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ABSTRACT

Mobile robots equipped with multiple sensors and deployed in real-world domains fre-

quently find it difficult to efficiently process all sensor inputs, operate without any human

input and have possibly-relevant domain knowledge in advance. At the same time, robots

cannot be equipped with all relevant domain knowledge in advance, and humans are un-

likely to have the time and expertise to provide elaborate and accurate feedback.

This dissertation presents a novel architecture for knowledge representation and reason-

ing in robotics. These challenges are addressed by integrating high-level logical inference

with low-level probabilistic sequential decision-making. Answer Set Programming (ASP),

a non-monotonic logic programming paradigm, is used to represent, reason with and re-

vise domain knowledge obtained from sensor inputs and high-level human feedback. In

parallel, a novel hierarchical decomposition of partially observable Markov decision pro-

cesses (POMDPs) uses adaptive observation functions, constrained convolutional policies

and automatic belief propagation to automatically adapt visual sensing and information

processing to the task at hand. This POMDP hierarchy serves as the first key contribution

of this dissertation.

The second key contribution is the merging strategy of ASP-based logical inference with

POMDP-based probabilistic belief. This dissertation presents a principled generation of

prior beliefs from the knowledge base represented by ASP and the prior beliefs are then

merged with POMDP beliefs using Bayesian updates to adapt sensing and acting to the

tasks at hand. In addition, the entropy of belief states is used to determine the need for

human feedback and hence robots ask questions only when needed. At last, robots are

enabled to learn from positive and negative observations to identify the situations where
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the current task should no longer be pursed.

As a result, mobile robots are able to represent and reason with domain knowledge, retain

capabilities for many different tasks, direct sensing to relevant locations and determine the

sequence of sensing and processing algorithms best suited to any given task, using human

feedback based on need and availability. Furthermore, the architecture is augmented with

a communication layer to enable belief sharing and collaboration in a team of robots. All

algorithms are evaluated in simulation and on physical robots localizing target objects in

indoor domains.
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CHAPTER 1

INTRODUCTION

Autonomous robots are robots that can work without continuous human guidance. Peo-

ple have studied autonomous robots for tens of years and still pay great attention on it

because human guidance is frequently expensive and even impossible for robots. This dis-

sertation will focus on autonomous robots that can create plans toward given goals with

minimum help from human. As shown in Figure 1.1, autonomous robots work in a loop

that includes three steps: sensing, planning and acting. First, a variety of embedded sen-

sors enable robots to observe the environment that includes its collaborators and itself. For

autonomous robots, human-robot interaction is a type of sensing as well. However, compar-

ing with the non-autonomous robots with continuous human guidance, autonomous robots

frequently have to learn from humans without the expertise to the tasks in hand. Second,

autonomous robots need to create a plan on what to do in the next step(s) according to the

observation history. Third, the plan will be executed using motors, actuators and/or other

devices that can make changes in environments.

Figure 1.1: Overview process diagram for autonomous robots.

Sophisticated learning, planning and control algorithms have enabled the use of mo-
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bile robots and agents to collaborate with humans in domains such as disaster rescue, re-

connaissance and health care. These domains characterized by partial observability, non-

determinism and unforeseen changes frequently make it difficult for robots to process all

sensor inputs or operate without substantial domain knowledge and human feedback. At

the same time, it is impossible to provide all relevant domain knowledge in advance, espe-

cially for dynamic environments where domain knowledge can change by time. In human-

robot coexisting environments, human can provide helpful information for robot planning.

However, human feedback can be inaccurate and extremely expensive. Widespread de-

ployment of robots in our homes, offices and other complex real-world domains thus poses

formidable knowledge representation and reasoning (KRR) challenges—robots need to:

(a) represent, revise and reason with incomplete knowledge; (b) automatically adapt sens-

ing and navigation to the task at hand; and (c) learn from unreliable, high-level human

feedback.

Although there is a rich body of research on knowledge representation and reasoning,

the research community is fragmented. For instance, declarative programming paradigms

provide commonsense reasoning capabilities essential for robotics but do not support prob-

abilistic modeling of uncertainty, which is essential in robot application domains. In par-

allel, sophisticated algorithms based on probabilistic graphical models are being designed

to model the uncertainty in sensing and navigation on robots, but it is difficult to use these

algorithms for commonsense reasoning. Furthermore, algorithms developed to combine

logical and probabilistic reasoning do not provide the desired expressiveness for common-

sense reasoning capabilities such non-monotonic reasoning and default reasoning. This

dissertation presents a novel planning architecture that exploits the complementary prop-

erties of ASP and hierarchical POMDPs by combining high-level logical inference with

2
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low-level probabilistic modeling of uncertainty. As a result, the following contributions are

made in this dissertation.

1. A novel POMDP hierarchy is developed to enable efficient and reliable operations

on robots by decomposing complex problems into layers of simple POMDP prob-

lems with small numbers of states. The layers of POMDPs individually answer the

questions of where to look?, what to process? and how to process?. This hierarchy

is special in the adaptive observation functions, policy re-weighting and automatic

belief propagation. In real-world domains, the number of states of POMDP can be

large and the environment can change dynamically. A novel convolutional policy

enables the robot to use the local symmetries (shift and rotation invariance) to firstly

extract a policy kernel from a baseline policy and then extend the kernel to compute

a large policy for the goal problem as needed. Other contributions in hierarchical

POMDPs include full-path planning, directed re-weighting and multirobot collabo-

ration algorithms.

2. ASP, a non-monotonic logic programming paradigm, is well-suited for common

sense knowledge representation and reasoning (especially default reasoning). In this

dissertation, robots use ASP to represent, reason with and revise spatial knowledge

of the application domain (and domain objects), based on online repositories and in-

formation extracted from sensory cues and human feedback. A novel architecture

is developed to benefit from the complementary strengths of ASP and POMDPs:

POMDP belief is revised (or initialized) based on answer sets using a smooth biasing

strategy; the knowledge learned from the expensive human feedback can contribute

to the knowledge base represented by ASP—the need of human-robot interaction is

measured by the entropy of POMDP belief.
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All the algorithms are implemented and tested in both simulated and mobile robot plat-

forms on localizing visually-distinguishable targets in human-robot coexisting indoor (of-

fice) environments.

The reminder of this dissertation is organized as follows. Section 2 discusses related

work. Section 3 presents an overview of the architecture. The knowledge representation

and reasoning using ASP are described in Section 4. The hierarchical POMDPs are pre-

sented in Section 5. The novel ASP+POMDP architecture is then discussed in details in

Section 6 with an extension for multirobot systems described in Section 7. Experimental

results in simulation and on robots are presented in Section 8. The last part is the conclu-

sions and future work in Section 9.
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CHAPTER 2

RELATED WORK

As stated in Chapter 1, the main contribution of this dissertation is a novel architecture

for knowledge representation and reasoning (KRR) in robotics by combining probabilis-

tic graphical models (POMDPs) and a non-monotonic knowledge representation paradigm

(ASP). This related-work section will firstly focus on a few typical applications of au-

tonomous and non-autonomous robots in Section 2.1. The first key part of the developed

architecture is Answer Set Programming and existing work related to ASP would be in-

troduced in Section 2.2. Existing POMDP techniques would be presented in Section 2.3,

followed by related work to the second key part of this dissertation—hierarchical POMDPs,

in Section 2.4. Human-robot interaction plays an important role in KRR for autonomous

robots. A few HRI-based learning techniques are then presented in Section 2.5. Other

existing planning and cognitive architectures are summarized in Section 2.6. There is a

big community working on multirobot collaboration algorithms for years, and this disser-

tation extends the ASP+POMDP architecture with a multirobot collaboration algorithm.

Therefore, in Section 2.7, I will briefly introduce a few existing solutions related to the

POMDP-based multirobot collaboration strategy. Finally, the implementation of the archi-

tecture relies on many existing techniques and solvers, e.g., vision and speech processing,

indoor mapping and localization, ASP and POMDP solvers, and Section 2.8 would focus

on the well-studied techniques used in implementing the developed algorithms.

2.1 Robots and Applications

Sophisticated learning, planning and control algorithms have enabled the use of robots

and agents in so many application domains that no article can cover all of them. The below
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is just a small subset of the applications that can (hopefully) give an picture of how robots

are used in real-world tasks.

The most widely used autonomous robot is probably Roomba produced by iRobot Cor-

poration [41]. Roomba is an automated vacuum cleaning robot that can do cleaning tasks

in indoor environments without human control and recent versions can return to recharge

at the end of its cleaning cycle. Although the cleaning task is relatively simple and the

working environments are well structured, Roomba is automated in creating plans within

the three steps in Figure 1.1. According to iRobot [41], more than 8 million home service

robots like Roomba have been sold worldwide by 2012.

Casper and Murphy presented robots as part of the specialized equipment in search and

rescue in the World Trade Center disaster incident [17]. The paper discussed the skills dis-

played and needed by robots and humans, the details of the Urban Search and Rescue tasks,

and what information should be communicated at what time. A more recent publication

summarizing the research on rescue robots is [63].

A survey paper by Goodrich published in 2007 presented even more applications of

robots in Social Interaction for autistic children, patrol support robotic classroom assistant,

robotic museum tour guide, etc [34]. A more recent publication in 2010 by Hoey focused on

a specific task—robotic handwashing assistance for persons with dementia [39]. Pineau’s

group developed SmartWheeler, a multi-modal intelligent wheelchair, and the goal is to

increase autonomy and safety of individuals with severe mobility impairments [74]. Stan-

ley, the Champion autonomous vehicle in 2005 DARPA Grand Challenge, has become a

milestone in autonomous car development [96]. The Stanley project rooted in Stanford

Artificial Intelligence Lab was led by Professor Sebastian Thrun. In 2005, only 5 out of 23

finalist vehicles finished the 212 km off-road course.

6
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In the discussion of autonomous robots, it is necessary to mention the Robot Soccer

World Cup (RoboCup) [47]. RoboCup is an international robotics competition founded in

1997. The aim is to promote robotics and artificial intelligence research by providing a

set of standard challenges that are publicly appealing, but formidable. Mostly importantly,

all of the robots used in RoboCup are fully autonomous and once the game starts the only

input from any human is from the referee. Key challenges for these autonomous soccer

robots include sensor fusion, robotics, real-time reasoning, multiagent collaboration and

strategy acquisition.

