledge about the characteristics of collisions as
discussed above.
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Formally, our framework considers the robot to have collided if the following conditions
are all met:

|FFFc
t −FFF pred,c

t |> Λ1 (6.1)

|dFFFc

dt
|> Λ2 (6.2)

ẋxxc
t ≈ 0 (6.3)

where FFFc
t is the end-effector force in the frame of anticipated contact along the contact

normal measured at time t; FFF pred,c
t is the force predictions made by the dynamics model of

that contact mode (the forward model of AVIC), and ẋxxc is the end-effector velocity in the
contact frame. Condition 6.1 checks if the predicted force is different from the instantaneous
measured force by a user-defined threshold Λ1. Directly checking if the measured force is
above a threshold is not meaningful when the robot is moving in an environment where it is
continuously moving against a force (e.g. friction, viscous liquid, etc.). Using the predictions
provided by the forward model (FFF pred,c

t ) as basis removes this issue. Similarly, condition
6.2 checks for sudden spikes in the force sensor measurements, while condition 6.3 checks
if the robot lost a degree of motion freedom along the direction of contact. If these three
conditions are found to be satisfied, the framework registers it as a collision-based contact
change, which would normally mark the end of that segment of the plan.

In practice, however, the contact frame is not known/used in our framework and the
direction of impact is not known beforehand. Therefore, we use the magnitude of the force
instead of its vector representation in conditions 6.1 and 6.2. Condition 6.3 is then checked
along the direction of the force vector. The direction of the detected force is also used
for guiding the direction in which the robot has to be compliant in subsequent trials (see
Section 6.6).

6.1.2 Impact-less mode transition

The second type of contact change occurs when a the interaction discontinuities occur due to
discrete changes in the environment dynamics that are not due to impact. A simple example
is when robot slides across two surfaces whose friction are different (Fig. 5.1); here, the robot
experiences sudden changes in frictional resistance as it crosses the boundaries between the
surfaces, but the transition does not necessarily cause large impact forces or drop in velocity.
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Characteristics of impact-less transitions

• The main feature that distinguishes impact-less transitions from collisions is that these
mode transitions occur without a loss in degree of motion freedom; in fact, they can
sometimes result in additional DoFs, such as when a robot breaks an existing contact.
Consider the previous example of a robot approaching and making contact with a table
to lose a DoF along the z axis. If the robot is now moving along the table, it has full
control only along 5 dimensions (xxx f = (x,y,θ ,φ ,ψ)). Assuming that the surface of
the table is smooth and the robot is moving along a jerk-free trajectory on the table,
the interaction forces felt by the robot is smooth and continuous. However, breaking
contact with the surface will provide the robot controller with the additional degree
of freedom along z as well, and reduces the number of constraint DoFs. This can
happen without impact and/or drop in velocity, and is hence falls into the category of
impact-less mode changes.

• Impact-less mode transitions will also result in sudden jumps in force-torque profiles
similar to collisions, however unlike collisions, the peaks in the curves are typically
much less prominent.

• Unlike collisions, these contact changes may not be easily visible to an external vision
sensor before task execution (e.g. different surfaces on the same plane may not be
visually distinct in a camera image), and often the robot can learn about them only
during the first execution of the task.

• Since there is no loss of DoF, the robot can continue to use the same controller or
a similar control representation to continue with the task, and does not necessarily
require a change in force-motion control directions.

Detecting impact-less transitions

Since impact-less transition does not cause a loss in motion DoF, an impact-less transition
can be considered to have happened if conditions 6.1 and 6.2 are satisfied without meeting
condition 6.3.

|FFFc
t −FFF pred,c

t |> Λ1 (6.4)

|dFFFc

dt
|> Λ2 (6.5)
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During implementation, the checks for mode changes are done by following the logic
shown in Table 6.1. This is a simple yet effective way to detect and differentiate between
mode changes in most scenarios. However, other than relying on a good force-torque sensor
and an accurate forward model, this strategy also assumes that the robot velocity is not too
low during impacts. It can be hard to detect spikes in force torque-measurements (especially
when the robot is sliding on a surface which offers frictional resistance) due to collision if
the robot is already moving too slow. In such cases, the thresholds Λ1 and Λ2 become very
sensitive hyperparameters. This can often result in the robot identifying collisions a short
time after the actual contact occurred (as the robot presses against the contact and crosses the
thresholds). Similarly, detecting impact-less mode changes can sometimes be difficult if the
robot uses high stiffness (see discussion at the end of Section 6.7.5). Depending on the task,
the mode transitions involved, and the velocity of motion, the values for Λ1 and Λ2 may also
have to be separately tuned for collisions and impact-less transitions.

Table 6.1: Mode change detection logic
1 if |FFFc

t −FFF pred,c
t |> Λ1 and |dFFFc

dt |> Λ2 then
// A mode change has occurred

2 if ẋxxc
t ≈ 0 then

3 Collision detected
4 else
5 Impact-less mode transition detected
6 end
7 end

6.2 Framework overview

Figure 6.1 presents an overview of our framework. The inputs are the desired motion tra-
jectory, the force-torque sensor measurements, and the end-effector position. The default
controller is the hybrid force-motion adaptive variable impedance controller (AVIC for
hybrid systems) that was described in the previous chapters. As demonstrated previously,
operating in task (i.e., Cartesian) space allows this controller to use suitable abstractions to
learn accurate forward models from very few examples, provide compliance along specific
directions, and accurately track the desired trajectory, thus partially addressing Q4 mentioned
in the introduction. The framework in this chapter builds on this default controller’s represen-
tation, enabling a task-space contact anticipation model that incrementally updates its contact
prediction using a Kalman filter (Q1). These predictions are used to minimise the time spent
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Fig. 6.1 Overview of the modified framework for smooth control of changing-contact manipulation
tasks.

in the transition phase (Q2), and the controller properties to be used in the transition phase is
set adaptively to achieve a smooth motion profile (and a desired impact force if collisions
are expected) (Q3). Once the transition is completed using a suitable controller to minimise
discontinuities, the robot moves to using the default controller and revises the parameter
values suitably. We begin with a description of the contact prediction method.
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6.3 Kalman filter-based contact anticipation

We model the robot’s belief about the position of each expected mode change (collision or
impact-less) while executing the assigned motion trajectory as a multivariate Gaussian in
the workspace, with the covariance ellipsoid denoting the uncertainty along different motion
control dimensions; we call this the ‘region of anticipated mode transition’ denoted by C

(see Fig. 6.2). In the context of this work, a ‘contact position’ refer to a position in the
task-space of the robot where a mode switch occurs when following the provided task plan.
Therefore, in any trial of the task, the robot expects a specific contact position c to lie within
the corresponding C .

Fig. 6.2 The Kalman filter contact anticipation method models expected contact locations as Gaussians
in the task space. The ‘region of anticipated mode transition’ C becomes tighter in a few trials as the
robot becomes more confident about the contact location. Left: In the first trial, C is large due to
uncertainty; Right: In trial 3 of the task, the volume of C is significantly smaller.

The representation of each contact position is compact and is updated over very few trials
of the task using a Kalman filter; this also fits with the controller used by the robot which is
also defined in the task-space. For the Kalman filter-based contact anticipation model, we
assume that each contact position is guided by the state update equation: ċ = Ac+Buk +w,
where c is the contact position, A is the object’s self-activation (I for positively activated
objects), B is the control matrix capturing the effect of action u on contact position, and w
is Gaussian noise modelling the uncertainty in the contact location. The sensor model uses
the end-effector pose (as given by forward kinematics from joint positions) as measurement
when a mode change is detected. This sensor model (with noise depending on the joint
encoder noise and forward kinematics) will provide a corrected estimate of the contact point
once a contact is made, resulting in a reduced covariance ellipsoid for subsequent trials.

The filtering can then be repeated after each trial: the prediction step given by the state
transition model and the update step done using the forward kinematics at contact. The initial
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estimate of the contact position is assumed to be given as a rough guess by the planner or an
external vision sensor, which is used to initialise the Kalman filter.

The Kalman filter’s update equations are as follows:

µ̂k|k−1 = Ak−1µ̂k−1|k−1 +Bk−1uk−1 (6.6a)

Σk|k−1 = Ak−1Σk−1|k−1AT
k−1 +Qk−1 (6.6b)

vk = yk−Hkµ̂k|k−1 (6.6c)

Sk = HkΣk|k−1HT
k +Rk (6.6d)

Kk = Σk|k−1HT
k S−1

k (6.6e)

µ̂k|k = µ̂k|k−1 +Kkvk (6.6f)

Σk|k = Σk|k−1−KkSkKT
k (6.6g)

where µ̂i|i−1 and Σi|i−1 are the predicted mean and covariance of the contact location c at
step i, µ̂i|i and Σi|i are the corrected mean and covariance based on measurement yi (of pose
on contact) step i, K is the Kalman gain, and Q and R are noise matrices. Note that our
representational choices enable us to develop a contact anticipation model that is simple,
efficient and yet reliable. We are able to use a linear model to estimate contact locations
in the workspace, arriving at an accurate estimate from very few (noisy) repetitions of the
task. This representation supports contact with movable objects if their motion dynamics are
modelled reasonably well using A and B, but we assume (in this work) that the end effector
only makes contact with stationary objects (A = I, B = I), which is reasonable for many
manipulation tasks such as industrial tooling. Also, H = I since state and measurements are
in the same space.

6.4 Transition-phase controller formulation

The transition controller follows the same control structure as our default variable impedance
controller (Eq. (4.1)) and varies only in the choice of the control parameters. Depending on
the type of mode transition (as discussed in Section 6.1), the choice of the control parameter
values can vary, but the basic structure remains:

uuu = Kp∗
∆xxx+Kd∗

∆ẋxx+uuuff +HHH (6.7)

where Kp∗ and Kd∗ are the stiffness and damping parameters of the transition-phase controller
that can vary depending on the type of mode transition. The different desired properties of
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the transition-phase controller for the two types of mode transitions are described in the next
sections.

6.4.1 Transition-phase controller for impact transitions

As explained previously, collisions are marked by impacts and will result in the robot coming
to rest (in the direction of impact). Since the permitted impact force may differ based on
the task, e.g., large forces can damage delicate objects in certain tasks, it is reasonable to
assume a safe limit on the maximum allowed impact force for a particular task. It is known
that the velocity of approach is directly proportional to the force on impact1, especially when
the robot registers a contact while moving in free space. One advantage of the design of
our controller (and the related representational choices) is that a simple approach (linear
regression) can be used to fit the relationship between impact force and the approach velocity
between a pair of objects. If available, this relationship can be used to compute the approach
velocity for a desired impact force (see Section 6.7.2).

However, the robot may not have a model of these relationships when performing a task
for the first time. So, for any given target impact force, the robot starts with a safe low
velocity during the first trial, using the difference between the target impact force and the
measured impact force to revise the approach velocity for the next iteration of the task:

∆va = β (FFFd−FFFc) (6.8)

where ∆va is the value used to revise the approach velocity, FFFd is the desired impact force
along motion direction, FFFc is the measured impact force, and β is a learning rate that is
ideally a value less than or equal to the slope of the plot relating impact force to the approach
velocity. Over time, this approach enables the robot to learn a task-specific velocity of
approach for a desired impact force. The learned linear model can also be reused for other
target impact forces.

Also, experimental analysis indicated that reducing the controller stiffness helps reduce
the jerk in motion after impact by providing compliance, but has no significant effect on
impact forces because the robot has to make the contact for the error and stiffness term in
the feedback control loop to come into effect. Thus, reducing stiffness during impact helps
in absorbing vibrations after contact, and is hence a desirable feature for impact-handling
transition-phase controller. The stiffness and damping matrices are adjusted such that the
robot is most compliant along the direction of expected impact while it maintains higher

1This was also observed experimentally (see Section 6.7.2 and Appendix B.3)
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stiffness along other directions so as to reduce tracking errors. The rotation of the stiffness
matrix and the selection of the parameter values are explained in Section 6.6.

6.4.2 Transition-phase controller for impact-less transitions

If the robot expects an impact-less transition in C , it does not have to reduce its velocity and
can continue following the original plan. Reducing velocity would bring delays in the task
which is undesirable. However, as mentioned in the previous chapter, having a high-stiffness
controller helps in identifying new modes after transition. This is because high stiffness
ensures that the robot motion is accurate and the sensor measurements are more accurate,
which helps in mode identification. For this reason, the ideal transition-phase controller for
impact-less transitions should switch to a high-stiffness controller. The parameter values for
this transition phase controller (Section 6.4) in our framework is set to use the maximum
allowed values of the active AVIC, i.e., Kp∗ = Kp

max.