Target Localization

Mobile robots are increasingly being deployed in applications such as assistive tech-

nology and disaster rescue due to the availability of affordable high-fidelity sensors and

actuators. To move or manipulate an object in these domains, the object has to be readily

available in the robot’s field of view first. Previously researchers assumed human can help

bring the target object into such positions or at least provide its position in given environ-

ment. In practice, however, human may have difficulties to localize the target objects due

to long traveling distance, physical challenges or environmental safety. Target localization

(TL) aims to relax the assumption by enabling a mobile robot to autonomously localize

target objects without much human involvement. The performance is evaluated in both

completing time and accuracy that are needed to be balanced properly. A TL policy makes

sense when it at least performs better than the exhaustive or random search strategies. TL

at the same time is a challenging task because it incorporates a set of sub-tasks including

mapping, object recognition, spatial reasoning that are hard in themselves.

Recent research also exploits the semantic and common sense knowledge, e.g., a kitchen

is typically used for cooking and a coffee maker usually appears in a kitchen. Instead, we
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use a readily-available categorical tree represented by ASP to achieve the same goals of

using semantic knowledgelogical reasoning on possible positions of target objects. In this

specific task, the robot is mostly interested in spatial informations, e.g., locations of objects

and if door is closed or not, as the domain knowledge. On the other hand, the robot has a

mathematical model about itself, e.g., motion and vision parameters. This dissertation will

be focusing on the planning algorithm while the motion control, speech and vision will be

built on existing approaches. The TL problem would be taken as an illustrative example to

address the effectiveness and efficiency of the designed algorithms. Since this dissertation

will take a target localization task as the illustrative example, a few related publications

would be summarized below.

Najemnik and Geisler derived an optimal eye movement strategy for searching a known

target embedded at an unknown localtion within a random background [64]. Butko and

Movellan further developed an Infomax model called I-POMDP to formulate the eye move-

ment in a visual-search task as an information-gathering POMDP (I-POMDP) [14]. More

recently, Nunez-Varela, Ravindran and Wyatt dicussed where a robot’s gaze should be di-

rected in order to gain information that is relevant to the success of its physical actions [68].

Aydemir, Pronobis and Jensfelt focused on the problem of active visual search and de-

veloped a search strategy using uncertain semantics [6]. An early version of this work was

published in [5]. The search environment was represented by a probabilistic model and the

authors developed a method for reasoning about the unexplored part of the environment for

object search. The proposed approach was compared with a greedy coverage-based search

strategy and search strategies of human participants.
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2.2 Knowledge Representation and Answer Set Programming

Gelfond and Lifschitz developed the Stable Model Semantics for Logic Programming in

1988 [30] and the work later served as the base of Answer Set Programming, an instance of

non-monotonic knowledge representation paradigm, that has been well studied and widely

used in many applications [7, 29, 12].

Research in classical planning has resulted in many sophisticated algorithms for knowl-

edge representation (KR) and logical reasoning [31], which have also been used on mobile

robots [24, 98]. However, these algorithms typically require a significant amount of prior

knowledge regarding the domain, and the preconditions and effects of actions that an agent

can perform in the domain. Many algorithms also do not support merging of new (and

possibly unreliable) information from sensors and humans with the current beliefs in a

knowledge base. Answer Set Programming (ASP), a non-monotonic logic programming

paradigm, is well-suited for commonsense knowledge representation and reasoning, espe-

cially default reasoning [7, 28]. ASP has been used in different application domains, and

it has been integrated with natural language processing for service robots [20]. However,

real-world sensing and navigation are non-deterministic, and humans participants are un-

likely to provide elaborate and accurate feedback. ASP is not well-equipped to model or

reason with quantitative models of uncertainty in sensing and navigation for robots.

2.3 Partially observable Markov Decision Processes

First-order Markov property assumes that the next state relies on only the current state

and is independent to all of the previous states. A Markov chain is a mathematical system

whose underlying state transitions follow Markov assumption [67]. A Markov decision

process (MDP) is an extension of Markov chains with action selections and a reward func-

tion. MDPs, as a set of optimization problems, have been broadly studied since 1950s [10].

9
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If the reward function is well defined, a MDP problem can be solved by Dynamic Program-

ming techniques [10]. Many Reinforcement Learning techniques have been developed to

solve MDP problems whose reward function is unknown [92].

An important branch (more accurately general form) of MDP is Partially observable

Markov decision processes (POMDPs) where the underlying state is not fully observable.

An agent planner will have to observe the world to estimate the underlying state. POMDP,

as an instance of probabilistic sequential decision-making, was mathematically defined by

Kaelbling, Littman and Cassandra in 1998 [42] and since then many algorithms solving

POMDP problems and many POMDP-based applications have been developed as will be

presented below.

The first survey paper on POMDP applications was published in 1998 [18]. The paper

introduced early applications of POMDP in industry such as machine maintenance, struc-

tural inspection, elevator control policies and fishery industry, early scientific applications

such as autonomous robots, behavioral Ecology and Machine Vision and other applications

in business, military, education and medical diagnosis in early years.

Since 2000, POMDPs have been widely used in many other applications. Hsiao, Kael-

bling and Lozano-Perez developed a POMDP-based planner used for robotic manipulator

in 2007 [40]. Hoey et al. focused on a specific problem—handwashing of persons with

dementia [39]. The system took video as the input and provided assistance by verbal or vi-

sual prompts, or through the enlistment of a human care giver’s help. Foka used POMDPs

in developing a real-time autonomous-navigation robot [23]. More recently, Gobelbecker

designed a sensing and navigation strategy on robots by POMDP to model the associated

uncertainty [32]. Young, Gasic, Thomson and Williams published a review paper summa-

rizing recent POMDP-based techniques for applications in Spoken Dialog Systems [103].

10
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In 2010, The International POMDP Practitioners Workshop gathered researchers working

on real-world POMDP problems in Toronto, Canada and more details can be found at [102].

The focus of this dissertation is an architecture for knowledge representation and reason-

ing using (ASP and) POMDP, so POMDP solvers are not quite related to the key contribu-

tions of this dissertation. Here I briefly review a few well-known techniques used for solv-

ing POMDP problems. Kaelbling used value iteration to construct the value function over

belief space and further developed the Witness algorithm to improve the complexity of the

value-iteration [42]. A policy gradient method was developed for reinforcement learning

by Sutton et al. in 2000 [93]. This method paved the way for many policy gradient-based

techniques solving POMDP problems. For instance, Aberdeen, Buffet and Thomas devel-

oped a POMDP solver that tracks sufficient statistics of the history instead of the history

itself [1]. The statistics over history is mapped to control policies directly using policy-

gradient reinforcement learning. This work including the POMDP solver named LibPG

was later improved and published as [13] in 2009. Most of the POMDP problems in this

dissertation was solved by LibPG.

Another branch of algorithms for POMDPs roots in Point-Based Value Iteration (PBVI)

algorithm [75]. PBVI approximates an exact value iteration solution by selecting a small

set of representative belief points. It is naturally strong in solving large POMDP problems,

and has been popular since the first publication. A recent paper by Guy, Joelle and Robert

surveyed the point-based POMDP algorithms [87]. The paper introduced the fundamentals

of PBVI, explained its key concepts and ideas and included empirical analysis of the various

point-based approaches as well.

Instead of aiming at global policies that can map any POMDP belief to an action, online

POMDP solvers focus on online approaches that alleviate the computational complexity

11



Texas Tech University, Shiqi Zhang, August 2013

by computing only local policies at each decision step during execution. Paquet presented

one of the earliest online POMDP algorithms in his dissertation [71]. The effectiveness

of the proposed approaches were demonstrated in the RoboCupRescue simulation envi-

ronments. A comprehensive survey of online planning algorithms for POMDPs by Ross,

Pineau, Paquet and Chaib-draa was published in 2008 [83].

Mixed observability frequently exists in robotic systems: even the underlying state may

not be fully observable, some components of the state may still be so. Ong used a factored

model to separately represent the fully and partially observable components of a robot’s

state and this factored representation can be combined with any point-base algorithms to

compute POMDP solutions [69].

2.4 Hierarchical POMDPs

POMDP applications have been suffering the curse of dimensionality and the curse of

history in POMDP algorithms [42, 75]. Although many advanced POMDP algorithms have

been developed as summarized in Section 2.3, it is still a challenge to model complex real-

world problems as POMDPs. Instead of solving large, complex problems directly, people

have tried to decompose problems into layers of small POMDP problems that can be solved

individually.

Theocharous developed a POMDP hierarchy for robot navigation in 2001 [94], which

is probably the first time that hierarchical POMDPs appeared in literature. The authors

started from hierarchical Hidden Markov Models (HMMs) and then extended to hierarchi-

cal POMDPs as a planning problem. In 2004, Theocharous further explored the advan-

tages of representing hierarchical POMDPs as dynamic Bayesian networks (DBNs) [95].

Theocharous’s approach used a topological map of the environment where the state ab-

straction has corresponding physical meanings. Especially, the abstract states are manually
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defined so they represent places like a corridor. Different layers of POMDPs correspond to

spatial maps of multiple resolutions.

In parallel of Theocharous’s work [95], Foka developed the Robot Navigation-Hierarchical

POMDP (RN-HPOMDP) in 2007 [23]. RN-HPOMDP focused on robot navigation prob-

lems (including localization, planning and local obstacle avoidance), took occupancy grid

maps as the input and modeled environments at a much higher resolution comparing with

Theocharous’s work [94].

Pineau et al. developed a mobile robotic assistant to assist elderly individuals with mild

cognitive and physical impairments [74]. The authors presented a hierarchical POMDP

approach for high-level behavior control on the robot. The planning algorithm operates in

a bottom-up manner and the the execution proceeds in a top-down manner. However, the

parameters of the hierarchy need a significant amount of manual effort.

Sridharan, Wyatt and Dearden modeled a visual processing problem as hierarchical

POMDPs in 2008 [90]. The goal was to plan a sequence of visual operators for regions

of interest (ROIs) for reliable and efficient visual sensing and processing in tabletop sce-

narios. Higher-level (HL) POMDP plans a sequence of actions to process ROIs and lower-

level (LL) POMDP selects specific visual operators for each individual ROI. HL-POMDP

and LL-POMDP were strongly coupled. The HiPPo approach was further improved and

published with more details for implementation in 2010 [89].

The construction of a POMDP hierarchy can take a lot of human effort and researchers

have studied methods of automatically discovering POMDP hierarchies. Charlin, Poupart

and Shioda developed a method to automatically discover a hierarchy by encoding the

hierarchical structure as variables of the optimization problem [19]. Toussaint, Charlin

and Poupart further improved [19] by using Expectation Maximization (EM) algorithm in

13
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2008 [97].

2.5 Techniques of Learning from Human

Robots need learning algorithms to acquire novel skills or adapt itself to its environments

with dynamic changes. This section will focus on existing techniques that help robots learn

from human.

In 2001, Asoh et al. developed an office robot, Jijo-2, as a testbed for autonomous intel-

ligent systems that interact and learn in the real world [4]. The robot could communicate

with humans through a spoken-dialogue system in Japanese and navigate using models it

learned by itself or through human supervision. Jijo-2 is a general-purpose robot and the

intention of designing Jijo-2 was to make it physically embodied in the human world and

could exhibit some generic aspects of intelligence [4]. As an early attempt of learning from

human, Jijo-2 communicated with human through predefined dialog patterns. For instance,

“Where am I?”, by Jijo-2 and “You are in front of Dr. Asano’s office.” replied by human.

In addition to learning from human-robot dialogs, robots can learn to accomplish tasks

from examples as well. Argall comprehensively surveyed the techniques of Learning from

Demonstration (LfD) in 2008 [3]. In contrast of most of the other learning techniques that

enable robots to learn a policy, i.e., a mapping from world state to actions, from experience,

LfD enables robots to learn a policy from example executions. Two critical challenges

within LfD are discussed separately: example gathering methods ranging from teleoper-

ation to imitation and policy deriving (from the gathered examples) including matching

functions, dynamics models and plans.

Human can provide valuable feedback to robots, but human feedback is not always avail-

able and these high-level feedbacks are hard for robots to learn from. Knox developed

TAMER (Teaching Agents Manually via Evaluative Reinforcement) framework that com-
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bines manual feedback with MDP reward signals for reinforcement learning [48]. People

frequently have difficulties to provide step-by-step instructions for robots, but it is easier

for people to tell what is good (bad). A realistic assumption is made: people can give

only positive and negative feedback signals. The authors concluded that TAMER are most

useful for: tasks that require much exploration before discriminatory reward is received;

tasks with local maximums that make the best solution difficult to find; and tasks with a

noisy MDP reward signal. Sridharan further combined human and environmental feedback

while enabling the two feedback mechanisms bootstrap off of each other to continuously

revise their relative contributions to the agent’s policy [88]. Therefore all the available

information is exploited as much as possible.

Humans are not always available to help robots and human feedbacks are not always

accurate. Rosenthal introduced HOP-POMDPs (Human Observation Providers POMDPs)

to learn human availability and accuracy online while the robot is executing its current task

policy [82]. The HOP-POMDP incorporated availability and accuracy into the observation

function when the robot performs action of “ask”. The authors further focused on the

situations where mobile robots need human assistance at spatially-situated locations [81].

There are many trade-offs involved in seeking help from humans including the waiting

time at the help location, the time and potential interruption to find and displace people,

and traveling cost to places where people are available. Rosenthal and Veloso developed

a decision-theoretic algorithm to evaluate the possible choices in office domains and plan

where to proactively seek help.

2.6 Existing Representation and Reasoning Architectures

Planning architectures or algorithms aim at constructing a policy that maps the current

state to an action. A lot of research has been conducted on planning algorithms for tens of
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years because it is one of the key capabilities for real intelligent agents. There are so many

existing architectures, techniques and algorithms that there is no way to cover all of them

in a single article. This section will select a tiny subset of the existing work, try to present

a high-level picture over this area and make brief qualitative comparisons.

2.6.1 Cognitive Architectures

A more general research area is cognitive architecture that covers not only planning

but other tasks including reasoning, solving problems, learning concepts, etc. The goal of

cognitive architectures is to create intelligent agents that have cognitive abilities as humans.

Many cognitive architecture have been developed since 1980s [51, 2, 9, 38].

Soar (originally stood for State, Operator and Result) is a general cognitive architecture

created by John Laird, Allen Newell and Paul Rosenbloom in early 1980s [51]. It integrates

knowledge-intensive reasoning, reactive execution, hierarchical reasoning, planning and

learning from experience. Soar has been in development for thirty years and Laird’s group

added new features since the initial version. For instance, reinforcement learning, semantic

memory, episodic memory, mental imagery and emotion model appeared in the most recent

version [50].

ACT-R is another cognitive architecture developed by Anderson, et al. [2]. Unlike Soar,

a functionality oriented cognitive architecture, ACT-R aims at Psychological plausibility.

The language primitives are designed to reflect the theoretical assumptions about human

cognition and these assumptions are based on facts derived from experiments in cognitive

psychology and brain imaging. Similar cognitive architectures are CLARION [91] and

EPIC [46]. A more recent cognitive system is CoSy published in 2010 [38]. The key com-

petencies of CoSy are system architectures, scalable knowledge representation, adaptive

embodiment, categorical perception, planning and error recovery, learning, and situated
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dialog systems.

Batog et al. developed CogSys, a cognitive architecture with three layers, in 2008 [9].

The high-level symbolic planner creates abstract action plans to realized by lower levels.

The mid-level stores and reasons about object-action episodes. The low-level, sensorimotor

layer, connects sensory processors to motor procedures. The authors used a table cleaning

task to illustrate the effectiveness of the general-purpose architecture.

2.6.2 Knowledge Representation and Reasoning with Probabilities

Probabilistic Logic was developed by Nilsson in 1986 [66]. As one of the earliest logic

systems being able to model probabilities, Probabilistic Logic laid out the basic theoretic

principles supporting logic with probabilities. However, no efficient inference algorithms

were provided at that time. Following this path, various probabilistic first-order logics have

been developed [36, 73].

A simple framework for probabilistic Horn-clause abduction (PHA) was developed by

David Poole in 1993 [76]. That framework is special in each hypothesis is associated with

a probability. Poole mathematically showed that any probabilistic knowledge representable

in a discrete Bayesian belief network can be represented in that framework. This frame-

work is an extension of pure Prolog to include probabilities. Poole further replaced the

set of disjoint declarations in PHA by a choice space and developed Independent Choice

Logic (ICL) in 1997 [77, 78]. ICL is a semantic framework that allows agents to make inde-

pendent choices and at the same time provides the agents the consequence of the choices.

Multiple agents can make observations in dynamic domains with uncertainty and select

actions by understanding the consequences of the action selections.

Unlike PHA that is based on Horn clauses, Logic Programs with Annotated Disjunc-

tions (LPAD) was developed based on disjunctive logic programs [99]. This representation

17



Texas Tech University, Shiqi Zhang, August 2013

allowed people to directly derive a probability distribution over the set of Herbrand inter-

pretations. Complex probabilistic knowledge in terms of a number of simple choices can

be easily represented using LPAD comparing with previous work, e.g., [77].

Kersting and Raedt developed Bayesian Logic Programs by combining Bayesian net-

works with definite clause logic to enable the representation of objects and relations in

2000 [45]. The main idea was to establish a one-to-one mapping between true logical

ground atoms and random variables. Stochastic Logic Programs (SLP), as a generalization

of stochastic grammars, aimed to provide a structured definition of the probability distribu-

tion over a set of logical formulas by associating a probability to each clause [62].

As an early work on learning algorithms for probabilistic logic programs, Sato and

Kameya developed PRISM (PRogramming In Statistical Modeling) in 1997 [85]. PRISM

integrated logic programming with the general learning algorithms (specifically Hidden

Markov Models or HMM) to enable programs to change their behaviors by learning from

positive/negative examples. Typical applications of HMM could benefit from PRISM by

the capability of describing statistical correlations between syntactic and semantic struc-

tures.

Markov Logic Network (MLN) was developed by Richardson and Domingos in 2006 [80].

MLN is a simple approach to combining first-order logic and probabilistic graphical models

in a single representation. Each formula in the knowledge base is associated with a weight.

Inference in MLNs is performed by MCMC (Markov Chain Monte Carlo) algorithms over

the minimal subset of the ground network required for corresponding query. First-order

logic as the knowledge representation engine cannot perform non-monotonic logical rea-

soning that limits MLN’s application in commonsense reasoning. The conclusions cannot

be drawn by first-order logic program will not be inferred by MLN. Another weakness of
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MLN is the computational complexity caused by the grounding of all first-order formula.

BLOG (Bayesian LOGic) is a language focusing on reasoning about an unbounded num-

ber of unknown objects with unknown relations [61], e.g., tracking multiple people in a

video sequence or identifying repeated mentions of people in a set of text documents. A

BLOG model specifies a probability distribution over model structures of a first-order logic

language and these model structures can include different sets of objects. BLOG has a well-

defined syntax as a probabilistic programming language and recent description about the

syntax can be found in [52].

Another attempt of combining knowledge representation and probabilistic reasoning is

PLOG [8, 108]. PLOG is a declarative language that combines logical and probabilistic

arguments in reasoning. The authors used Answer Set Programming (ASP) [29] and causal

Bayes nets as the logical and probabilistic foundations respectively. As claimed by Baral

in [8], the difference between first-order MDPs (e.g., MLN) and PLOG is that actions,

rewards and utilities are inherent part of the former; one may encode them in PLOG though.

From a quite different view, Göbelbecker, Gretton and Dearden developed a Switching

Planner that combines probabilistic planning with logical reasoning [32]. The Switch-

ing Planner switches between using a fast satisficing “classical” planner called DTPDDL

(Decision Theoretic PDDL) to decide on the overall strategy and a POMDP-based plan-

ner to solve small abstract subproblems where probabilities need elaborate consideration.

The overall performance of this Switching Planner is sensitive to the threshold deciding

on which planner to use and the complementary features of the “classical” planner and

POMDPs were not fully exploited. Another recent work focusing on combining logical

and probabilistic reasoning for task and motion planning on robots is [43] by Kaelbling

and Lozano-Perez.
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Qualitative reasoning is another research area in AI. For example, frequently it may not

be easy to tell the exact value of velocity of a car but it can be easy to tell whether the

car is moving fast or not. Golińska-Pilarek and Muñoz-Velasco developed an approach to

reason with qualitative velocity [33]. The use of logic provided a general framework that

improved the capacity of reasoning and the paper presented an approach toward dealing

with qualitative velocity.

2.7 Multirobot Collaboration

Many algorithms have been developed for multirobot and multiagent collaboration. Panait

and Luke created a comprehensive survey paper on the “current” state-of-the-art in coopera-

tive multiagent systems and the paper also pointed a few directions for future research [70].