6.5 Switching to Transition-Phase Controller

Recall that a lower stiffness in the transition phase can reduce vibrations on impact, and a
lower velocity reduces the impact forces. Since any such strategy will cause the robot to
deviate from the desired trajectory, the robot should ideally switch to this control phase just
before the contact is made, and switch out of it immediately after stable contact is established.
Since this is not possible in practice, it is safer to switch to this control mode when it enters a
region in the task space where the contact is highly likely to occur, and switch out of it once
stable contact is achieved.

As stated previously, we use the covariance of the multivariate Gaussian estimating the
contact location to define the region of anticipated contact C in the task-space. Activating
the transition-phase controller just before or after it enters C ensures that the transition-phase
is only active when a contact/collision is anticipated. The part of the target motion trajectory
P within C can be found by checking if the points in P(t) satisfy the relation given by:

(P(t)−µ)T
Σ
−1(P(t)−µ)≤ λ (6.9)

where µ is the mean of the Gaussian predicting contact position, Σ is the covariance, λ is
the scaling factor governed by the confidence in the covariance estimate; it is modelled as
the chi-squared percent point function of the desired confidence value. The first point in
trajectory P to satisfy this condition is the boundary pc of the anticipated collision region C

along the direction of approach. When the robot does a task for the first time, the position
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uncertainty and hence the volume of C are large, and the robot switches to the appropriate
transition phase controller (as described in Section 6.4) earlier than actual transition. Over
time, as the covariance ellipsoid shrinks, the robot switches to the transition controller when
it is about to make contact.

6.5.1 Smooth Transition between Controllers

To avoid discontinuities in motion dynamics, the robot needs to smoothly transition from a
normal (pre-contact) controller with output u1 to the appropriate transition-phase controller
with output u2. Linear interpolation of u1 and u2 over a time window [0,T ] is possible since
they are of the same task-space representation, and can produce smooth transition between
these controllers:

u =(1−α)u1 +αu2; α = t/T t ∈ [0,T ] (6.10)

where T is the desired duration of the transition between the controllers. As long as the
outputs from the two controllers (u1 and u2) are individually smooth, the output of the
combination will also be smooth. In this work, controllers use the task-space representation
described earlier, with u2 being the output of the fixed transition-phase controller (low- or
high-gain depending on the transition type) as the arm approaches the contact point. We
use this strategy to smoothly transition between controllers of different stiffnesses such that
the transition is completed by the time the robot reaches pc. A similar approach is used to
smoothly transition from the transition-phase controller to a normal controller after contact
is made.

6.5.2 C∞ smooth velocity profile for jerk-free motion

Transition-phase controllers for handling impact transitions typically use a lower velocity
than the original kinematic sequence P to reduce the force at impact. Also, as the region C is
revised by the Kalman filter, the robot will need to switch to a different desired approach
velocity at different points in the target trajectory (in different trials). Therefore, the timeline
of the trajectory has to be modified to account for the modified velocity profile.

To modify the given motion trajectory such that velocity changes smoothly, we enable
the robot to create a new velocity profile and time-mapping. Our approach builds on the
trapezoidal formulation used in literature for velocity profiles; it can be viewed as either
the lift-off or set-down phase of a trapezoidal profile. Unlike other representations, our
formulation results in motion that is smooth and continuous at all orders, i.e., it is C∞ smooth.
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Without loss of generality, assume that the original motion trajectory P is along one
dimension with velocity v1. Assuming that transition starts at time t1 with v1 and has to be
completed at t2 (i.e., over a period T = t2− t1) with approach velocity v2 (the velocity as the
robot crosses boundary point pc of C ), the velocity profile is defined as:

v(τ) =


v1 +

(v2−v1)e−1/τ

e−1/τ+e−1/(1−τ) if 0 < τ < 1,

v1 if τ ≤ 0

v2 if τ ≥ 1

(6.11)

where τ = t/T = t/(t2− t1). For τ ∈ (0,1), e−1/τ has continuous derivatives at all orders at
every point τ on the real line. Since v(τ) has a strictly positive denominator for all points
in its domain and velocity limits are enforced ∀τ /∈ [0,1], this profile provides a smooth
transition from v1 to v2 over [t1, t2] and v(τ) is continuous despite its piece-wise definition.
Acceleration and jerk are computed as first- and second-order derivatives of v(τ) with respect
to τ , and position trajectory is obtained by integrating the profile; all motion derivatives are
continuous—see Figure 6.3. Moreover, the simplistic formulation has the added advantage
that it does not have additional hyperparameters to tune like many jerk-free velocity profiles
in literature [5, 153, 59].

Fig. 6.3 Velocity plots (generated using Eq. (6.11)) with corresponding position, acceleration, and jerk
plots. Velocity varies from 1.2 to 0.5 in unit time. It is clear that all curves are smooth and continuous.

In general, it is possible that the total displacement of the original plan may be less than
the total distance obtained by integrating the desired velocity profile2. In this case, the robot

2This happens only when v2 > v1 and total motion distance is short
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may overshoot the original planned goal pose. In such cases, it is possible to incorporate a
scaling factor to the function v(τ), which can modify the value of v2 or T so as to restrict the
maximum distance travelled. A similar scaling factor is used by Grassmann et al. [59] for
automatically adapting the motion constraints when the trajectory is too short. In our case
however, this scenario is improbable since this cannot happen if v2 < v1 (which is the normal
case when entering a region of expected collision). Furthermore, the requirement of having
to complete the transition before it reaches a certain position pc in the plan P automatically
removes this scenario ever happening in the approach phase.

The timeline of the new velocity profile v(τ) for any given contact can be used to modify
the target trajectory P such that the velocity transition is completed as the robot reaches
pc. As the velocity transition duration (Eq. (6.11)) and the controller transition duration
(Eq. (6.10)) are the same, the robot will become compliant and slow down just as it enters C .

6.6 Stiffness frame realignment to reduce vibrations

<MAYBE WORTH MOVING TO APPNDX>
In certain situations involving impact transitions when compliance is required in a

direction that is not along one of the axes of the operational space coordinate frame, it would
be easier to define the impedance parameters in a different frame. For instance, when a
robot is approaching a collision, the robot would benefit from being compliant along the
direction of contact (which may be different to the direction of motion) so as to minimise
the amount of energy absorbed by the system. A simple solution is to use lower impedance
gains along all axes. However, this would result in loss of trajectory tracking accuracy along
all dimensions, which is especially unacceptable in tasks requiring precision.

A better solution is to use low stiffness only along the direction in which impact is
expected, which would reduce the error in trajectory tracking along the other directions.
Suppose a lower translational stiffness of Kp,low is desired along the direction of impact,
while a different stiffness Kp is the original value to be used in the other directions. Then the
custom approach-phase stiffness matrix (for translation) can be defined as

Kp′
[tr] =


Kp,low
[tr] 0 0

0 Kp
[y] 0

0 0 Kp
[z]

 (6.12)

The ideal rotation should align Kp,low
[tr] with direction of impact. For this purpose, we

define an impact frame in the cartesian space, with origin at the point of impact on the
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end-effector of the robot. The X axis of the impact frame represents the direction of impact
vector (direction of anticipated impact from the point of contact to the obstacle). If the
orientation of the impact frame in the base frame is given by the rotation matrix RRRccc, the
required translational stiffness matrix of the controller in the base frame can be obtained
using the relation

Kp∗
[tr] = RRRcccKp′

[tr]RRR
T
ccc (6.13)

However, for rotational stiffness, compliance is required about axes perpendicular to the
direction of impact. For the sake of example, assume the robot expects a collision along the
X axis of a global frame where the operational space is defined. For translational stiffness,
the robot needs low stiffness along the X axis so that any motion towards the obstacle is
compliant. However, if the end-effector is rotating, it has to be compliant about Z and Y
axes so that any rotation that moves the end-effector towards the obstacle is compliant, while
rotation about X axis alone would not cause any collision. Therefore, the stiffness matrix for
the rotational component has to be

Kp′
[rot] =


Kp
[θ ]

0 0

0 Kp,low
[rot] 0

0 0 Kp,low
[rot]

 (6.14)

and it can then be rotated using the same relation with the rotation matrix RRRccc:

Kp∗
[rot] = RRRcccKp′

[rot]RRR
T
ccc (6.15)

The final control stiffness to be used in the control equation (Eq. (6.7)) can be then
obtained by diagonally block-stacking the two matrices as:

Kp∗ =

[
Kp∗

[tr] 000[3,3]
000[3,3] Kp∗

[rot]

]
(6.16)

The corresponding damping matrix can also be obtained by either performing a similar
rotation or using the critically-damped relation to compute the damping matrix corresponding
to Kp

∗.
In the framework, the values of Kp,low

[tr] and Kp,low
[rot] are hyperparameters that are known

to provide a desired compliant behaviour on contact, while the remaining parameter values
(of Kp

[x,y,z,θ ,φ ,ψ]
) are are varied across trials such that they are inversely proportional to the

certainty (or proportional to covariance) of the anticipated contact region. This way the robot
is not highly stiff along other directions if it is uncertain about the predicted contact and is
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compliant to reduce damage. As the prediction certainty increases, it is safe to assume that
the robot can be stiff along directions in which it does not expect impact to act.

6.7 Experimental Analysis

Fig. 6.4 A sliding task that involves making con-
tacts with the table’s surface at "1", with a wall at
"2", and with another object at "3".

Fig. 6.5 A similar sliding task implemented in
PyBullet for testing framework effectiveness in
providing smooth motion.

In this section, the contact anticipation and handling module presented in this chapter is
evaluated experimentally. We start by first testing the following hypotheses:

H6.1: Our contact prediction approach incrementally improves the estimate of each contact’s
position over time, reducing task-completion delay and trajectory tracking error;

H6.2: The learned linear relationship between approach velocity and impact force provides
an accurate estimate of the approach velocity for a desired impact force; and

H6.3: The overall framework produces smooth motion dynamics (i.e., velocity, acceleration
etc.) for manipulation tasks with multiple contact changes.

For experiments, we used a seven degrees of freedom (DoF) Franka Emika Panda
robot operating on a tabletop (Fig. 6.4) and its simulated version in PyBullet (Fig. 6.5).
The performance measures include accuracy (e.g., position tracking, impact force), task
completion time, and the time spent in the transition-phase.

6.7.1 Contact Anticipation

To evaluate the ability to incrementally improve the estimate of contact position (H6.1), we
used a task-space trajectory that required the robot to approach a (static) table from above,
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Fig. 6.6 Position of the end-effector (EE) during trial-1 and trial-3 of the contact prediction experiment.
The red horizontal line is the edge of the covariance ellipsoid in trial 1; the violet line is the ellipsoid
boundary in trial 3. Updated covariance in trial 3 enables the robot to avoid going to the transition-
phase in the first dip of zig-zag trajectory and reduce the tracking error.

move back up without making contact with the table, and move down and make contact with
the table, resulting in a zig-zag trajectory along the z-axis. As described earlier, the robot
was expected to move with a lower velocity when approaching a contact point, but spend as
little time as possible in this low-velocity, low-stiffness transition phase to reduce tracking
error and delay in task completion.

An initial estimate of each contact position (based on target trajectory) was provided
manually to simulate input from an external planner or vision system. Each initial estimate
had a large covariance (0.175 along each dimension, with distance measured in meters)
to simulate the uncertainty associated with a visual sensor or planner. Due to the large
covariance, the region of anticipated contact (C ) overlapped with points in the first ‘valley’
of the target (zig-zag) trajectory although there was no actual contact with the table’s surface.
We expected the robot to obtain an improved estimate of C over time and not switch to the
transition-phase controller in the first valley; the switch was only expected when the robot
approached the table the second time. Given the focus on contact prediction, we empirically
chose safe values for the transition-phase control parameters (i.e., approach velocity and
stiffness).