More recently, Parker surveyed algorithms for distributed robotics [72]. Since the multi-

robot collaboration strategy of this dissertation builds on hierarchical POMDPs, this section

will discuss only a few POMDP-related collaboration strategies.

Researchers have developed algorithms for decentralized information fusion, e.g., the

decentralized delayed-state information filter enables heterogeneous agents to fuse infor-

mation [16], and a decentralized information-gathering algorithm has been able to provide

scalability, robustness and modularity [59]. DDSIF (Decentralized Delayed-State Informa-

tion Filter) is a decentralized data fusion approach aimed to perform cooperative perception

with data gathered from heterogeneous sensors [16]. This approach can provide estimation

that is as good as that provided by a centralized system and reduce the impact of commu-

nication delays and latency at the same time. Especially, heterogeneous sensors can benefit

greatly from this data fusion approach. However, these algorithms are not well suited to

model the partial observability of robots deployed in dynamic domains.

Decentralized POMDPs (Dec-POMDPs) are being used for multiagent collaboration [49,
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86]. Dec-POMDP model offers a rich framework for cooperative sequential decision mak-

ing under uncertainty. Each agent has its own action capabilities and observation set. After

taking an action, each agent receives a local observation and a joint immediate reward.

Each agent makes decisions solely on its local information but the decisions can affect the

global reward (state transitions and observations that are similar to naive POMDPs). How-

ever, the computational complexity of solving Dec-POMDPs is higher than that of default

POMDPs [11].

Gymtrasiewicz and Doshi developed interactive POMDPs (I-POMDPs) [35] that enables

agents to model the behavior (and preferences) of other agents as interactive beliefs with

arbitrary levels of nesting. The state space for each agent is greatly inflated when the

notion of agent models are incorporated into the state space. Therefore, I-POMDPs have

high computational complexity and require significant domain knowledge.

An important factor in multirobot collaboration is the unreliability of communication

between robots. Research has shown that complex communication strategies do not nec-

essarily benefit robot teams engaged in collaborative tasks [84]. The POMDP hierarchy

described in this dissertation supports automatic belief propagation and model generation,

enabling robots to adapt sensing and information processing to the task at hand. The hier-

archy is augmented with a communication layer for belief sharing and multirobot collabo-

ration.

2.8 Other Related Work

Robotics is a interdisciplinary subject where many research areas highly rely on each

other. Robotic knowledge representation and reasoning, as a subfield of robotics, is not

extraordinary. The general-purpose KRR architecture developed in this dissertation will be

grounded onto an indoor target localization problem. The implementation of this architec-
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ture on physical robots tasked with localizing targets needs many existing techniques that

are beyond the discussion topic here. This section will focus on the existing techniques

used in this dissertation but not discussed in previous sections. Generally, the techniques

below are not related to the key contributions of this dissertation and the descriptions would

be very high-level.

2.8.1 Vision Techniques

SIFT (Scale-invariant feature transform) is a visual feature detector and descriptor de-

veloped by David Lowe in 1999 [58, 57]. SIFT feature descriptor is invariant to uniform

scaling, orientation, and partially invariant to affine distortion and illumination changes.

Calonder, Lepetit, Strecha and Fua later developed BRIEF (Binary Robust Independent

Elementary Features) in 2010 [15]. The authors made use of binary strings as an efficient

feature point descriptor. As a result, BRIEF is fast in both feature detection and matching.

The vision module of this dissertation builds on the existing work conducted in SEARL

(Stochastic Estimation and Autonomous Robotics Lab) at the Department of Computer Sci-

ence, Texas Tech University. Specifically, Li and Sridharan developed a novel algorithm to

enable a mobile robot to better utilize the visual input to navigate safely in dynamic envi-

ronments [53]. This algorithm used local image gradient cues (combination of MSER [60]

and SIFT [57]) to characterize target objects reliably and efficiently; and used temporal

correspondence of visual cues for robust localization and tracking of environmental obsta-

cles. In 2011, Li et al. developed an approach that enables mobile robots to autonomously

learn layered models for environmental objects using temporal, local and global visual

cues [56]. Most recently, context and appearance cues have been added into the model to

enable robots to learn the spatial arrangement of gradient features, parts-based models of

image segments, color distributions and mixture models of local context [55].
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2.8.2 Robot Operating System (ROS)

Robot Operating System (ROS) is a software framework providing operating system-like

functionality for software development on physical robot platforms [79]. The key compe-

tencies are hardware abstraction, low-level device control, implementation of commonly-

used functionality, message-passing between processes, and package management. In this

dissertation, the algorithm implementation on physical robots (Erratic robot [100]) builds

on ROS.

2.8.3 Sphinx

CMU Sphinx is an open source toolkit for speech recognition [101]. It is flexible, modu-

lar and pluggable, so new innovations in the core research of hidden Markov model (HMM)

can be fostered the least effort. The Speech Recognition module in this dissertation builds

on Sphinx-4. Since speech recognition is not the focus of this dissertation, the size of

vocabulary used in the speech recognition module was trimmed greatly to keep a high

recognition accuracy.

2.8.4 Clingo and LibPG

Clingo [25] stands for clasp on Gringo. Gringo is an Answer Set Programming (ASP)

grounder [26], while clasp is an ASP solver [27]. The ASP programs in this dissertation

will be solved using Clingo unless specified otherwise. Similarly the POMDP programs

will be solved using LibPG unless specified otherwise [13].

2.9 Summary

This chapter presented the existing work related to this dissertation and specifically

focused on modern applications of robots, ASP, (hierarchical) POMDPs, learning-from-

23



Texas Tech University, Shiqi Zhang, August 2013

human techniques, multirobot collaboration and existing probabilistic logic programs.

Although ASP is strong in knowledge representation and logical reasoning, ASP in its

default form can not do quantitative reasoning with probabilities. In contrast, POMDP

is good at probabilistic reasoning under uncertainty, but the rapid increase in state space

dimensions makes POMDP impractical for complex problems, even if advanced POMDP

solvers (Section 2.3) and/or hierarchical decompositions (Section 2.4) are used. Although

there are attempts to do logical reasoning while modeling probabilities at the same time (Sec-

tion 2.6), they either lack the property of non-monotonicity, that is important for represent-

ing and reasoning with common sense, or cannot reason in real time in knowledge-intensive

domains. To address the challenge of knowledge representation and reasoning under un-

certainty in knowledge-intensive domains, this dissertation develops an architecture that

integrates the knowledge representation and reasoning capabilities of ASP with the proba-

bilistic uncertainty modeling capabilities of hierarchical POMDPs.

24



Texas Tech University, Shiqi Zhang, August 2013

CHAPTER 3

OVERVIEW OF THE ASP+POMDP ARCHITECTURE

Autonomous operation is a key challenge to the deployment of mobile robots in real-

world domains such as homes and offices. The partial observability, non-determinism and

unforeseen dynamic changes of these domains frequently make it difficult for robots to

operate without sufficient domain knowledge or human inputs. It is however infeasible

to provide robots with all relevant domain knowledge (in advance), and humans are un-

likely to have the time and expertise to provide elaborate and reliable feedback in complex

domains. Hierarchical POMDPs (as an important component) enabled a team of robots

to visually localize target objects using hierarchical partially observable Markov decision

processes (POMDPs), where complex problems are decomposed into layers of POMDP

problems that are individually solvable. Although POMDPs elegantly model the uncer-

tainty in sensing and navigation, it is difficult to represent common sense knowledge or

perform high-level reasoning with human inputs. This section presents an overview of the

architecture combining Answer Set Programming (ASP), a non-monotonic logic program-

ming paradigm, with hierarchical POMDPs. Domain knowledge is represented as rules

and facts that capture the relationships between object classes, and ASP reasons with the

available knowledge to initialize or revise the POMDP belief distributions. Sensory obser-

vations and human inputs cause POMDP belief updates and augment (or revise) the current

knowledge modeled by ASP.

This dissertation focuses on a novel knowledge representation and reasoning architecture

for autonomous robots as depicted in Figure 6.1. The Knowledge Base (KB) in ASP con-

tains causal rules and domain facts. Currently, rules are hand-coded and facts are learned
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from sensor inputs, human feedback and online repositories. The KB contains all domain

knowledge that may or may not be related to the current tasks. For any specific query (or

task), reasoning in the KB results in an Answer Set containing a set of grounded literals

(Section 4). The uncertainty in sensing and navigation is modeled using POMDP belief

distributions (Section 5). The answer sets from ASP initialize or revise POMDP belief

distributions through a Dirichlet distribution (Section 6.1).

Figure 3.1: Overview of the architecture.

Architecture integrates probabilistic planning, non-monotonic logical reasoning and

human-robot interaction.

The red box in Figure 6.1 includes three types of observations obtained from the envi-

ronments. Active observations are directly relevant to the current task(s). The algorithms

of active observations may not be real-time and can be computationally expensive. On

the other hand, passive observations are not closely related to the current tasks and the

corresponding algorithms are typically low-cost and real-time. For instance, passive ob-

servations enable robots to be capable of localizing itself, avoid running into obstacles and

monitoring battery status all the time. The last type of observations is human-robot interac-
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tion (HRI). Robots use speech recognition techniques to understand the feedback humans

provide. Observations are classified based on the certainty level: observations with high

certainty are used to update ASP knowledge base while the others update POMDP belief.

The POMDP belief update is based on Bayesian rules.

Since human feedback is a valuable resource that is unreliable and not always available,

human-robot interaction (HRI) is used when needed, e.g., if an object’s location is known

with considerable certainty, there is not much to gain by soliciting human help to locate

the object. Robots therefore determine the need for human feedback based on entropy of

POMDP belief distributions (Section 6.4). In this dissertation, the HRI strategy is passive

(robot does not move physically to “seek” help): whenever the robot detects a human

nearby, it computes the need and decides to ask or not.

Probabilities are modeled using hierarchical POMDPs (Section 5). The POMDP hierar-

chy includes two layers: Visual Sensing (VS) POMDP and Scene Processing (SP) POMDP.

The blue box in Figure 6.1 shows the key components of the VS-POMDP: the VS-POMDP

policy maps the belief state to an action; the selected action triggers an active observation

that extracts related information from the environment; and most of the observations are

then used to update the POMDP beliefs using Bayesian rules unless they are of a high

certainty. The action selection of VS-POMDP determines which SP-POMDP to execute

and SP-POMDP contributes to the active observations of VS-POMDP. SP-POMDP is not

presented in this overview figure for simplicity.