We observed a significant reduction in covariance, e.g., from 0.175 to 0.07 in just three
successive trials in an experiment, as summarized in Fig. 6.6, which enabled the robot
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to avoid going to the transition-phase in the first dip in the trajectory. Also, the average
Euclidean tracking error (per time step) in the position of the end-effector (EE) reduced from
1.3cm in the first trial to 0.16cm in the third trial, and the task completion time reduced from
7.9s in the first trial to 7.2s in the third trial; the expected (ground truth) motion duration is
7s. Similar results were obtained with other target trajectories, indicating support for H6.1,
i.e., that the uncertainty in the contact position is reduced quickly, which reduced delays in
task completion as well as errors in trajectory tracking. These results also indicate that using
the transition-phase controller only when it is required reduces the deviation from the desired
motion trajectory.

6.7.2 Approach Velocity and Impact Force

To test the relation between approach velocity and impact force on contact, the robot was
given a target motion trajectory that required it to move in free space and make contact with
the table; this is also shown in the supplementary video. The task was repeated with different
velocities ranging from 0.02m/s to 0.16m/s in steps of 0.02, each repeated four times, and
we measured the corresponding force on contact. We observed that a line whose parameters
were estimated by linear regression provided a reasonably good fit for the relationship
between end-effector approach velocity and the end-effector force along the direction of
motion, as shown in Fig. 6.7. The variance in the fit can be attributed largely to the noise in
the force-torque sensor, which can be large during discontinuities such as collisions.

Fig. 6.7 Approach velocity vs force on impact.
Orange line denotes the estimated linear relation-
ship.

Fig. 6.8 Approach velocity over a sequence of
trials to achieve a target impact force of 10N using
gradient descent.

Given such a learned relationship, the robot was asked to perform the same target
trajectory (as above), but it had to now choose its approach velocity so as to achieve a desired
impact force on contact. The measured contact force was compared with the desired impact
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Target
Force (N)

Estimated reqd
velocity (m/s)

Measured
force (N)

Error
force (N)

10 0.047 7.4 2.6
12 0.063 15.1 3.1
15 0.086 15.3 0.3
18 0.11 16.7 1.3

Table 6.2 Errors in contact force with the learned function specifying approach velocity as a linear
function of the impact force; errors were higher at lower values of target force due to sensor noise.

force. Table 6.2 summarizes results for four trials for four of the 11 target force values we
tested (10− 20N at 1N increments). We observed that the robot was able to compute an
approach velocity that resulted in an impact force similar to the desired value, with an error
of ∼ 3N. These errors were more pronounced at lower values of the target impact force,
which can be attributed to sensor noise, i.e., the learned model was limited by the accuracy,
sensitivity, and resolution of the force-torque sensor, joint encoders, and the robot’s forward
kinematics model.

For the next experiment, Eq. (6.8) was used to incrementally update the approach velocity
of the robot without providing the learned linear model. The initial value of the approach
velocity was set to 0.1m/s, the target impact force (Fd) was 10 N, and β = 0.003. Fig. 6.8
shows the evolution of approach velocity over 10 successive trials. We observed that the
approach velocity was ≈ 0.045m/s in the fifth trial, after which the noise in the force torque
sensor measurements at impact made it difficult to converge further to a single value of
approach velocity. The error between the measured force and desired force reduced from
8.5N to 0.2N at the end of 10 trials. Similar results were obtained for other values of initial
approach velocity and target impact force, indicating that in the absence of the learned linear
model, the framework can still converge to a suitable approach velocity for a target impact
force, although it requires more trials. These results thus support H6.2.

6.7.3 Smoothness of Motion

The motion profiles (e.g., velocity, acceleration profiles) of a changing-contact manipulation
task are expected to have large spikes in the absence of our contact-change-handling module.
This hypothesis (H6.3) was tested in a simulated environment. To test the effectiveness of
the framework in providing an overall smooth dynamics and safer interaction, a baseline case
was used for comparison in a simulator. In the baseline, the robot performs the task using the
original task-space plan without predicting contacts or modifying velocities for lower impact
effects.
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(a) Without using contact-change-handling module

(b) When using the contact-change-handling module

Fig. 6.9 End-effector velocity, acceleration, and force in the simulated changing-contact task: (a)
without using the contact-change-handling module; (b) when using the contact-change-handling
module, the curves are smoother and the peaks are reduced.
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The task (Fig. 6.5) involved the robot moving in free space first and then making contact
with a table. The robot then proceeds to slide along the surface (force control along 1
direction) till it encounters a contact in the form of a rigid wall. It then slides along this wall
(force control in 2 directions) to make contact with another wall. The robot then has to slide
up this wall (force control along 1 direction) till it reaches the end of the wall. It then moves
in free space towards another surface which it makes contact with and slides along. The task
has multiple contacts and requires using force and motion controls along different directions
in different segments of the plan. Following the original plan without contact anticipations or
controller modifications (baseline) would cause the robot to experience high impact forces
and discontinuities in the dynamics (see Fig. 6.9a). It can be seen that the motion produces
large sharp peaks in acceleration and hence high jerks. The accelerations are as high as
18 m/s2, while the peak impact forces are well over 50N which could be damaging for a real
robot.

This was then compared with the robot performing the same task but by using the
proposed framework for contact detection and smooth transition. It was provided with rough
initial guesses of the contacts involved in the task mimicking values from a noisy vision
sensor, with different noise uncertainty (covariance) for the different contacts involved. The
robot was able to complete the task while producing significantly smoother motion in the
first trial. The overall velocity and acceleration curves are smooth, even when the robot has
multiple contacts. The peaks forces are significantly lower with the highest impact force
being less than 8N and the peak acceleration on impact is less than 1m/s2, due to the lower
velocity in the ‘transition-phase’. The time to complete the task was however increased
by about 3.7 seconds due to the modified velocity profiles of the plan. The framework
therefore trades off task completion time for improving the overall smoothness of motion.
By incrementally updating the knowledge about contact locations, however, the delay can be
reduced. This is explored with a real robot in the next section.

6.7.4 Performance in task involving multiple collisions

To evaluate the overall framework and the resulting dynamics on a physical robot performing
tasks involving multiple collisions, the robot (with a wooden block attached to end-effector)
was asked to move vertically down to the table (contact 1), slide along y-axis (the table’s
surface) to a wall (contact 2), and slide along the wall (while in contact with the table’s
surface) to another obstacle (contact 3), as shown in Fig. 6.4. The robot was provided
significantly incorrect initial guesses of the contact positions with substantial noise (see
Table 6.3). The robot had to repeat the task while reducing the deviation from the given
motion pattern by improving its estimate of the contact positions. The robot also had to
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Prediction Error (m) Initial Final (trial 5)

Contact 1 (Z-axis) 0.12 ± 0.3 0.016 ± 0.039
Contact 2 (Y-axis) 0.09 ± 0.2 0.011 ± 0.04
Contact 3 (X-axis) 0.1 ± 0.2 0.018 ± 0.036

Table 6.3 Error in the estimated contact location along the most significant axis for the contact (in
parenthesis) in the first and fifth trials of the task in Fig. 6.4. The value along the diagonal of the
corresponding covariance matrix is shown as the standard deviation (± term).

modify its approach velocity from the initial value of 0.05m/s to produce a desired impact
force of 8N. Since each contact in the task is in the presence of different environment
dynamics (e.g., motion in free space, motion against surface friction), the velocity required
to attain the desired impact force was expected to be different. The robot also had to
incrementally update its approach velocity for each contact using gradient descent till the
desired velocity for that environment was achieved. Furthermore, the robot had to perform
all the trials with smooth overall motion dynamics with minimum spikes in the velocity or
acceleration profiles.

Fig. 6.10a shows the velocity, acceleration, and EE force in the first trial, and Fig. 6.10b
shows these values after five trials. The results in these figures and in Table 6.3 show that the
uncertainty in the estimate of the contact positions is reduced, as indicated by a significant
reduction in the size of the covariance ellipsoids, and the robot spends significantly less
time using the transition-phase controller and the associated lower velocity. The last plot in
Fig. 6.10a and Fig. 6.10b show the activation of the default controller and the transition-phase
controller. The overall task was completed in 9.2 s in the fifth trial as opposed to 14.4 s in the
first trial. The covariance ellipsoids converged in the first three trials of the task, but the task
was repeated to evaluate the ability to compute and set the approach velocity for different
transition-phase controllers.

With our framework, the robot converged to a suitable approach velocity for the first
contact (from motion in free space) in five iterations. It was, however, difficult for the robot
to adjust its approach velocities for contacts 2 and 3, which required the robot to use force
control along one and two directions (respectively). Contact 3 was particularly challenging
because it involved sliding along two different surfaces, resulting in very noisy readings from
the force-torque sensor due to the different values of frictional resistance offered by the two
surfaces. Since the impact force was along the same direction as friction, it was more difficult
to isolate the impact force from the force due to surface friction, which made updating the
approach velocity more challenging.
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(a) Experiment trial 1.

(b) Experiment trial 5.

Fig. 6.10 Velocity, acceleration, force, and controller activation levels in: (a) experimental trial 1;
(b) experimental trial 5. Use of our framework reduces uncertainty in estimates of contact positions,
reduces the time spent using the transition-phase controller, and reduces discontinuities.

6.7.5 Framework effectiveness in tasks involving impact-less transitions

As explained previously discontinuities in interaction dynamics do not always occur due
to collisions, and can also be due to discrete changes in the type of environment that the
robot is in contact with. In this experiment, the objective was to test the effectiveness of the
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Fig. 6.11 A sliding task that involves both impacts and impact-less mode transitions. The robot
experiences impact-less mode transitions as it performs motions ‘2’ and ‘4’ as the surfaces switch in
between. These changes are not known to the robot beforehand, and has to be learned from experience.

framework in learning to predict contact changes that are not due to collisions (impact-less
transitions).

The experiment involved the robot performing a similar changing-contact experiment
as before, but this time, the surface along which the robot has to slide suddenly changes
without the knowledge of the robot (see Fig. 6.11). The location of the surface switches are
not known beforehand, and the robot has to learn to anticipate them in subsequent trials once
it realises that there are previously unknown contact changes in the provided plan. The task
involved the robot approaching a surface (surface A) from top, and sliding along the surface
to make contact with a wall as before; however, the surface changes midway to one with
higher friction (surface B) unknown to the robot. The robot then has to slide along the wall,
and then move to another wall parallel to it, on the way to which the robot will slide surface
B to A again. As in the previous experiment, the robot is provided with initial guesses of
where collisions occur in the task, but it is not provided any knowledge about the changes in
surfaces; this, the robot has to detect in its first trial and should then be able to predict and
handle in subsequent trials.

The desired behaviour from the robot is that it learns to anticipate collisions as well as
impact-less contact changes, and smoothly switches to an appropriate controller, that reduces
the discontinuities in the motion dynamics during task execution.

In this experiment, we focus on the performance of the framework in the regions where
the surfaces change, i.e., where there are impact-less mode transitions. This occurs at two
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Fig. 6.12 Selected sections of the velocity (top), acceleration (middle), and force (bottom) curves in
the first trial of the task; the robot is unaware of the impact-less transitions in the task beforehand.
Left: Curves for the first impact-less transition (motion ‘2’ in Fig. 6.11); Right: Curves for the
second impact-less transition (motion ‘4’ in Fig. 6.11)

sections in a trial of the task: Fig. 6.12 shows the velocity, acceleration, and end-effector
force profiles in these regions measured during the first trial of the task. As expected, the
robot experiences sudden spikes in velocity and acceleration (jerk) when the surface changes
unexpectedly. Recall from previous chapter that this is due to the wrong predictions provided
by the dynamics model which provides a feed-forward term for the controller that either
overestimates or underestimates the environment forces in the new mode. When the robot
detects such a discontinuity, it identifies this as a contact change and quickly switches to a
high-stiffness controller to identify the new mode it is in. Seeing that this is a new surface
which it hasn’t seen before, the robot learns a new dynamics model for the mode which
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(a) Experiment trial 2.

(b) Experiment trial 3.

Fig. 6.13 Selected sections of the velocity (top), acceleration (middle), and force (bottom) curves
in trials 2 and 3. Left: Curves for the first impact-less transition (motion ‘2’ in Fig. 6.11); Right:
Curves for the second impact-less transition (motion ‘4’ in Fig. 6.11)

it uses as a forward model for the AVIC in that mode. The surface of the table changes
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twice during the task; however, for the second surface change, the robot recognises the new
dynamics mode as a surface that it has seen before (surface A).

In the next trial (Fig. 6.13a), the robot expects these mode switches (the anticipated region
is marked in the figure), and because it anticipates an impact-less contact change, the robot
switches to a high stiffness controller which would help the robot to identify the new mode
quickly while also reducing sudden velocity-acceleration spikes during motion. As desired,
the size of the anticipated region reduces in subsequent trials (Fig. 6.13b). However, the
uncertainties (volume of the anticipated region C ) regarding the locations of these impact-less
contact changes do not reduce as much as the ones for the anticipated collisions due to the
higher noise parameter that is set (by the user) for impact-less transitions.

An interesting phenomenon that was observed during the experiment was that the robot
using this high-stiffness controller is able to easily detect that a contact change has occurred
when it slides from a surface of lower friction (A) to that of higher friction (B); however, it
does not always detect that a mode change has occurred when sliding from B to A. This was
understood to be because of the fact that when sliding a block from a surface of low friction
to that of high friction, the sudden increase in friction at the region of the block in contact
with the new surface offers the highest resistance, and contributes to the frictional resistance
of the block. This change is sudden and pronounced (as seen in figure). On the other hand,
when sliding from a high-friction surface to a low-friction surface, the trailing part of the
block is in contact with the high friction surface which still offers resistance. This causes the
robot to feel that the frictional resistance is being reduced gradually and not suddenly as in
the other case. This lack of discontinuity in the sensed forces, and the absence of spikes in
velocity due to the high-stiffness controller motivated the need to add another component to
the contact-change-detection module of the framework: a threshold for the error between the
measured end-effector force and the prediction from a (non-updating) forward model for that
mode.

6.7.6 Handling collisions that are outside anticipated regions

This section tests the ability of the framework to adapt to situations where collisions occur
outside the anticipated regions of contact. Such scenarios can occur, for instance, when the
initial estimates of potential collisions are wrong. In case of initial estimates provided by
visual sensors, this could be due to noise in sensors or due to occlusions in the line of sight
of the camera. The Kalman filter-based update method allows for dealing with such cases as
demonstrated in the below experiments.
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(a) Collision occurs before anticipated region. (b) Collision occurs after the anticipated region.

Fig. 6.14 Task setup used for testing the capability of the framework to handle collisions when
they occur in regions outside the anticipated region C . The red ellipse indicate C where the robot
expects collision to occur according to the initial guess; the red cross denotes the location where the
contact would actually occur; the yellow line is the simple path the robot was made to follow in the
experiments.

Collision occurs before anticipated region

For the first experiment in this section, the robot was provided with an initial contact estimate
that is wrong and lies beyond the actual contact (Fig. 6.14a). This scenario is equivalent to
the robot having to deal with an unseen/unknown collision. The robot has to learn to make
contact with the surface by ensuring smooth motion dynamics and low force on impact. As
expected, in the first trial, the robot hits the surface with high impact force as it expects the
contact to happen much later (Fig. 6.15). Since the robot experienced the collision outside
the region of anticipated collision, it resets and re-initialises C with the new measurements
of the end-effector position during impact with pre-defined default value for the covariance.
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Fig. 6.15 End-effector position and force plots along the direction of motion during different trials
of the task when the robot is not expecting a contact. Each colour represents a different trial. Top:
End-effector position tracking in each trial; the dotted horizontal lines indicate the boundary of C
in the corresponding trial. In the first trial (blue), the robot does not expect a contact in the region
and hence the boundary is not seen in the figure. Bottom: End-effector force along impact direction.
The first trial has highest impact force as it collides with an unexpected contact. In subsequent trials,
the impact is reduced using the transition-phase controller. The delay in task completion is reduced
in subsequent trials as the robot becomes more certain about the contact location and the size of C
reduces.

The new estimate, however, enables to the robot to perform the task in the next trial with
much lower impact force, although the task takes longer to complete due to the large C . As
in previous experiments, the robot can then reduce the uncertainty of C in subsequent trials,
thereby reducing the delay in task while producing smooth motion and low impact force
on collision (see Fig. 6.15). These results show that the robot can learn to handle unseen
collision quickly in a few repeats of the task.

Collision occurs after anticipated region

In the next experiment, the robot is provided an initial estimate of C that lies before the actual
collision (Fig. 6.14b). In such scenarios where the robot is expecting a contact and the contact
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Fig. 6.16 End-effector position and force plots along the direction of motion during different trials
of the task when C is before the actual contact. Each colour represents a different trial. Top: End-
effector position tracking in each trial; the dotted horizontal lines indicate the boundary of C in the
corresponding trial. The shaded (blue) region denotes the initial C where the robot expected the
contact to occur. Bottom: End-effector force along impact direction. The first trial has highest impact
force as it switches to a velocity-damped force controller to make contact when it does not find a
contact in the anticipated region. In subsequent trials, the impact is reduced using the transition-phase
controller in the newly estimated C . The delay in task completion is also reduced in subsequent trials
as the robot becomes more certain about the contact location and the size of C reduces.

never occurs, the controller in the framework is designed to switch to a velocity-damped force
controller (Eq. (2.11)) till it makes contact with an object. The velocity damping allows the
robot to approach a contact without uncontrolled acceleration as mentioned in Section 2.1.3.
If the robot does not make contact after moving a predefined distance threshold, however, the
robot stops the task and considers it failed, in which case the planner is asked to provide a
new plan for the task.

This experiment, however, was designed such that the robot does make a contact, although
it happens after the region where it anticipates a collision. Fig. 6.16 shows how the region of
anticipated collision changes after each subsequent trials once the robot resets C at the end
of its first trial. The impact force in the first trial is high as the robot is using force control
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to make a contact after not having made a contact in the anticipated region. Even with the
velocity damping, this is clearly not a safe impact. However, in the next trials, the robot uses
the transition-phase controller within its new C , thereby reducing the impact force and task
completion time in subsequent trials.

This is conceptually similar to the approach taken by Steinmetz et al. [181] where
their robot switches to a constant low-velocity controller till a contact is established, if an
anticipated collision did not occur. However, unlike their approach, we try to reduce impact
effects in subsequent trials by allowing the robot to reset and improve its estimate of contact
location. We also use a velocity-damped force controller for a pre-defined distance after
which the robot stops moving if does not experience a contact.

6.8 Summary and discussion

This chapter described a framework for addressing the discontinuities in changing-contact
manipulation tasks that arise due to contact changes. The framework introduces a transition-
phase controller in a hybrid force-motion variable impedance controller for continuous-
contact tasks. Our representational choices enable us to simplify and address the associated
challenges reliably and efficiently. Specifically, a Kalman filter formulation is adapted to
incrementally improve the estimates of the contact positions. These estimates are used to
minimise the time spent in the transition phase with appropriate transition-phase controllers.
For controlling impact forces on collision, the velocity profile of corresponding transition-
phase controllers is modified automatically to achieve smooth motion and a desired impact
force.

The chapter began by describing the types of discontinuities that arise in a fixed-world
changing-contact manipulation task, and by discussing their characteristics. We then pro-
posed a novel Kalman filter-based incremental contact anticipation strategy that can improve
the estimate of contact locations in a task in a few trials. Next, we introduced the concept of
transition-phase controllers in the framework and the properties required for handling the two
types of mode transitions. We also described our approach for automatically identifying the
required approach velocity for reducing impact forces on collision. In the next sections, we
described our strategy for ensuring smooth transition between the default variable impedance
controller and the appropriate transition-phase controller such that the overall motion is
smooth. Finally, we experimentally evaluated the proposed contact-change-handling module
on a physical robot performing different changing-contact tasks involving collisions as well
as impact-less mode transitions. We were able to demonstrate the effectiveness of the frame-
work in reducing impact forces and vibrations on collision, and show the capability of the
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framework to adapt to wrong contact estimates as well as its ability to reduce the uncertainty
of contact locations in a few repeats of the task. Finally we showed the framework’s ability
to handle unexpected and missing contacts in a planned task.

This work opens up several directions for further research. First, we only focused on
collisions due to translational motion, and did not address collisions due to rotations of the
end-effector. This could be addressed by defining a region of anticipated collision in SO(3).
Second, we observed that updating approach velocity for collisions when the robot is already
in contact with another surface is more complicated. This is because of the difficulty in
differentiating the sensor readings obtained due to reactive forces from the existing contact
and the sensor readings obtained due to the impact force generated by the collision with
another object. One possible way to address this issue could be to learn a better forward
model for the contact mode such that it can accurately predict the forces due to the first
contact. However, the problem is more likely to be more fundamental in terms of sensor
accuracy and resolution at times of impact. Third, we only modified the velocity profile
to achieve the desired smooth motion, and future work can further explore the relationship
between stiffness values and the impact forces and vibrations. Initial experiments indicate
that this is a challenging problem, as summarised in Appendix B.3. Moreover, reducing the
stiffness during approach (to a contact position) makes the motion more sensitive to inertia,
e.g., the velocity drops almost to zero before settling on the target approach velocity at time
1.5s in Fig. 6.10a. This behaviour is due to the lag in tracking the target trajectory and the
uncompensated end-effector mass, which are due to the lower value of the stiffness used as the
robot approaches a contact. We also acknowledge that the linear state transition formulation
used for the Kalman filter could be oversimplifying the location of contacts, especially if the
objects in the environment are non-static. This is also another potential direction for research
to explore the possibility of extending this formulation for movable objects. Furthermore, we
note that we have assumed all contact changes, specifically collisions, to be point contacts
or simultaneous contacts that can be distinctly identified using a force-torque sensor at the
wrist of the robot. However, this assumption may not hold in some real-world scenarios
where collisions occur simultaneously or in quick succession, and often over a large area
[60]. Despite these limitations, the proposed contact-change-handling module is a promising
step towards developing a strategy for incrementally improving knowledge about contact
changes and producing smooth motion overall with minimum delays and tracking errors in a
few trials of the task.



Chapter 7

Conclusion

This research was motivated by the need for having a data-efficient framework for performing
changing-contact manipulation tasks which can ensure the tracking accuracy as well as
robot/object safely by handling continuous and discontinuous interaction dynamics, and re-
ducing damaging effects of contact changes and collisions. This thesis primarily investigated
the possibility of an incremental framework for handling continuous and discontinuous dy-
namics that occur in manipulation, which can quickly adapt to new and unseen environment
dynamics, and deal with the large dynamics discontinuities that occur when contact changes
occur, with minimum pre-training.

It was clear from reviewing literature and from our experiments that an adaptive variable
impedance approach is required for efficiently navigating new and/or continuously changing
environments. In Chapter 4, we presented Adaptive Variable Impedance Control (AVIC), an
online framework for tracking a trajectory efficiently in continuously changing environments.
We developed an incrementally updating feed-forward model for our variable impedance
controller which could easily adapt to continuous changing environment dynamics and
provide appropriate feed-forward term to compensate for the anticipated external disturbances.
The feedback gains of the controller are also guided by the accuracy of the forward model,
which ensures that the tracking accuracy is not compromised even if the forward model is
unreliable. The representational choices made for our learning component enables the robot
to incrementally learn to predict the end-effector forces and torques and adapt the model
online and in real-time.

We experimentally demonstrated the convergence and trajectory-following capabilities
of AVIC in different simulated continuous environments. We had previously published
the results of conducting similar experiments on a physical robot in [124]. In the chapter,
we also demonstrated the need for having an incrementally updating forward model for
handling continuously changing environments by comparing our incremental forward model
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with a fixed learned model. The AVIC framework was also experimentally compared
with three other adaptive control strategies from literature in the context of trajectory-
following in dynamically changing environments. The Model Reference Adaptive Control
(MRAC) adaptive control strategy relies heavily on having a good reference model to navigate
through any environment. This can become difficult for non-trivial and dynamically varying
environments, as demonstrated in our experiments. Self-tuning adaptive controllers typically
require fixed goal for the controller so as to converge to a good set of parameters and often
does not converge in time for transient or time-varying goals. This makes such controllers
unsuitable for the purposes of trajectory following. Gain-scheduling controllers learn a time-
indexed sequence of controller parameters for following a trajectory in any given environment.
However, such methods usually require large training data and relies on the environment
to be the same during testing. On the other hand, our AVIC framework incrementally
updates its forward model to capture the variations in the environment dynamics directly by
modelling end-effector wrenches and is therefore able to navigate any continuously changing
environment.