It is possible that the underlying state does not belongs to the POMDP state set. For

instance, the predefined state set includes all the possible positions of the target in the

domain. However, what if the underlying state is that the target does not exist in this

domain at all? The robot will keep searching until it is terminated by external actions, e.g.,
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running out of energy. From this objective, this dissertation would develop a novel method

that models a belief distribution for each POMDP state independently using a set of Beta

distributions. These belief distributions are updated by positive and negative observations

that are learned from standard POMDP observations. The probability that the underlying

state is not included in the state set can be derived using the set of Beta distributions.

This novel architecture opens a window to integrate declarative languages with prob-

abilistic reasoning tools by combining ASP and POMDPs. This architecture can be im-

proved in many ways and Section 9 discusses some possible extensions.
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CHAPTER 4

KNOWLEDGE REPRESENTATION AND LOGICAL INFERENCE USING ASP

Answer Set Programming (ASP)1 is a declarative programming paradigm that can rep-

resent recursive definitions, defaults, causal relations, special forms of self-reference, and

other language constructs that occur frequently in various non-mathematical domains, and

are difficult to express in classical logic formalisms [7]. ASP is based on the stable model

(i.e., answer set) semantics of logic programs [30], and has its roots in the research on

non-monotonic logics.

As a knowledge representation (KR) language, ASP is defined by its signature, a tuple

of sets: Σ = 〈O,F ,P,V 〉 [29]. These sets define the names of objects (O), functions(F ),

predicates (P) and variables (V ) available for use in the program. For instance, in a pro-

gram about family relations, we can define michael and julia as objects and father

and mother as predicates. If michael is the father of julia, father(michael,

julia) is true and mother(michael, julia) is false. The use of functions and

variables is similar to that in procedural programming languages. In addition, the follow-

ing definitions will be used in the subsequent discussion of ASP [29]:

1. Terms: variable and object constants are terms, and a function of a set of terms is a

term. Terms containing no symbols (for arithmetic functions) and no variables are

called ground.

2. Atom: an atom is an expression of the form p(t1, · · · , tn) where p is a predicate and

t1, · · · , tn are terms. An atom is called ground if every term ti is ground.

1Answer Set Programming is also referred to as Answer Set Prolog.
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3. Literal: a literal is an atom or its negation. Ground atoms and their negations are

ground literals.

4. Program: a program Π consists of signature Σ and a collection of rules: l0 or · · · or li←

li+1, · · · , lm,not lm+1, · · · , not ln. The ls in the rules are literals of Σ.

An ASP program is thus a collection of statements describing domain objects and relations

between them. An answer set is a set of ground literals that represent beliefs of an agent

associated with the program. Program consequences are statements that are true in all such

belief sets. The agent does not believe anything that it is not forced to believe. ASP supports

default reasoning, i.e., conclusions can be drawn due to lack of evidence to the contrary,

using concepts such as default negation (i.e., negation by failure) and epistemic disjunction.

For instance, unlike “¬ a”, which implies that “a is believed to be false”, “not a” only

implies that “a is not believed to be true”; and unlike “p ∨ ¬p” in propositional logic, “p

or ¬p” is not a tautology. ASP also supports non-monotonic reasoning—adding a new

fact can reduce the set of inferred consequences—causal reasoning, efficient reasoning

in large KBs, and reasoning with quantifiers. ASP is thus well-suited for commonsense

reasoning.

Knowledge Representation and Reasoning with ASP

In the illustrative target localization example, a robot learns and revises the domain map

using range data and acquires semantic labels for rooms. The ASP domain description

expands the signature by including symbols called sort names, which correspond to types

in a procedural language, e.g.,:

1. room: a connected space bounded by walls and doors that can be occupied by objects

and the robot. The predicate room/1 is used to define a room, e.g., room(hallway).
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Figure 4.1: Illustrative example of object classes stored in the knowledge base.

2. object: a visually identifiable element in a room. The predicate object/1 de-

fines an object, e.g., object(fridge1)2.

3. class: a set of specific objects or subclasses.

4. step: refers to a timestep (more details below).

The ASP KB encodes a tree of object classes as shown in Figure 4.1 for electronics items;

leaf nodes are specific objects in specific rooms, while other nodes are object classes.

Classes with specific objects as children are primary classes. Information is extracted

automatically from online repositories [37] to identify some relationships between object

classes. These relationships are used to create a subset of the tree, e.g., some of the nodes

and links from root node to primary classes in Figure 4.1. Robots use information learned

from sensor inputs and human feedback to add instances of objects to the KB and revise

existing domain information. In this paper, objects are assumed to be visually distinguish-

able.

2This sort name is different from the set “Objects” (O) in signature Σ.
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Since certain aspects of the domain change dynamically, e.g., a room that was accessible

may now be inaccessible, the concept of a timestep is introduced and modeled as a natural

number (I). The robot uses predicates to model and reason about aspects of the domain that

do not change (statics) and can change over time (fluents). Predicates are typically defined

in terms of the sorts they take as arguments, and predicates dealing with fluents include the

timestep as a parameter:

1. is(object, class) describes the class membership of a specific object, e.g.,

is(tv1, tv).

2. subclass(class, class), e.g., subclass(C1, C2) implies that class C1

is a subclass of C2.

3. in(object, room) describes the room location of a specific object, e.g., in(O,

R).

4. exists(class, room), e.g., exists(C, R) implies that an object of class

C exists in room R.

5. accessible(room) is used to specify if a specific room is accessible, e.g.,

accessible(R1) implies R1 is accessible.

6. holds(fluent, step) implies that a particular fluent holds true at a particular

timestep.

Predicates are applied recursively when appropriate. In addition, the following rules are

used for reasoning:
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1. If object O of class C is in room R, it is believed that an object of class C exists in R;

holds(exists(C,R),I) :-holds(in(O,R),I), is(O,C).

2. If an object of class C exists in room R, it is believed that an object of the parent class

(and all ancestor classes) of C exists in R;

holds(exists(C1,R),I) :-holds(exists(C2,R),I),

subclass(C2,C1).

3. An object can exist in only one location;

¬holds(in(O,R2),I) :- holds(in(O,R1),I), R1 != R2.

4. Rules of inertia: an object retains its location (i.e., it is in a room) until it is known

to be elsewhere and a room remains accessible (inaccessible) until it is known to

inaccessible (accessible).

holds(in(O,R1),I+1) :- holds(in(O,R1),I),

not holds(in(O,R2),I+1),

R1 != R2.

holds(accessible(R),I+1) :- holds(accessible(R),I),

not ¬holds(accessible(R),I+1).
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Consider the following illustrative example of non-monotonic reasoning in ASP:

• Test-case 1 has the following facts:

step(1..2).

holds(in(printer1, lab), 1).

is(printer1, printer).

Reasoning in ASP produces the following answer set (existing facts are not re-

peated):

holds(in(printer1, lab), 2).

holds(exists(printer, lab), 2).

• Now consider Test-case 2 that has a new fact about an object’s current location:

step(1..2).

holds(in(printer1, lab), 1).

is(printer1, printer).

holds(in(printer1, office), 2). %new info

Reasoning in ASP now produces the following new answer set (existing facts not

repeated):

¬ holds(in(printer1, lab), 2).

holds(exists(printer, office), 2).
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Adding a new fact has thus revised the outcome of the previous logical inference step.

Next, consider modeling the default: “normally robots cannot climb stairs” with hu-

manoids encoded elegantly as a weak exception:

¬clmbstair(X)← robot(X), not ab(dclmbstair(X)). % Default rule

robot(X)← wheeled(X).

robot(X)← humanoid(X).

ab(dclmbstair(X))← humanoid(X).

wheeled(peoplebot). humanoid(nao). % Specific data

where ab(d(X)) implies “X is abnormal with respect to d”. The result of inference in this

example is: ¬clmbstair(peoplebot) without making any claims about nao, i.e., it is

unknown if humanoid robot nao can climb stairs or not. These capabilities are important

for real-world human-robot collaboration. Inconsistencies caused by incorrect information

being added to the KB are identified and corrected by processing sensor inputs or by posing

queries to humans. The architecture (currently) only uses the inference capabilities of ASP

to better explore the merging of qualitative and quantitative beliefs; future work will also

consider ASP-based planning.

The architecture described in Figure 6.1 may cause incorrect information may be added

to the KB. However, ASP is (by design) capable of commonsense reasoning in the pres-

ence of incomplete information. It can check for inconsistencies, which are corrected by

subsequent sensor inputs or by (actively) posing relevant queries. Further details regarding

ASP can be found in [7]. We use Clingo [25] to solve ASP programs.
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This dissertation focuses on the logical inference and knowledge representation using

ASP. Future work will use ASP for planning and diagnostic reasoning as well.

In knowledge-intensive domains, knowledge representation and logical reasoning are

achieved using ASP. However, real-world environments are full of quantitative uncertain-

ties, e.g., imperfect action outcomes and unreliable observations. ASP in default is not

good at processing probabilities, so another strong tool, POMDPs, would be deployed in

the next chapter to model these probabilities.
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CHAPTER 5

PROBABILISTIC PLANNING USING HIERARCHICAL POMDPS

The architecture aims to achieve this objective by enabling robots to automatically learn

environmental models (Bootstrap Learning), tailor sensing and processing to the task at

hand (Hierarchical Planning). Furthermore, the individual components inform and guide

each other to achieve the desired reliable, efficient and autonomous operation. This section

primarily focuses on hierarchical planning and the corresponding algorithms are illustrated

using a challenge task where robots have to locate objects (i.e., “targets”) in dynamic indoor

domains such as offices. The robot can then compute the 3D scene likely to contain the

chosen target, move to a suitable location to capture images of the scene, analyze suitable

regions in the images using relevant processing algorithms, and repeat these steps based on

updated beliefs.