In Chapter 5, we extended AVIC for changing contact manipulation tasks by posing
manipulation as a piecewise continuous hybrid system and learning the dynamics using
a hybrid model. In this formulation we use a hierarchical model with a high-level mode-
detection model which can incrementally learn to detect new contact modes, and low-level
dynamics models which are the incremental forward models for AVIC corresponding to
each identified contact mode. Using appropriate feature representations, we were able to
demonstrate that the hybrid framework is able to successfully detect and model the interaction
dynamics for different contact modes, as well as model previously unseen modes from scratch.
We first showed that having separate models for distinct modes are better than having a single
model or having to re-learn a model for the new mode from scratch. We then evaluated the
framework in the context of a robot performing changing contact tasks where mode changes
occur due to distinct environments (surfaces of different friction) or due to different types
of contact the robot makes with an object (edge contact, surface contact, etc.). We then
evaluated the need for having an incrementally updating hybrid framework and real-time
feedback for model correction for learning piecewise-continuous systems by comparing it
with a baseline fully offline long-term prediction model. We incrementally made changes
to the baseline framework to motivate the choices made in the development of our hybrid
framework.

In Chapter 6, we investigated a module for handling and reducing discontinuities in the
interaction dynamics that happen when a contact change occurs. For instance, there will
be large spikes in acceleration and forces at the end-effector when the robot collides with
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an object in the environment, which could be damaging to the robot and/or the object. We
proposed an incrementally improving Kalman filter-based contact anticipation module that
iteratively updates the robot’s knowledge about the contact locations in a changing-contact
task by representing the regions of anticipated contact changes as ellipsoids in the task-
space. This representation allows the robot to switch to appropriate ‘safe’ transition-phase
controllers when it enters these regions so that the discontinuities during mode transitions are
reduced. We described the two types of contact changes that could occur in a manipulation
task in a static environment – impact transitions (collisions) and impact-less transitions – and
discussed the ideal properties of a transition-phase controller for dealing with each. The
chapter also proposed strategies to smoothly transition between controllers as the robot enters
and leaves these regions of anticipated transitions such that the overall motion is smooth and
jerk-free. The proposed transition-phase controllers for handling collisions also have the
ability to modify their approach velocity automatically so as to achieve a desired force on
impact. Together, the framework was shown to be able to handle collisions and impact-less
mode transitions by sacrificing some tracking accuracy in the form of delay in task completion.
The delays, however, reduce within a few trials of the task as the robot becomes more certain
about the contact locations and hence spend less time in the transition-phase. The framework
was tested for different changing-contact tasks that involved multiple collisions as well as
impact-less transitions. We demonstrated that the robot is able to improve its knowledge
regarding contact locations in a few trials and produce smooth overall motion by introducing
minimum delay in task completion. Finally, we also experimentally evaluated the ability
of the proposed contact-change-handling module to deal with contact-changes that occur
outside the anticipated regions.

Most experiments in the thesis were conducted using a physical robot performing a
manipulation task where the robot approached a surface and slid along it to make contact
with other objects in the work space. This class of tasks was chosen as it is possible to
quickly design new tasks which involves multiple collisions, impact-less transitions, multiple
force-control directions, and have a piecewise continuous interaction dynamics by assuming
that the friction of each surface is uniform across its face. These tasks can also be seen
as representatives of different sub-tasks/segments of changing-contact tasks in industrial
settings such as insertion and stacking, or tooling tasks such as grinding and polishing.

7.1 Challenges

The objective of the research was to capture the model of the hybrid dynamical system
that is changing-contact manipulation. This, coupled with the need to have an adaptive and
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incremental framework that requires little or no pre-training, introduced a lot of interesting
and difficult challenges.

The AVIC framework presented in Chapter 4 relies heavily on the adaptive forward
model used to update the parameters of the control law online. The incremental GMM
algorithm (IGMM) used for building our forward models can become memory-intensive
if the hyperparameters are not chosen correctly. The main hyperparameter that affects the
performance of IGMM relates directly to the information stored in memory at a time. By
choosing to keep more information in memory, the learning and prediction can slow down due
to the need for inverting larger matrices (see Appendix A.1). On the other hand, not storing
enough information in memory would result in the model ‘forgetting’ the data captured earlier
in time. This means that the model will have to relearn the system dynamics if the robot
encounters that part of the state space again. This could happen in some continuously varying
environments such as the ‘porridge environment’ introduced in Chapter 4, where having
shorter memory would mean the model would forget the model of the older dynamics as the
viscosity of the environment increases. Choosing appropriate hyperparameters for the IGMM
depending on the type of environment was critical to ensure that the incremental model could
be used in real-time. This required running the dynamics learner on a separate machine while
the controller and experiments were run from another computer in the same network. It also
led to the development of the reduced one-dimensional magnitude representations that were
used for learning instead of their vector formats.

As mentioned in our initial assumptions (Chapter 1), we assume that good dynamics
models of the robot is available. This is a critical part of our controller formulation (Eq. (2.9))
to compensate for the robot dynamics during motion. However, for most of our experiments
on the physical robot, the robot had to be attached with a custom end-effector representing a
tool. To compensate for the additional load at the end-effector, the dynamics models of the
robot had to be modified. Franka Emika provides a user interface for inserting the inertial
information of the additional load into the model. However, this was not always reliable,
especially when the attached load was heavy. So we had to use light-weight objects as
end-effectors such as a wooden block (e.g. Fig. 5.1) or 3D printed objects (e.g. Fig. 6.11).

Another important issue was that the mode identification accuracy using our high-level
mode-detection module presented in Chapter 5 depends very heavily on the choice of feature
representation to distinguish between the different possible modes. This often required
a more in-depth knowledge of the type of contact modes that the robot can encounter in
a task. Since most tasks in this thesis involves different modes due to different surface
friction, this did not require making too much change to the choice of feature representation.
However, in the experiment where the robot had to differentiate between the different types
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of contacts, a new feature representation that considers end-effector torques in addition to
the original form of just forces, was required. Even with this formulation, it can become
difficult to differentiate between contact modes if the robot applies different normal forces
on the surface (see Fig. 5.15). Furthermore, it often becomes difficult to distinguish between
contact modes if there are many possible modes in a task. In such scenarios, the distinction
between modes are less evident and mode identification can take longer and sometimes even
produce low-confidence results.

A critical portion of the challenges in the final part of this research can be attributed to
the highly non-linear nature of the interaction dynamics when contact-changes occur. At
these points, the force-torque sensors tend to be unreliable, especially if there are other forces
already acting at the end-effector. This was noticed during tasks where the robot slides on
multiple surfaces before colliding with another object; the force-torque measurements tend
to be extremely noisy in such scenarios and the framework often mistook a measurement as a
mode transition even when the actual transition had not happened. Therefore, the force-torque
sensor readings had to be filtered and smoothed using a low-pass-filter to remove the noise.
The Franka robot comes with in-built low-pass filtering of the end-effector force-torque
estimates, which was used for most experiments. However, this often meant the measured
impact forces are not the actual impact force that the robot felt (see Appendix B.3).

7.2 Framework limitations and future research

The presented framework is a step forward to developing an incrementally learning robot
framework for performing changing-contact manipulation tasks efficiently. However, there
are several parts in the framework that has to be improved before this can be deployed on a
real-world system reliably.

As mentinoed previously, the AVIC framework heavily relies on having a good robot
dynamics model and a reliable FT sensor at the robot end-effector to model the end-effector
forces. It also becomes important the the FT sensor is located at a good point in the kinematic
chain of the robot such that it measures forces and torques in the space where the task-space
control command is computed, or a good definition of the transformation to this space is
required. It is also important to have a properly designed control loop with an independent
learning thread for modelling the interaction dynamics in real-time. This could be challenging
requirements for very low-spec workstations.

Although the IGMM hyperparameter tuning is intuitive, it often has to be tested a few
times before converging to a good set of parameters for forward models in a particular task.
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The gradual ‘unlearning’ of the forward model mentioned in the previous section can also
cause difficulties in selecting a reasonable set of hyperparameters.

Similarly, the control law in AVIC (Eq. (2.9)) relies on a forward model and feedback
from the FT sensor. This means that in the absence of a good forward model, the controller
reduces to a constant high-stiffness PD controller with dynamics compensation (impedance
controller). This does not necessarily result in task failure, but does not achieve the objective
of completing the task with low stiffness and energy.

As discussed above, the mode detection model presented in Chapter 5 requires good
understanding of the contact modes that could appear in a task so as to design a good feature
representation for the mode-detection module. The choice of the state space is crucial
for being able to distinguish between modes, and would require good understanding of
the difference in the observable values for the robot when it is in different contact modes.
Another interesting challenge is to decide the resolution at which the distinction between
modes is to be made. For instance, it may not be worth distinguishing between two surfaces
whose friction are very similar; in such cases, it may be enough for the robot to use the
same dynamics model from a similar surface and proceed with improving and using the
model in AVIC to navigate the other surface. The level of resolution between modes is also a
hyperparameter that the designer has to choose, which is dictated by the minimum ‘distance’
needed between the features to classify them as different modes.

Another important assumption made during the development of the hybrid framework
is that manipulation tasks are piecewise-continuous. Although this is a fair assumption in
a broad sense, it may not always be easy to separate out the contact modes involved in a
task. For instance, even in a polishing task where the robot slides over the same surface,
there could be several regions where the friction is not uniform due to surface irregularities;
these could potentially trigger the mode-detection module in our framework. Similarly
many manipulation task would involve the end-effector making contact with multiple points
in the environment at the same time or in quick succession, which can often result in
complicating the notion of different contact modes. Another critical assumption that is
implicit for formulating the interaction dynamics as piecewise continuous is that the object
at the end-effector is rigidly grasped by the robot. The interaction dynamics can be affected
significantly if the held object can move even slightly. The measurements by an FT sensor at
the wrist of the robot would be affected by the motion of a loose end-effector.

The contact anticipation module presented in Chapter 6 uses a simplified linear model
to represent the state transition of contact locations for formulating the Kalman filter. This
may be an oversimplification which may not generalise to movable objects, whose motion
dynamics may not be linear. This should generalise to simple sliding objects, but it could
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get much more complicated for objects that can roll or those that have irregular shapes.
This assumption of linearity, however, is the main reason that the approach can converge
successfully to the actual contact location in a few trials. Also, by setting a constant noise in
the sensor model, we assume that the noise in the kinematics model of the robot is a constant.
However, this would in reality be much more complex and would depend on the noise in
the joint encoder as well. Any noise in the joint sensor would be mapped to the task-space
non-linearly which itself could break the linearity assumption made by the Kalman filter.
Similarly, another important limitation of this formulation is that the ellipsoid representation
used to denote the region of anticipated mode transitions is applicable only because the
trajectory followed by the robot is repeatable and is performed in a static (rigidly fixed)
world.

The transition-phase controllers used for approaching a collision does not update its
stiffness automatically, although we have some evidence that having lower stiffness helps
reduce jerk on contact. It relies on the designer providing a ‘safe’ approach stiffness that
would produce low vibrations while being stiff enough to compensate for end-effector inertia.
Further research could explore strategies to allow the agent to intelligently learn to adapt
the stiffness to minimise vibrations without sacrificing tracking accuracy too much. The
complete contact-change-handling module presented in Chapter 6 ignore all contact changes
that occur due to end-effector rotations. The C∞ smooth velocity described in Section 6.5.2 is
also only applicable for translational motion. The rotational velocity was linearly interpolated
using SLERP (spherical linear interpolation) [169] in our experiments, which generally will
not align with the time-remapping of the translational segment of the trajectory. It would be
interesting to explore the velocity interpolation using a similar C∞ form.

As mentioned previously, the overall framework relies on having good dynamics model
of the robot. The control law used also implicitly assumes that the end-effector of the
robot is included in the dynamics model. This would typically require incorporating the
end-effector’s dynamics parameters in the overall dynamics model of the manipulator system,
which could be cumbersome especially if the end-effector is variable across trials of the task.
Although our framework can account for this implicitly by automatically learning to increase
the controller stiffness when the forward model accuracy is low (using higher stiffness can
partially compensate for dynamics imbalance in the system), the effect of uncompensated
end-effector dynamics can affect the performance when the robot is forced to use low stiffness
(see discussion at the end of Chapter 6). This part of the framework could be improved by
incorporating some system identification routine in the beginning of a trial to estimate the
model of the end-effector dynamics.
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Having the same end-effector across trials is also critical for the Kalman filter-based
contact anticipation model; the model relies on being able improve the estimate of the contact
location in the form of end-effector position during impact, and this makes the critical
assumption that the end-effector is the same across trials and rigidly fixed to the robot.

An interesting (and challenging) problem that was not explored in this thesis is the
importance of having a regular-shaped object as the end-effector for the effectiveness of the
presented framework. The mode detection module relies heavily on the interaction dynamics
to be affected only by the changes in environment or due to change in contact with the
environment, and does not account for having irregularly shaped objects at the end-effector.
It is possible that the overall framework would require a more generalisable formulation to
account for irregular objects at the end-effector such as objects that do not have flat surfaces.

The overall framework also assumes that all collisions occur only at the end-effector of
the robot and not at any other points on the robot’s body. This could be a limiting assumption
especially because the robot expects a task-space trajectory from the planner to follow.
Joint-space plans could account for obstacles in the joint-space of the robot by adding them
as constraints for the planner, which is not possible when generating a task-space plan. A
possible solution to account for this problem is by using the joint-space plan as the secondary
goal in the control law (see note on ‘null-space control’ in Section 2.1.4) while following the
task-space plan as the primary goal; this way the robot would try to follow the joint-space
plan (which avoids the obstacles in the joint space) as long as it does not impede the objective
of achieving the primary goal (following the task-space trajectory).

Include notes on "being stiff when uncertain is not always good"
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Appendix A

Relevant algorithms used in framework

This section provides more information about some of the algorithms that were adopted from
existing literature for the development of the framework in this thesis.

A.1 Gaussian Mixture Models

By formulation, a Gaussian Mixture Model (GMM) behaves as an unsupervised clustering
system. While traditional clustering algorithms such as K-means cluster each data point in
to a single cluster (hard clustering), GMMs define the probability of a point belonging to a
particular cluster (soft clustering).

A.1.1 Standard derivation

A Gaussian Mixture is a function combining K Gaussians, where each Gaussian is identified
by k ∈ {1,2, ...K}. Each Gaussian k in the mixture is comprised of: a mean µ which defines
its centre, a covariance Σ that defines its width (or equivalently the dimensions of an ellipsoid
in multivariate scenarios), and a mixing probability π that determines the weightage of the
Gaussian function in the overall mixture, such that

K

∑
k=i

πk = 1 (A.1)

It is also convenient to define a latent variable z in the context of GMMs, which represent
the whether a point belongs to a particular cluster in the mixture or not, i.e., it can only
take values 0 or 1. Therefore, p(znk = 1|xn) would be read as "Given a point xn, what it the
probability of it being generated from Gaussian k?". Hence, this is equivalent to the mixing
coefficient π , i.e., πk = p(zk = 1).
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Now, if z is the set of all latent variables {z1, ...,zK}, then their mutual independence
would lead to prove

p(z) = p(z1 = 1)z1 p(z2 = 1)z2...p(zK = 1)zK =
K

∑
k=i

π
zk
k

The probability of observing our data given that it came from Gaussian k turns out to be the
Gaussian function itself:

p(xn|z) =
K

∏
k=1
N (xn|µk,Σk)

z
k (A.2)

The value that we are interested in is actually the probability of z given our data x. The
product rule of probabilities provide us with:

p(xn,z) = p(xn|z)p(z) (A.3)

Marginalising the above equation for z and using Eq. (A.2) leads to:

p(xn) =
K

∑
k=1

p(xn|z)p(z) =
K

∑
k=1

πkN (xn|µk,Σk)
z
k (A.4)

To determine the optimal parameters θ = (π,µ,Σ), we need to determine the maximum
likelihood of the model. This can be found as the joint probability of all data points xn

p(x) =
N

∏
n=1

p(xn) =
N

∏
n=1

K

∑
k=1

πkN (xn|µk,Σk)
z
k (A.5)

Applying log for easier operations:

ln p(x) =
N

∑
n=1

ln
K

∑
k=1

πkN (xn|µk,Σk)
z
k (A.6)

In order to find the optimal parameters for the Gaussian mixture, we have to differentiate
this equation with respect to the parameters and equate to zero. However, the logarithm
around the second summation of the above equation makes this very hard. Therefore,
we need to use an iterative method to estimate the parameters. And we typically use the
Expectation-Maximisation (EM) algorithm for this.

However, we first have to rearrange the equation so that we can find the probability of z
given x. By using Bayes’ rule, we can get:
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p(zk = 1|xn) =
p(xn|zk = 1)p(zk = 1)

∑
K
j=1 p(xn|z j = 1)p(z j = 1)

(A.7)

The above equation with appropriate substitutions become

p(zk = 1|xn) =
πkN (xn|µk,Σk)

∑
K
j=1 π jN (xn|µ j,Σ j)

= γ(znk) (A.8)

The Expectation-Maximisation (EM) algorithm

The EM algorithm is an iterative method which is widely used for optimisation problems
where the objective functions have complexities that makes it difficult to obtain closed-form
solutions.

In our GMM formulation, we will use the EM algorithm for optimising parameters
θ = (π,µ,Σ). At the beginning of the algorithm, θ is initialised using some strategy.
Typically, we use the results obtained from a previous K-means run.

i. Expectation step:

In the expectation (E) step, we evaluate the expectation of the form

Q(θ ∗,θ) = E [ln p(x,z|θ ∗)] = ∑
z

γ(znk) ln p(x,z|θ ∗) (A.9)

where γ(znk) is defined in Eq. (A.8). The complete model likelihood p(x,z|θ ∗) can be
obtained as

p(x,z|θ ∗) =
N

∏
n=1

K

∏
k=1

π
znkN (xn|µ j,Σ j)

znk (A.10)

Applying logarithm operator and substituting this in Eq. (A.9), we get

Q(θ ∗,θ) =
N

∑
n=1

K

∑
k=1

γ(znk) [lnπk + lnN (xn|µk,Σk)] (A.11)

ii. Maximisation step:

The maximisation (M) step tries to find the revised parameters θ ∗ using

θ
∗ = argmax

θ

Q(θ ∗,θ) (A.12)
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To take into account the restriction in Eq. (A.1), we format the optimisation function
using the suitable Lagrange multiplier as follows:

Q(θ ∗,θ) =
N

∑
n=1

K

∑
k=1

γ(znk) [lnπk + lnN (xn|µk,Σk)]−λ

(
K

∑
k=1

πk−1

)
(A.13)

By taking the derivative of Eq. (A.13) with respect to π , µ , and Σ one after the other and
equating to zero, we obtain the solution

πk =
∑

N
n=1 γ(znk)

N
(A.14a)

µ
∗
k =

∑
N
n=1 γ(znk)xn

∑
N
n=1 γ(znk)

(A.14b)

Σ
∗
k =

∑
N
n=1 γ(znk)(xn−µk)(xn−µk)

T

∑
N
n=1 γ(znk)

(A.14c)

These values are then used to determine the new value for γ in the next E step. This cycle
is repeated till convergence.

Gaussian Mixture Regression (GMR)

GMR offers a simple solution to generate data from a GMM. It relies on the standard
properties of Gaussians such as linear transformation and conditioning, and provides a
probabilistic synthesis mechanism in which the model can compute output distributions
online.

GMR can handle different sources of missing data, as the system can consider during the
retrieval any combination of input-output mapping, and the expectations on the remaining
dimensions can be computed very efficiently.

Consider the block decomposition of the data point ξn in a GMM, with mean and
covariance µk and Σk. At each iteration n, p(ξOn |ξ In ) can then be computed as a conditional
distribution

p(ξOn |ξ In )∼
K

∑
k=1

hkN (µ̂Ok , Σ̂Ok ) (A.15)
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where

µ̂
O
k = µ

O
k +Σ

OI
k Σ

I
k
−1
(ξ In −µ

I
i ) (A.16a)

Σ̂
O
k = Σ

O
k −Σ

OI
k Σ

I
k
−1

Σ
IO
k (A.16b)

hk =
πnN (ξ In |µIn ,ΣIn )

∑k πnN (ξ Ik |µIk ,ΣIk )
(A.16c)

Therefore, for a GMM that is encoded with the data p(ξ In ,ξ
O
n ), GMR can be used to

retrieve p(ξOn |ξ In ).
Computationally the most expensive operation in GMR is the inversion of Σ, with the

combined approximate order complexity being almost O(NKD3), for N data points, K Gaus-
sian components and D dimensions. However, there are research which have successfully
been able to bring the complexity of GMM modelling and retrieving down to about O(NKD2)

[180, 154].

A.1.2 Incremental GMM

There have been several works that use incoming batches of data to modify an existing GMM
by updating the mean, covariance and weightages of the components, with functionality to
add or remove components based on some relevance criteria [180, 154, 4, 42].

The incremental GMM algorithm used in this thesis IGMM was adopted from the work
by Engel and Heinen [42]. The algorithm creates and continually adjusts a Gaussian Mixture
Model consistently to sequentially presented data. The IGMM algorithm is not described in
detail here, and interested readers are referred to the original publication [42].

The critical part of the algorithm is the recursive update equations that are approximate
incremental counterparts of the update equations used by the EM algorithm. This allows for
incrementally updating the GMM parameters online using incoming batch of data. In general,
the algorithm depends on hyperparameters such as the novelty threshold which determines
the minimum likelihood for a data point to be grouped into an existing component. If the
point is rejected by all the components, a new component is added to the mixture and the
parameters are appropriately adjusted. Another important hyperparameter is a user-specified
configuration parameter, which is typically left at a large enough value to avoid singularities.
The other parameters are basically the standard hyperparameters in a regular GMM such as
initial values of the mean, covariance, and weightage of the initial components.
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A.2 BIRCH Incremental Clustering

BIRCH (balanced iterative reducing and clustering using hierarchies) [211] is an unsupervised
clustering algorithm which particularly effective over large datasets. The main advantage of
BIRCH is its ability to incrementally and dynamically cluster incoming, multi-dimensional
data points, trying to produce the best quality clustering given a set of memory and/or time
constraints. In most cases, BIRCH only requires a single scan of the database.

Without going into the mathematical formulation and derivation, the BIRCH algorithm
takes as input a set of N data points, and a desired maximum number of clusters K, or the
maximum ‘diameter’ of the cluster. It usually has 4 steps, the second and fourth of which are
optional.

In the first step, the algorithm creates a hierarchical structure called clustering feature
tree (CF tree) using the data points. It is a height-balanced tree with each node comprising
of several clustering features (CF). Each CF is a tuple of the form CF = (N,LS,SS), where
LS = ∑

N
i=1 Xi is the linear sum of the data points, SS = ∑

N
i=1(Xi)

2 is the square sum. CFs are
organised in a height-balanced CF tree following several rules.

In the second (optional) step, the algorithm scans all the leaf entries in the initial CF
tree to rebuild a smaller CF tree, while removing outliers and grouping crowded subclusters
into larger ones. In the third step, the leaf entries are clustered using an existing clustering
algorithm. Usually, an agglomerative hierarchical clustering algorithm is applied directly to
the subclusters. At this point, a set of clusters is obtained that captures major distribution
pattern in the data. Minor localised inaccuracies that could be present can then be handled by
the optional fourth step, where the centroids of the clusters produced in step 3 are used as
seeds to redistribute the data points to its closest cluster to obtain a new set of clusters. For
the full algorithm description, readers are invited to read [211].



Appendix B

Additional experiments

In this appendix, we discuss the experiments of some of the less relevant experiments that
were not included in the main thesis text. These experiments are considered less important
because (i) their results are inconclusive, (ii) their results provide the same conclusion as
other experiments in the main text, or (iii) their results are unimportant or do not directly
relate to the overall framework presented in this thesis.

B.1 AVIC trajectory tracking in simulated environments

This section presents some results of the trajectory-tracking performance of the AVIC
framework in the simulated ‘multi-spring’ and ‘porridge’ environments that were described
in Section 4.3. The section in the main thesis text only presented the result demonstrating the
convergence ability and results of comparing AVIC with other adaptive control frameworks.
This section simply provides the full trajectory-tracking and stiffness variation results of the
AVIC framework following a task-space plan in the two environments.

The tracking accuracy of AVIC in the ‘multi-spring’ environment is shown in Fig. B.3.
The prediction error by the incremental forward model and the corresponding stiffness
adaptation by the AVIC framework can be seen in Fig. B.2.

Similarly, tracking accuracy of AVIC in the ‘porridge environment’ environment is plotted
in ??, while the prediction error by the incremental forward model and the corresponding
stiffness adaptation by the AVIC framework is in Fig. B.2. Although the high forces make
the learning harder, the error in prediction does not affect the trajectory tracking due to the
corresponding adaptation of the controller stiffness.
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Fig. B.1 Trajectory tracking using AVIC in the ‘multi-spring’ environment along X (top) and Y
(bottom). Green: Target trajectory; Blue: Actual end-effector position.