In the illustrative example of target localization in an office with multiple rooms, ASP-

based reasoning will provide candidate (room) locations for each target object. To accu-

rately localize a specific target object, the robot has to move and analyze a sequence of

images of a sequence of scenes. This objective is posed as a planning task and addressed

using our prior work on hierarchical POMDPs for (visual) sensor input processing—see

Figure 5.1. For a specific target object, the 3D area is represented as a discrete 2D occu-

pancy grid, each grid storing the probability of target existence. The visual sensing (VS)-

POMDP plans an action sequence that maximizes information gain by analyzing a suitable

sequence of scenes (Section 5.2). For each scene, the scene processing (SP)-POMDP plans

the processing of specific regions of images of the scene using relevant algorithms (Sec-

tion 5.3). Automatic belief propagation and model creation in the hierarchy are described
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in [89, 104, 107]. For historical reasons, VS-POMDP is also referred to as higher-level

(HL)-POMDP and when SP-POMDP is a two-layer POMDP planner, the two individual

POMDPs are referred to as higher-level (HL)-POMDP and lower-level (LL)-POMDP.

Figure 5.1: POMDP hierarchy and scenario

5.1 Partially Observable Markov Decision Process (POMDP)

Markov assumption (first order) indicates that the next state of the world only relies on

the current state, and is independent from the previous states. Problems can be simplified

greatly by Markov assumption because considering the states in history is not required

for predicting the next state. Markov decision process (MDP) is a mathematical model

used for decision-making where the underlying state transition is a Markov process. In

MDP, the state of the world is assumed to be fully observable. However, for problems like

robot planning, although the Markov property still holds, the actuations and sensing are

unreliable. Partially observable Markov decision process (POMDP) is a generalized form

of a Markov decision process, where the underlying state transitions are Markov processes
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but the agent cannot fully observe the current state[42]. Hence, a probability distribution

is maintained over the set of possible states to represent the current status of the world and

this distribution is named as a belief state, belief distribution or a belief interchangeably.

The belief distribution is updated based on the observations and the pre-learned observation

functions.

A standard POMDP model is a tuple (S,A,Z,T,Ω,R), where

• S is a set of states of the world;

• A is a set of actions;

• Z is a set of observations the agent can experience of its world (Z reflects the sensor

capabilities in case of the agent to be a robot) and;

• T is the state-transition function, giving for each world state and agent action, a

probability distribution over world states. T (s,a,s′) is the probability of ending in

state s′, given that the agent starts in state s and takes action a;

• O: S×A→ Π(Z) is the observation function, which gives, for each action and re-

sulting state, a probability distribution over possible observations. O(s′,a,o) for the

probability of making observation o given that the agent took action a and landed in

state s′;

• R: S×A→ R is the reward function, giving the expected immediate reward gained

by the agent for taking each action in each state. R(s,a) is the expected reward for

taking action a in state s.
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5.2 VS-POMDP for Visual Sensing

In real-world domains (e.g., an office or a home), target objects can exist in different

locations in a room or in different rooms. A robot hence has to move to analyze differ-

ent scenes and locate the objects. Without loss of generality, assume that the robot has

learned a map of its world [22] (with walls and other static obstacles) using range infor-

mation obtained from a laser range finder, and has to locate a specific target. The 3D area

shown in the top right of Figure 5.1 is represented as a discrete 2D occupancy grid. Each

grid-cell stores a probability that represents the likelihood of occurrence of the target ob-

ject in that grid-cell. The size of each grid-cell is based on the field of view of the sensor

(i.e., camera) being considered. The VS-POMDP poses sensing as the task of determining

a sequence of actions that maximizes information gain, or equivalently reduces the en-

tropy of the probability distribution over possible target locations. The VS-POMDP tuple

〈SV S,AV S,TV S,ZV S,OV S,RVS〉 for locating the desired target object in a domain discretized

into N grid-cells, is then defined as follows:

• SV S : si, i ∈ [1,N] is the state vector; si corresponds to the event that the target is in

grid-cell i.

• AV S : ai, i ∈ [1,N] is the set of actions. Executing ai causes the robot to move to and

analyze grid-cell i.

• TV S : SH ×AV S× SV S → [0,1] is the state transition function. For actions that do not

change the physical state of the system, it is an identity matrix.

• ZV S : {present, absent} is the set of observations that indicates the presence or absence

of the target object in a specific grid-cell.

• OV S : SV S×AV S×ZV S→ [0,1] is the observation function that is learned automatically

(see below).
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• RV S : SV S × AV S → ℜ is the reward specification that is based on belief entropy (see

below).

Since the robot cannot observe the true state of the world, it maintains a belief state, a

probability distribution over the underlying set of states. The entropy of belief distribution

Bt is then given by:

H (Bt) =−
N

∑
i=1

bi
t log(bi

t) (5.1)

where bi is the ith entry of the belief distribution over the N grid-cells of the learned map

of the domain. The reward of action at is then defined as the reduction in entropy between

belief state Bt−1 and the (expected) resultant belief state Bt after action execution:

RV S(at) :=H (Bt−1)−H (Bt) (5.2)

=∑
k

bk
t log(bk

t )−∑
j

b
j
t−1log(b

j
t−1)

When nothing is known about the target object’s location, the belief is uniformly distributed

and entropy is maximum. As the belief distribution converges to states likely to be target

locations, the entropy progressively reduces.

Similar to the reward specification, the observation function is specific to the domain

and the characteristics of sensors mounted on the robot. As stated in Section 2, computing

suitable observation functions can take a significant amount of prior knowledge or manual

input. In this work, the observation function is defined adaptively based on the locations of
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obstacles and the expected performance of the lower levels of the POMDP hierarchy:

O(zi = present,s j,ak) =











β if isBlocked(s j,ak)

η · e
− λ µ2

2σ2 otherwise

(5.3)

where O(zi = present,s j,ak) = p(zi|s j,ak) is the probability of a particular observation in

cell i given that the target is in cell j and the focus is on cell k. This probability is modeled

as a Gaussian whose mean depends on target location, the grid cell being examined and the

camera’s field of view: µ = fµ(s j,ak). The variance is based on the observation functions

of the lower levels of the hierarchy: σ2 = fσ2(O,OI|s j,ak). When there is an obstacle

between cell j and cell k, i.e., isBlocked(s j,ak) is true, β is a small probability that the

target can be observed while it is blocked by the obstacle(s). This observation function also

models the fact that the probability of a robot detecting a target is inversely proportional to

distance, i.e., a closer target is more likely to be found.

Given the model parameters, the belief update in a POMDP proceeds as follows:

Bt+1(s
′) =

OH(s′,at+1,ot+1)∑s T H(s,at+1,s
′) ·Bt(s)

p(ot+1|at+1,bt)
(5.4)

POMDP solvers take such a model and compute a policy: πH : Bt 7→ at+1 that maps belief

states to actions. In the VS-POMDP, the computed policy has to minimize the entropy in Bt

over a planning horizon. The focus of this work is not on developing a POMDP solver but

to provide a hierarchical planning scheme for achieving reliable and efficient visual sensing

and processing using operators that are individually unreliable. Existing implementations

of policy gradient algorithms are hence used to compute the high-level (HL) policy in the

form of stochastic action choices, i.e., “weights” that are used to probabilistically choose
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the best action for a belief state [13].

5.3 SP-POMDP for Scene Processing

For any chosen scene, the SP-POMDP plans the sequence of visual input processing

(i.e., image processing) algorithms to be applied on a sequence of salient regions of inter-

est (ROIs) of images of the scene. The SP-POMDP has one or two layers depending on

scene complexity, i.e., the number of ROIs and types of features extracted from images of

the scene. For instance, ROIs are extracted from each image of the scene and each ROI is

modeled as a lower-level (LL) POMDP. Each LL policy provides the sequence of operators

(i.e., algorithms) to apply on a specific ROI to detect the desired target object. These algo-

rithms could, for instance, determine the dominant color or shape in the ROI. LL policies

of all image ROIs are used to automatically create an HL-level (HL) POMDP. Executing an

action in the HL policy directs attention to a specific ROI. Executing the corresponding LL

policy (until termination) provides an observation that causes an HL belief update and ac-

tion choice until presence or absence of the target in the image is determined. This provides

an observation in the VS-POMDP followed by a belief update, with the robot choosing a

scene for subsequent analysis. This process continues until the object is found or the belief

does not converge over a period of time. The entire hierarchy adapts automatically to the

task at hand. These two layers have been described in detail in prior work that focused

on visual processing in a tabletop scenario [90, 89]. The description below is provided

primarily for completeness.

Consider the situation where the robot has moved to a chosen scene and has captured an

image of the scene. Assume that some initial processing has been performed to identify

salient regions of interest (ROI) in the image. The goal of determining the presence or

absence of the target in this image is posed in the form of a query. It is infeasible to apply
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all possible processing algorithms on the entire image. The approach described in [90, 89]

hence plans a suitable sequence of processing operators to be applied on a suitable subset

of image ROIs.

First consider the POMDP model for a single image ROI, which determines the subset of

available processing operators to be applied on the ROI for a specific query/task. For ease

of explanation (and without loss of generality) assume that the robot has two visual pro-

cessing operators: a color operator that classifies the dominant color of the ROI it is applied

on; and a shape operator that classifies the dominant shape within the ROI. Other visual op-

erators can be added as needed, including operators that handle overlapping objects in the

image [89]. Each action considers the true underlying state to be composed of the class la-

bels (e.g., red(R), green(G), blue(B) for color; circle(C), triangle(T), square(S) for shape);

a label to denote the absence of any valid object—empty (φ ); and a label to denote the

presence of multiple classes (M). The corresponding observation function is a probability

distribution over the set of possible action outcomes. The set of action outcomes consists of

the class labels; the label empty (φ ) which implies that the match probability correspond-

ing to the class labels is very low; and unknown (U) which implies that multiple classes are

equally likely and the ROI may therefore contain multiple objects. Since the visual pro-

cessing operators only update belief state, the action set also includes “special actions” that

cause a transition to a terminal state by stating the presence or absence of the target object.

The LL-POMDP for the ROI is then formulated as the tuple 〈SL,AL,T L,ZL,OL,RL〉:

• SL : Sc× Ss ∪ term, the set of states, is a Cartesian product of the state spaces of the
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individual actions. It also includes a terminal state.

Sc : {φ a
c ,R

a
c,G

a
c,B

a
c,Mc}

Ss : {φ a
s ,C

a
s ,T

a
s ,S

a
s ,Ms}

• AL : {color,shape,Asp} is the set of actions. The first two entries are the processing

actions. The rest are special actions that represent responses to the query and lead to

term. For instance, Asp = {sFound,sNotFound} while searching for a specific object.

• T L : SL×AL×S′L→ [0,1] represents the state transition function. For visual processing

actions it is an identity matrix, since the underlying state of the world does not change

when they are executed.

• ZL : {φ o
c ,R

o
c,G

o
c ,B

o
c,Uc,φ

o
s ,C

o
s ,T

o
s ,S

o
s ,Us} is the set of observations, a concatenation of

the observations obtained from all actions.

• OL : SL×AL× ZL → [0,1] is the observation function, a matrix of size |SL| × |ZL| for

each action under consideration. It is learned by the robot for the visual actions, and it is

a uniform distribution for the special actions.

• RL : SL×AL→ℜ is the reward specification. The visual processing actions have negative

rewards (i.e., costs) based on their relative computational complexity and the size of the

ROI.

The reward and observation functions are learned by the robot in a semi-supervised manner,

by repeatedly applying the available operators on known objects in the scene—see [89] for

more details. Visual planning now involves solving this POMDP to find a policy that

maximizes reward over a range of belief states. Plan execution corresponds to using the

policy to repeatedly choose the action with the highest value at the current belief state, and

updating the belief state after executing that action and receiving an observation.
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Real-world scenes contain multiple objects, resulting in multiple ROIs in images of such

scenes. The state space of the joint POMDP over all image ROIs grows exponentially.

For a single ROI with m features (e.g., color, shape) each with n values (e.g., Ra
c , Ga

c , Ba
c ,

φ a
c and Ma

c for color), the POMDP has an underlying space of size nm + 1. For k ROIs

we have nmk + 1 states. Solving a POMDP in the joint space of all ROIs soon becomes

intractable even for a small set of ROIs and actions—with three ROIs and two actions

with six outcomes each, we get ≈ 50000 states. The hierarchy therefore models each ROI

with a LL-POMDP, and uses the HL-POMDP to maintain a belief over the image and

select (at each step) the ROI that is to be analyzed further using its LL policy. Such a

decomposition changes the O(nmk) problem for k image ROIs into one HL-POMDP with

state space 2k +1, and k LL-POMDPs with state space nm +1. Without loss of generality,

consider an image with two ROIs—the corresponding HL-POMDP is given by the tuple

〈SH ,AH ,T H ,ZH ,OH ,RH〉:

• SH = {R1∧¬R2,¬R1∧R2,¬R1∧¬R2,R1∧R2}∪ termI is the set of states. It represents

the presence or absence of the object in one or more of the ROIs, i.e. R1∧¬R2 means the

object exists in R1 but not in R2. The set of states also includes a terminal state (termI).

• AH = {u1,u2,AS} are the actions. The sensing actions (ui) denote the choice of executing

one of the LL ROIs’ policy trees. The special actions (AS) represent the fact of “saying”

that one of the entries of SI is the answer, and they lead to termH .

• T H is the state transition function, which leads to termH for special actions and is an

identity matrix otherwise.

• ZH = {FR1,¬FR1,FR2,¬FR2} is the set of observations. It represents the observation

of finding or not-finding the object when each ROI’s LL policy tree is executed.

• OH : SH ×AH ×ZH → [0,1], the observation function of size|SH |× |ZH |, is an uniform
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matrix for special actions. For sensing actions, it is obtained from the LL policies of the

corresponding ROIs.

• RH is the reward specification. It is a small “cost” for each sensing action. And for

the termination action, it is a large positive value, if it predicts the true underlying state

correctly, and a large negative value, if not.

An important aspect of the decomposition is the automatic belief propagation—the HL ob-

servation function and reward specification are learned automatically from the LL policies

of the image ROIs. For instance, the probability of FR2 is computed by finding the leaf

nodes that represents sFound in R2’s policy tree and summing the probabilities of travers-

ing a path from each such leaf node to the root node. Similarly, the cost (i.e., reward)

of action u2 is the average cost of executing the actions represented by the corresponding

LL-POMDP’s policy tree [89].

The overall operation of the POMDP hierarchy is as follows: the map of the world is

used to generate the HL-POMDP model, which is solved to obtain the HL policy for the

desired target object. The HL policy is used to choose a 3D scene to analyze next. The

robot moves to this scene and captures images. Each salient region of interest (ROI) in an

image is modeled as an LL-POMDP, where actions are information processing operators

(e.g., detect color, object class). The corresponding LL policy provides the best sequence

of operators to apply on a specific ROI to detect the target object. The LL policies of all

image ROIs are used to create an HL-POMDP during run-time, and executing an action in

the corresponding HL policy directs the robot’s attention to a specific ROI. The result from

executing the corresponding LL policy causes a belief update in the HL and a subsequent

action choice—the process is repeated until the presence or absence of the target is deter-

mined in the image being analyzed. The HL outcome causes an HL belief update and the
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subsequent action choice causes the analysis of another grid-cell until the target is found.

Changes in the domain map cause an automatic change in the HL policy, while changes in

the perceptual state space (e.g., disambiguating between overlapping objects in the image)

is addressed by re-planning in the HL-POMDP and LL-POMDPs [89]. The entire oper-

ation hence occurs reliably and efficiently due to the adaptive constrained convolutional

policies and automatic belief propagation.

5.4 Convolutional Policy of POMDP

One key challenge in POMDP formulations of complex domains is that as the state

space dimensions increase, obtaining real-time solutions is difficult even with sophisti-

cated solvers. In the context of VS-POMDP, we addressed this challenge based on the

observation that if the robot is analyzing a specific (grid) cell, the information gained by

the robot is mainly a function of (and can influence) only a small number of surrounding

cells. More generally, the policies of similar POMDP problems of different sizes have sim-

ilar patterns. If the underlying patterns and its parameters can be discovered, it would be

possible to avoid learning policies directly for complex problems and instead the policies

could be derived using the parameters of underlying patterns.

Specifically, the robot learns a policy kernel from a baseline policy for a local region with

a small number of grid cells, and generates the policy for a larger area with a larger number

of grid cells by an inexpensive convolution operation—see Figure 5.2. For instance, given

the baseline policy generated for a 5× 5 map (with 25 states), the matrix of weights is

reorganized into layers corresponding to each state and a 3× 3 mask is convolved with

the layers (and normalized) to generate the 3× 3 kernel. This policy kernel can then be

convolved with (say) a 10× 10 map to generate the corresponding policy (one layer at a

time). Although it may take some time for the robot to learn a baseline policy, the extracted
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Figure 5.2: Motivation for convolutional policies.

kernel is a function of the sensors—it is typically computed once and used to create policies

(in real-time) for larger-sized domain maps.

Executing an action using the VS policy causes the robot to move to and analyze a spe-

cific scene, creating and solving the corresponding SP-POMDP (with one or more levels)

automatically. Executing the SP policy causes the robot to apply a sequence of visual

processing algorithms on salient regions in images of the scene, resulting in a VS belief

update and subsequent action selection. For more details on efficient and automatic belief

propagation in the POMDP hierarchy, see [104].

5.4.1 Kernel Extraction of Convolutional Policy

Practical domains can change dynamically, have different shapes and sizes, and the num-

ber of grid-cells can be arbitrarily large. As a result, using POMDP formulations can be a

formidable challenge. The hierarchy addresses this challenge by learning a convolutional

policy kernel that exploits the rotation and shift-invariance of visual search. The hypothesis

is that observations obtained by the robot at any location are primarily influenced by (and

modify beliefs about) the neighboring locations [14].

A stochastic policy kernel is hence learned from the baseline policy for a small local
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region:

K̄(s) = (πV ⊗ CK
m)(s) =

∫

πV (s̃)CK
m(s− s̃)ds̃, (5.5)

K = ( ∑
states

K̄) ·/W

where πV is the (baseline) VS policy, CK
m is a mask of the same size as the kernel being

learned, K̄ is the un-normalized kernel, W is the count of accumulated weights for each

action and K is the normalized kernel. The kernel’s size is chosen to be small (based on

field of view of camera) and the baseline policy’s size is chosen based on computational

considerations. No other (e.g., shape) constraints are imposed on the kernel or the map.

The policy for a larger area is then obtained by an inexpensive convolution of the map with

the policy kernel.

Figure 5.3: Illustration of extracting 3×3 policy kernel from a 5×5 baseline policy

Consider Figure 5.3, where a 3×3 policy kernel is extracted from a 5×5 baseline policy,

a 2D matrix whose rows denote actions weights for specific states. Each row is re-arranged
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to obtain a 2D matrix (of the same size as the map) that stores action weights when focusing

on a specific state, decomposing the policy into layers as shown in the left column of Fig-

ure 5.3. A 3×3 mask CK
m is convolved with the policy layers and the weights in the region

covered by the mask are considered, as shown in the middle column of Figure 5.3. Since

weights of the grid-cells outside the masked region are not considered, the resultant kernel

is normalized (using matrix W ) to obtain K, as shown in the right column of Figure 5.3.

The learned policy kernel does not assign action weights to the grid cells further away

from the center of the mask. Since these weights are usually much smaller than values in

the kernel, they are set to a small value:

W B =

∑
actions

∑
states

πV −∑ ∑
states

K̄

Nactions×Nstates− sz(W )
(5.6)

where the default weight value is a function of the number of actions: Nactions, the number

of states: Nstates and the size of the weight matrix: sz(W ).

5.4.2 Policy Extension of Convolutional Policy

The learned policy kernel has the most important parameters of the corresponding base-

line policy, so it can be used to compute the policy for larger maps using an efficient con-

volution operation as below.

πV
C (s) = (K⊗CE

m)(s) =
∫

K(s̃)CE
m(s− s̃)ds̃ (5.7)

where K is the policy kernel, CE
m is the mask of the same size as the target map and πV

C

is the convolutional policy. Consider Figure 5.4, where a 3×3 kernel is convolved with a

7× 7 mask to generate the policy for a 7× 7 map. This policy is generated one layer at a
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time, by centering the kernel on the state represented by the layer, e.g., there are 49 layers

for the 7×7 map. Since the kernel covers (at most) nine grid-cells, other cells are assigned

the weight computed in Equation 5.9 and the policy is normalized. The robot can thus use

the policy kernel to generate policies for larger areas in real-time.

Figure 5.4: Illustration of using 3×3 policy kernel to generate 7×7 conv. policy.

However, when the policy kernel is used to generate policies for larger maps, the number

of states covered by the kernel remains unchanged. Since policy weights over the map are

normalized, the kernel’s effect will be different on maps of different sizes (it will be much

smaller when the size of the map grows larger). This is not a severe problem when the size

difference between the baseline and the goal problems is not significant. Since the size of

state space for baseline problem is typically small, the difference mostly relies on the size

of the goal problem. Empirically, when the number of states of the goal problem is about 4

times larger than the baseline one, Ŵ B needs to be recalculated as below.