(a) Error in force prediction.

(b) Corresponding stiffness profile. Green: Minimum
allowed stiffness; Red: Maximum allowed stiffness;
Blue: Stiffness profile adaptation by AVIC.

Fig. B.2 Force prediction accuracy by the incremental forward model and corresponding stiffness
variation of AVIC in the ‘multi-spring’ environment.

B.2 Friction in simulators

This section presents some of the experiments that were conducted in simulation to test the
effect of different friction on the interaction dynamics in terms of end-effector forces and
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Fig. B.3 Trajectory tracking using AVIC in the ‘porridge’ environment along X (top) and Y (bottom).
Green: Target trajectory; Blue: Actual end-effector position.

(a) Error in force prediction.
(b) Corresponding stiffness profile. Green: Minimum
allowed stiffness; Red: Maximum allowed stiffness;
Blue: Stiffness profile adaptation by AVIC.

Fig. B.4 Force prediction accuracy by the incremental forward model and corresponding stiffness
variation of AVIC in the ‘porridge’ environment. When the model accuracy is low, the stiffness is
increased to produce reliable tracking.

velocities. This part of the experiments were done for developing and testing the hybrid
framework for discontinuous dynamics presented in Chapter 5. This had to be done in
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Fig. B.5 Simulated sliding task in Mujoco physics simulator. Friction changes discretely as the robot
slides from one surface to the other.

simulation since the physical robot was unavailable due to lack of access to the lab during
Covid ’19 lockdown. At this point, initial experiments testing the effect of suddenly changing
friction on a robot sliding across surfaces had been conducted with the physical robot (see
Section 5.3.1), and the behaviour that was expected of the simulator was roughly known.

B.2.1 Friction in Bullet simulator

This experiment was conducted to observe how the end-effector forces and torques are
affected in Bullet physics engine when the robot slides between surfaces of different friction.
The task was to approach a table and slide on it, while the friction of the surface suddenly
changes (such as in Fig. 5.1 (left) and Fig. B.5. However, unlike the response of the physical
robot system (see Fig. 5.10), the simulator produced forces and plots that looked very similar
to the ideal behaviour of stick-slip model in friction (Fig. B.6).

This was understood to be unrealistic and hence building a framework for dealing with
these simulated dynamics effects was decided to be pointless.

B.2.2 Friction in Mujoco simulator

The same experiment was then replicated using Mujoco physics (Fig. B.5). Although the
effects looked more realistic (Fig. B.7), the simulator was not ideal for our purposes for
several reasons such as:

• Mujoco physics typically runs in a single thread/process and does not allow parallelisa-
tion in a straightforward manner. This makes implementing our framework in Mujoco
difficult.
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Fig. B.6 End-effector force measured along the axis of motion. The change in sign of forces indicate
change in direction of motion. The dotted vertical lines indicate the points where the surfaces change.

• There are inconsistencies between trials even when simulation is run at same speed.
Performance can be affected depending on load on computer at the time. (These were
tested experimentally, but results are not included here as they are out of scope.)

• Measurement inconsistencies increase when sim speeds are varied. This seems to
be because Mujoco does not implement independent clock; sim time is updated by
user/code, and would require guaranteed constant loop rate from the client-side to
maintain a consistent duration of the simulation steps.

B.2.3 Conclusion

Simulating friction is known to be hard [79]. This meant that discrete dynamic changes due
to friction could not be experimented further in simulation. The hybrid framework presented
in Chapter 5 was therefore developed using data from the physical robot instead.
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Fig. B.7 End-effector position (left), end-effector forces (middle column), and contact forces from
simulator (right) along X (top), Y (middle row), and Z (bottom) axes during the sliding task. Cyan:
Before contact with surface; Magenta: Contact with surface 1; Black: In contact with surface 2.

B.3 Impact dynamics experiments

This section presents some of the initial and/or rejected experiments that were conducted
during the development of the contact-change-handling module presented in Chapter 6.

B.3.1 Impact in simulation vs real-world

Experiments to test different transition-phase controllers for handling impact and collisions
were first done in simulation to avoid damage to the physical robot. The main strategies that
were tested were (i) lowering controller stiffness, (ii) lowering approach velocity, and (iii) a
combination of the two.

These strategies when compared in simulation produced different results to physical robot
experiments. From Fig. B.8, it is clear that reducing stiffness seams to also reduce the impact
force in simulation, which is not the case on a real system. The expected behaviour is seen on
the real system (Fig. B.8b) where the impact force is only affected by the approach velocity
and not by the controller stiffness. The reasoning for this was explained in Section 6.4.1.
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(a) Effect of the strategies during impact in Mujoco simulator. Strategy 1: Reduce stiffness;
Strategy 2: reduce velocity; Strategy 3: Reduce velocity and stiffness.

(b) Effect of the strategies during impact on a physical robot

Fig. B.8 Comparing the effect of the 3 strategies (reduce stiffness, reduce velocity, and reduce both)
in a physics simulator and on a real robot.

B.3.2 Impact-velocity experiments

The plot in (Fig. B.9) show the linear relation between force on impact and approach velocity.
The relation is also linear in simulations (Fig. B.10).
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Fig. B.9 Force plots when a robot approaches the same obstacle with different approach velocities.

Fig. B.10 The relation between impact force and velocity of approach is much more obvious in
simulation. The real world relation is influenced by noise.

B.3.3 Effect of controller stiffness on impact dynamics

Similar experiments were done with a physical robot to study the effect of different controller
stiffness on impact dynamics. However, it was observed that although lower stiffness
seemed to produce less vibrations on contact, there was no conclusive pattern to formulate
a relation between stiffness and jerk/vibration (Fig. B.11). This could also be due to the
lower sensitivity of the force-torque sensor or due to controller inadequacies, but the problem
was not explored further. It was also clear that reducing stiffness did not seem to have any
meaningful relation to the force at impact (Fig. B.12a), but trades of tracking accuracy by
bringing delays (Fig. B.12b)
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Fig. B.11 Force and jerk plots for a robot making contact with different controller stiffness.

(a) Force vs stiffness. Note that the scale of Y axis is
small. The max difference is about 1N, approx 100g,
which is the observed resolution of the FT sensor in
practice.

(b) Time to impact vs stiffness. Reducing stiffness
brings delay in task completion. This is to be expected
due to the lag that is introduced by becoming more
compliant.

Fig. B.12 Reducing stiffness does not show any meaningful pattern with the change in impact force,
but it brings noticeable delays in task completion due to lag in tracking.

B.4 Comparing external FT sensor with internal estimate
of robot

The Franka Emika Panda robot provides internal estimation of the end-effector forces and
torques that are computed using the robot’s internal dynamics model and real-time joint
sensor measurements. The experiments in this section were conducted to see how accurate
the estimated values were when compared to the measurements from an external FT sensor.
The external FT sensor used for comparison was the ATI Gamma 6DoF force-torque sensor.
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The ATI sensor is able to provide raw data at 500Hz, while the internal estimate of the robot
is a low-pass-filtered (LPF) estimate that is at the frequency of up to 1000Hz.

Fig. B.13 Force profiles measured using external FT (top) and internal
robot estimates (bottom) for different approach velocities.

Fig. B.14 Task setup for
comparing external FT sen-
sor measurements with the
robot’s internal estimator.

Fig. B.15 Linear fit between impact force and velocity of approach when using measurement from
external FT sensor (left) and internal estimate (right).

The experiment was similar to the previous experiment to obtain the relation between
impact force and approach velocity. However, this time the robot collided with the FT sensor
placed on the table instead of the table itself (Fig. B.14). This way, the impact forces and the
subsequent holding forces are measured both by the external FT sensor as well the internal
estimator.

It can be seen from Fig. B.13 that the forces measured by the external FT sensor is
roughly the same as the internal estimate of the robot except at the impact points. This is
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because the internal estimate is smoothed using a low-pass filter which reduces the peaks
which occur at impact. However, the measurements are consistent using both modalities
when the measured forces are less volatile. This is clear when the robot stays in contact with
the surface after impact when the measured forces are equal when using both the sensors.

The effect of LPF smoothing is evident at regions of impact. Even though this produces
different peak impact measurements, either of these sensor modalities can be used to suc-
cessfully build the linear fit between impact force and velocity that we use in Chapter 6 for
designing the transition-phase controller for impacts (Fig. B.15).

In the end, we decided to stick with the FT estimates provided by the robot for the
following reasons:

• The estimates are close enough to the measured FT for simple tasks and while mea-
suring continuous forces. This is subject to the assumption that the dynamics of all
external load is incorporated in the model within the robot controller, or alternatively
having a low-weight end-effector or no load at the end-effector.

• Using the external FT sensor would require attaching it to the robot and compensating
for the dynamics of the additional load. This is non-trivial and would affect the
performance of the AVIC control heavily.

• External FT sensor attached to the end-effector will be affected by the acceleration of
the end-effector, and the readings would be unreliable when the robot accelerates. On
the other hand, the values estimated by the robot’s model should be able to compensate
for the motion dynamics while estimating end-effector FT.

• Using the external FT sensor would require writing a low-pass filter to reduce the
noise of the raw sensor data (raw noisy data can trigger the ‘mode identification’ phase
even if the robot did not actually change contact mode). This essentially removes all
benefits of using the external FT sensor, and would be equivalent to using the internal
estimates.

• Using external FT sensor would also require transforming the measured forces to the
base frame of the robot so as to use it for control.

• Using the external sensor would require including another computer in the multi-
computer setup (see Appendix C.2).



Appendix C

Regarding hardware and
implementation

C.1 Hardware used

This appendix gives information about the main hardware used for the experiments in this
thesis.

C.1.1 Franka Emika Panda robot

This 7-DoF robot was the main hardware that was used for most real-world experiments
presented in this thesis (e.g. Fig. 6.11). The robot can be controlled easily using their web
interface, which has a very easy-to-use block-style programming interface. The interface can
also be used to provide the dynamics information of custom end-effectors that are attached
to the robot, which is then used by the internal controller of the robot for providing dynamics
compensation during motion. The company also provides a research suite (C++ library and
ROS library) for performing more low-level control from a machine running a real-time
Linux kernel. Using the suite, the robot can be controlled using low-level joint torques,
position and/or velocity, as well as Cartesian position, velocity and force. The Panda has
joint torque sensors which is also used to provide estimates of end-effector wrenches. It is
very sensitive in terms of feedback and has safety features that stop the robot when it detects
collisions or high forces. It also comes with a detachable position-controllable two-finger
gripper.
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C.1.2 Rethink Robotics Sawyer robot

The Sawyer is a single-arm robot from Rethink Robotics, which was used for some of our
experiments (e.g. Fig. 5.3). This robot consists of serial elastic actuators and has seven
degrees of freedom. The robot can be controlled via ROS and provides position, velocity
and torque control modes. It also has built-in force-sensing capabilities and the passive
compliance makes it safe for human collaborations.

C.1.3 ATI Gamma F/T sensor

The ATI Gamma Multi-Axis Force/Torque Sensor system measures all six components of
force and torque acting on its measuring plate. The system consists of a transducer, shielded
high-flex cable, and intelligent data acquisition system, Ethernet/DeviceNet interface or F/T
controller.

This sensor was used intensively for experiments with the Sawyer robot (see our paper
[124]), but was not used much with the Franka mainly for two reasons: (i) the dynamics com-
pensation of the Franka robot required accurate model of the sensor at the end-effector, (ii) the
F/T estimates provided by the robot was good enough for our purposes (see Appendix B.4).

C.1.4 Regarding custom end-effectors used

The main tasks considered in the thesis are sliding tasks where the robot has to slide its
end-effector on different surfaces. For this purpose, we first used a whiteboard eraser attached
to the end-effector (see our paper [124]), then used a custom-cut wooden block (e.g. [175]),
and finally a 3D-printed block of similar dimensions (e.g. Fig. 6.11).

The overall framework presented in this thesis works by identifying surfaces of different
friction and being able to use appropriate forward models to perform variable impedance
control to navigate the surface reliably. The first end-effector used (a real whiteboard eraser)
had a soft face for sliding on the table. This was fine for testing the AVIC framework for
continuous dynamics.

However, when developing the hybrid framework for PWC dynamics, the soft surface
of the eraser often made it difficult to distinguish between surfaces of different friction as it
softened the frictional resistance. Therefore, we moved to using a more reliable and solid
wooden block. Having a hard face making contact with different surfaces made differentiating
between surfaces of different friction easier since this provided more reliable readings from
the interactions.
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The wooden block was later replaced with a 3D printed model of the block to make it
have more perpendicular and flat faces, as well as to avoid the wear and tear that was showing
up on the wooden block.

C.2 Practical implementation details

The overall setup used for experiments with the robots typically consisted of a multi-computer
setup. One computer typically ran the low-level controller that creates the high-frequency
control bridge between the robot and other machines in the network (this was usually done
with the Franka ROS Interface control node described in Appendix D.1 running on a real-time
kernel at 1kHz). This computer also often has the learners (forward models of AVIC, mode
detection module, Kalman-filter anticipation module, velocity profile updater, etc.) running
on it, unless they are running on a separate machine for efficiency. Another computer is used
for running the AVIC controller loop which runs at 500Hz and listens to target commands
(target position, velocity, force, torque, impedance parameters, etc.). These targets are
provided by the final computer which usually runs the script for the experiments as well as
the logging of experiment data.

C.2.1 Hyper-parameter selection in framework

Controller in AVIC

The main hyperparameters for the controller in the AVIC framework are the parameters for
IGMM (Section A.1.2). They are typically set depending on the task and are often relatively
straight-forward to tune with minimal trials. They are chosen such that there are not too
many components in the model to slow the learning and prediction, while there are enough
to capture the variation in a continuous contact mode. The novelty criterion is also selected
such that new components are only created if there is enough evidence (the observation
is persistent for some time). This way the model is not updated immediately with new
information when the contact mode changes; in such cases, the robot will switch to mode
identification phase and not use the new information to update the model of the previous
mode.

The gain matrices for the impedance controller (stiffness and damping) are left as 3×3
diagonal matrices (separate for translation and rotation) and each diagonal term is typically
guided by the accuracy of the predicted end-effector force (or torque for rotational gain
matrices) along the corresponding direction. So the translational stiffness along X is high if
the accuracy of predicted force along X is low, and so on.



174 | Regarding hardware and implementation

The minimum and maximum stiffness (Kp
f ree and Kp

max) are set as follows: Kp
f ree is

chosen as the stiffness required by the robot to achieve a required tracking accuracy when
it makes a similar motion in free space, while Kp

max is the minimum stiffness required to
move in the presence of high resistance using a standard task-space fixed gains PD controller.
These values are heavily dependent also on the control loop rate as well as the resolution
of the trajectory (spacing between consecutive poses in the task-space plan). In practice,
however, the Kp

max is often set to a high value that the robot will not have to use in most
situations, while Kp

f ree is set to a low value such as 100N/m.

Mode detection module

The mode identification module is active only when the robot detects a sudden discontinuity.
When the robot detects a contact change, the mode detection module is activated and collects
measurements till it is certain of the identity of the new mode. The parameters for the mode
detection module are typically the hyperparameters of the BIRCH clustering algorithm, and
includes the maximum number of modes and a measure of ‘distance’ from existing clusters to
identify observations as a new cluster. The maximum number of modes is typically selected
as an arbitrary number higher than the actual number of modes. The ‘distance’, on the other
hand, is a highly sensitive hyperparameters that requires some trial-and-error runs with the
real system to converge to a value that is good enough to distinguish between contact modes
without finding too many modes for small differences in observations.

Another important hyper-parameter is the minimum confidence required to accept the
detection as valid. This choice is usually dependent on the sensor used and the total number
of modes in the task, and is usually safe to leave somewhere between 55 and 70%. The
batch size is also an important parameter that determines the number of observations to be
collected before updating the model. Having a higher number helps in removing the noise
from the measurements by averaging, while also slowing down the update. This value is
typically chosen to be closer to a 100, and can still update the model at over 10Hz.

Contact-change-handling module

The Kalman filter-based anticipation model has mainly two noise parameters that determine
how noisy the sensor and action models are assumed to be. This is chosen depending on the
accuracy of the kinematic model of the robot. In our case, this was usually set to about 0.05
(approximating an error of 5cm in the end-effector position given by forward kinematics).

The desired duration of transition T for switching from the default controller to the
transition-phase controller is normally set to a value between 0.5−−1s. The same value is
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used for both the controller interpolation and velocity remapping (Eqs. (6.10) and (6.11))
such that the controller switching completes smoothly.

If a linear model is not available, the initial value of the approach velocity in the transition-
phase for impacts is set to 0.01m/s. The low stiffness value (Kp,low

[tr] in Eq. (6.12)) for
transition-phase controllers for impacts is set to a low value such as 100N/m. The learning
rate β in Eq. (6.8) is usually set to a low value such as 0.01 unless the slope of the line
relating impact to approach velocity is known. If the linear model is available, the learning
rate is set to a value that is lower than the slope by 0.005.

C.2.2 Safety considerations

Low-level control

In practice, the AVIC controller is written over a low-level torque controller that has several
safety checks and considerations such as:

• Limits on torques, accelerations, velocities, joint positions, and rate limits.

• Network latency checks (for multi-computer setup).

• Safety checks when switching between controllers or control dimensions (for e.g.,
directions of force control).

• Checks for unexpected collisions and high forces.

The Franka robot’s internal control also has its own layer of safety checks for checking if
the robot is violating constraints in acceleration, force, torques, etc. There is also a kill-switch
which can be used to kill the power to the robot in extreme cases.

Unexpected contacts

While following a trajectory, the user has to define the behaviour when the robot encounters
a contact that is not anticipated. It is possible to allow the robot to update its belief about
contact locations as demonstrated in Section 6.7.6. Alternatively, the user can also specify
that the robot should abort the task or ask for a new plan from the planner in such scenarios.
Unexpected impact-less transitions are always handled as demonstrated in Section 6.7.5 by
incorporating them into the list of anticipated contact changes for the next trial(s).

The robot aborts the plan if it does not find a contact it expects after attempting to make
contact for some distance.
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Software developed during research

This section briefly goes over some of the software developed during the course of this
research.

D.1 Franka ROS Interface

Franka ROS Interface [173] is a ROS/Python interface library for the Franka Emika Panda
robot, extending the official franka-ros (https://github.com/frankaemika/franka_ros) library
to expose more information about the robot, and providing low-level control of the robot
using ROS and Python API. It provides utilities for controlling and managing the Franka
Emika Panda robot (real and simulated). It also provides interfaces for controlling the joints
at low level using position, velocity and torque control. It also has interfaces for the gripper,
controller manager, coordinate frames interface, etc. and directly supports motion planning
and execution using MoveIt! and ROS Trajectory Action & ActionClient. This package also
provides almost complete sim-to-real / real-to-sim transfer of code with the Panda Simulator
package (see Appendix D.3).

Source code: https://github.com/justagist/franka_ros_interface
Official webpage and API documentation: https://justagist.github.io/franka_ros_interface

D.2 PandaRobot

PandaRobot is an extension to Franka ROS Interface which unifies several functionalities
of the package to provide a single unified interface class with simplified API that can be
used directly in Python scripts. The PandaRobot package provides simple API methods for
low- and high-level motion control of the robot. It also provides functionalities to obtain

https://github.com/frankaemika/franka_ros
https://github.com/justagist/franka_ros_interface
https://justagist.github.io/franka_ros_interface
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real-time kinematics and dynamics information from the robot. It is also fully supported with
the Panda Simulator (Appendix D.3) package providing almost complete sim-to-real code
transfer.

Both the Franka ROS Interface and the PandaRobot packages are open-source packages
hosted on GitHub which are being used by many robot programmers, and have grown to
become a collaborative projects with multiple contributors from around the world.

Source code: https://github.com/justagist/panda_robot
Official webpage and API documentation: https://justagist.github.io/panda_robot

D.3 Panda Simulator

Panda Simulator [174] is a Gazebo simulator for the Franka Emika Panda robot with ROS
interface, providing exposed controllers and real-time robot state feedback similar to the
real robot. This software was developed initially to test the framework in a simulated
environment before deploying the code on a real robot. The intention was to provide a
simulated environment that responds similar to the real robot without having to change the
code.

The simulator has low-level controllers (joint position, velocity, torque) available that
can be controlled through ROS topics (including position control for gripper) or Python API.
It provides real-time robot state (end-effector state, joint state, controller state, etc.) which
are available through ROS topics. It is directly controllable using Franka ROS Interface and
PandaRobot APIs providing direct sim-to-real code transfer. It also supports planning using
MoveIt for the robot arm as well the gripper.

It is an open-source package hosted on GitHub which is now being used by many robot
programmers, and has grown to become a collaborative project with multiple contributors
from around the world.

Source code: https://github.com/justagist/panda_simulator

D.4 Packages used for experiments

These are some of the open-source packages developed for performing some of the experi-
ments in this thesis. Some are direct implementations of certain sections/components of the
presented overall framework.

https://github.com/justagist/panda_robot
https://justagist.github.io/panda_robot
https://github.com/justagist/panda_simulator
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D.4.1 AVIC in simulation

This package contains the complete AVIC incremental learner and controller, as well as the
custom-built 2D environment used for comparing AVIC with other adaptive control strategies.
The package also contains the implementations of the three adaptive control strategies used
for the experiments in Section 4.4, along with the scripts for running the experiments in the
simulated environments. The package primarily uses Box2D physics.

Source code: https://github.com/justagist/variable_impedance_sim_experiments

D.4.2 Custom velocity profile

This repository contains the code for the custom-built velocity profile (Eq. (6.11)) used in
the transition-phase for collisions, along with a few other velocity profiles from literature. It
also contains the script used for time-remapping of the position trajectory using any of the
available velocity profiles.

Source code: https://github.com/justagist/velocity_profile_for_pos_traj

D.4.3 Kalman filter

Source code: https://github.com/justagist/kalman_filter_python
This repository contains the basic kalman-filter implementation used for creating the

contact anticipation model described in Section 6.3.

D.4.4 Covariance ellipsoid

This repository contains the code for the ellipsoid representation used for denoting regions of
anticipated mode transitions described in Chapter 6. It can create n-dimensional ellipsoids in
a space based on the mean, covariance and confidence level provided.

Source code: https://github.com/justagist/covariance_ellipsoid_python

D.5 Other libraries and packages

D.5.1 Advanced Manipulation and Learning (AML) Library

The AML code stack is an internal code stack used by all research students at the Intelligent
Robotics Lab (IRLab), especially by those working on robot manipulation. It was started by
Ermano Arruda and Michael Mathew, and is now being primarily developed and maintained
by me. The library includes unified interface classes that can be used to control and monitor

https://github.com/justagist/variable_impedance_sim_experiments
https://github.com/justagist/velocity_profile_for_pos_traj
https://github.com/justagist/kalman_filter_python
https://github.com/justagist/covariance_ellipsoid_python
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all the manipulators (RethinkRobotics Saywer & Baxter, Franka Emika Panda, Kuka LWR)
and grippers (DLR Hand, IIT Pisa Softhand, Reflex Takktile 2) in the lab without much
change in code. The library also includes physics simulators (Mujoco, Bullet, ODE, Box2D)
for these robots as well as several simulated environments for ML experiments. AML
also provides implementations or interfacing for several learning algorithms (supervised,
unsupervised, reinforcement, deep). It also has a module for several joint-space and task-
space high-level controllers that can be used on any of the robots in the lab, as well as utilities
for task planning, trajectory optimisation and learning from demonstration. The stack is
written in Python and C++. It makes use of ROS (supports versions Kinetic and Melodic
fully, and partially Noetic) to create a general package for robot control, manipulation and
grasping.

D.5.2 PybulletRobot

PybulletRobot is a python interface library for controlling any manipulator in simulation
using Bullet Physics engine. It provides a common interface class that can be used to
control, monitor and manage any manipulator robot whose URDF model is provided. It
includes functionalities to compute forward and inverse kinematics and dynamics, change
end-effectors, add other objects in the simulated world, etc.

Source code: https://github.com/justagist/pybullet_robot

D.5.3 MujocoPanda

MujocoPanda provides a simulation of the Franka Emika Panda robot using Mujoco physics
engine, as well as python interface for controlling the simulated robot. It provides all the
functionalities provided by the PybulletRobot (see above) interface, allowing users to switch
between simulators with minimal code change.

Source code: https://github.com/justagist/mujoco_panda

https://github.com/justagist/pybullet_robot
https://github.com/justagist/mujoco_panda
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