Since parameters of POMDP policy range in (−∞,∞), we want to project the parameters
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onto a range of [0,1] (as probabilities). The standard softmax activation function is hence

used to convert weights to action probabilities (with a unit temperature value) [92].

pt(a j) =
ewt(a j)

∑
Nactions

i=1 ewt(ai)
(5.8)

where, pt(a j) is the probability of choosing action a j at time t, and the individual action

weights, i.e., the wt(ai) values, are obtained from the computed HL policy.

A heuristic function is hence used to revise the value of W B such that the ratio of impor-

tance assigned to the area covered and left uncovered by the kernel is similar over maps of

different sizes:

Ŵ B =W B− ln(
NE

states− sz(W )

NB
states− sz(W )

) (5.9)

where NE
states and NB

states are the number of states in the large map and baseline kernel

respectively. The natural logarithm function (ln) is used because the conversion of weight

values to probabilities is based on a softmax-like activation function. Although it may take

some time to learn a baseline policy for a small area and extract a policy kernel, this is a

one-time computation that does not need to be repeated unless the properties of the robot’s

sensors change significantly.

5.5 Directed Re-weighting and Full-Path Planning

Directed re-weighting models the orientations of robots in addition to their positions.

It is informative to robot planning, specifically for a target localization problem, because

observing an object implies the object existing in front of the robot (beliefs on the states

behind the robot should not change). During evaluation, the robot computes the relative
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distance and bearing to the detected targets. However, including the computed orientation

as a parameter in the observation set will destroy the shift and rotation invariance in policy

space. As a consequence, the constrained convolutional policy will not be applicable. The

belief update in Equation 5.4 is therefore modified as follows:

if ¬ target (5.10)

B(s′) =
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

Pr(o|a,b)
=

O(s′,a,o)b(s)

Pr(o|a,b)

else

B(s′) =
O(s′, â,o)∑s∈S T (s, â,s′)b(s)

Pr(o|â,b)
=

O(s′, â,o)b(s)

Pr(o|â,b)

end

where, B(s′) is the updated belief for state s′ after action a. Since the transition functions

are identity matrices, the update equation can be simplified as shown.

The intuitive idea is straightforward: when a target is detected, the beliefs near the “tar-

get” increase (instead of the ones around the robot); when a target is not detected, the

beliefs around the robot decrease. The relative distance and bearing are used to find the

global location of the target in the grid map (based on robot’s localization) and the belief

proceeds as if the action corresponding to this global location had been executed: â. This

special belief update, known as directed re-weighting, is used in all experiments conducted

on the simulated and physical robot platforms.

Mobile robots have to physically move between grid-cells in the map to search for target

objects. Sensing, information processing and actuation on robots are non-deterministic and

any movement by the robot takes time and expends energy. More importantly, the goal is

to complete tasks with the least time. A cost is hence assigned to the robot’s motion by
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revising each action’s (policy) weights during policy execution, based on the distance to be

traveled and the robot’s speed:

ŵ(a j) = f (w,dA∗) = w(a j)
1

1+
dA∗(ai,a j)

speed

(5.11)

where dA∗(ai,a j) is the distance between the current grid cell and the candidate grid cell.

The A∗ algorithm is used to compute the shortest path from the current grid-cell to a candi-

date grid-cell. The modified policy trades off likelihood of localizing the target against the

cost of traveling to that location. The robot hence does not choose to travel a long distance

between two sensing actions unless it expects to obtain a significant amount of knowledge

about the location of the target object when it reaches the candidate grid-cell. When the do-

main map changes (e.g., doors are closed or some obstacles are moved), the robot uses this

policy re-weighting approach to quickly recompute the distances between grid-cells and

revise the action weights before making the subsequent action choices. Different speeds

can be used in Equation 5.11 for different robots or situations.

While the revision of action weights captures motion-based costs, hill-climbing is used to

make the search more efficient in large maps. The problem arises from designing reward in

HL-POMDP as a function of entropy reduction [106]. This design forces the robot to move

to places with potential to reduce belief entropy in the highest degree. However, a robot can

hardly finish a task within a single step, so it is necessary to consider the potential of several

steps after the next one. Consider Figure 5.5, which shows a domain map discretized into

grid cells. The green grid is the current position of the robot after executing the most recent

action. There are three grid cells in the map with significantly higher weights than the

other cells: the orange and pink grids have w = 0.3 (not ŵ) and the blue grid has w = 0.2.

Since the robot’s current position is equidistant from the pink and orange grids, these grids
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have an equal chance of being the next grid cell visited by the robot. However, given other

valid candidates of similar relevance, it makes sense to visit the pink cell first because it is

also close to the blue grid cell. We therefore enable the robot to consider the entire path

of candidate grid cells, i.e., the path with the largest summation of ŵ values instead of just

looking for a target grid cell with the largest ŵ. It is however infeasible to estimate an

optimal path by considering all possible paths through all grid cells in a large map. Our

approach therefore detects “hot-spots”, i.e., grid cells with beliefs substantially larger than

the immediate neighborhood, and evaluates paths through them.

Figure 5.5: Hot-spot detection for motion planning.

To compute hot-spots, Nhs seeds are randomly selected and then refined based on hill-

climbing to arrive at local maxima, e.g., the orange, blue and pink grids in Figure 5.5.

These hot-spots are considered to be the interesting areas for further analysis. The robot

then evaluates paths wpath through combinations of these hot-spots:

wpath([h0,h1, . . . ,hNhs]) =
Nhs

∑
i=1

f (w(hi),
i

∑
j=1

dA∗(h j−1,h j)) (5.12)

where hi is the ith hot-spot, h0 is the robot’s current position and w(hi) is the (action)

weight at the grid-cell corresponding to hot-spot hi. The function f is defined in Equation
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5.11. In Figure 5.5, the values of the pink-blue-orange and orange-pink-blue paths are

0.0672 and 0.0591 respectively, making the pink grid cell the most likely choice for being

analyzed next. This path planning does not imply that the robot will move through the

entire path—once a robot arrives at a grid cell, the corresponding observation revises the

belief distribution and planned path. The path planning ensures that the robot’s attention is

directed towards the most interesting areas instead of individual grid cells.

5.6 Summary

This novel POMDP hierarchy is one of the key contributions of this dissertation. Boot-

strap Learning and Hierarchical Planning enable robots to automatically learn environ-

mental models, tailor sensing and processing to the given tasks.

The VS-POMDP introduces convolutional policies, entropy reduction-based reward de-

sign, directed re-weighting and a full-path planning algorithm. The entropy reduction-

based reward enables the robot to seek the most efficient way to make the belief distribution

converge (to the underlying state). Directed re-weighting helps model the relative orienta-

tions of detected targets while not destroying the shift and rotation invariance of POMDP

policies. Full-path planning algorithm enables the robot to consider not only a single re-

gion of interest but also a set of nearby regions for path planning in grids. Convolutional

operations in the policy space enable the robot to avoid directly solving POMDP problems

with a large number of states. Instead a policy kernel extracted from a similar but much

smaller problem (so-called baseline policy) is used to generate the goal policy in real time.

The next chapter will focus on the novel architecture that combines hierarchical POMDPs

(Section 5) and ASP (Section 4).
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CHAPTER 6

COMBINING ASP AND POMDPS

Previous chapters have introduced the knowledge representation and reasoning with ASP

(Chapter 4) and hierarchical POMDPs (Chapter 5). While ASP enables the robot to rep-

resent, revise and reason with incomplete knowledge and POMDPs enable the robot to

automatically adapt sensing and acting to the task at hand, the complementary strengths

of ASP and POMDPs have not been exploited. This chapter will focus on a novel knowl-

edge representation and reasoning architecture combining ASP and POMDPs. Figure 6.1

depicts the architecture. The ASP knowledge base (KB) represents domain knowledge that

may or may not be relevant to current tasks, while POMDPs probabilistically model a sub-

set of state space directly pointing to the task at hand. Logical inference in ASP is used

to: (a) compute prior beliefs relevant to the task at hand, which are modeled as a Dirichlet

distribution; and (b) identify eventualities not being considered by the POMDP formula-

tion based on learned Beta distributions. The Dirichlet distribution satisfies the objective

of Bayesian merging with POMDP beliefs, while the Beta distributions enable robots to

exploit both positive and negative observations. Since the POMDP state space is intention-

ally kept small and focused on specific tasks, it is possible that underlying state falls out

of the predefined state set. In this case, the positive and negative observations are used to

terminate tasks that can no longer be accomplished (Section 6.3).

The blue box includes a POMDP decision-making steps: the robot selects actions based

on a learned policy that maximizes long-term rewards and takes as input the merged POMDP

beliefs; action execution causes the robot to actively move to specific locations and process

images to obtain observations; and (active) observations as a result of POMDP actions up-
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Figure 6.1: Overview of the architecture for knowledge representation and reasoning.

date POMDP belief using Bayesian rules. The red box indicates all types of observations,

from which the robot learns the physical environment and creates plans on when to do what.

Observations are not only activated by POMDP actions but also obtained from passive sen-

sors (e.g., range finders, ultrasound) that keep providing sensor outputs no matter actions

selected and from high-level human feedback that can have different levels of relevance

to current tasks. Observations made with high certainty are (proportionately) more likely

to update the KB, while other observations update POMDP beliefs. Human feedback is

solicited based on need and availability, using the entropy of POMDP belief distributions

to compute the need for feedback. Although this architecture is illustrated below in the

context of robots localizing (i.e., computing the locations of) objects in indoor domains,

the integration of knowledge representation, non-monotonic logical reasoning and proba-

bilistic uncertainty modeling is applicable to many other domains.

Let us assume that ASP has provided candidate locations for a target object in a learned

map of an office. The robot now has to move and analyze a sequence of images of a

59



Texas Tech University, Shiqi Zhang, August 2013

sequence of scenes. This objective is posed as a planning task and addressed using our prior

work on hierarchical POMDPs for reliable and efficient visual sensing and information

processing on robots [104].

The ASP formulation (Section 4) models domain knowledge and provides an answer set

that represents the result of non-monotonic logical inference. The POMDP formulation

models the uncertainty in sensing and navigation to adapt sensing and processing to any

given task. This section describes a principled strategy to convert answer sets to beliefs

that initialize or revise POMDP beliefs. The entropy of POMDP beliefs is then used to

identify the need for high-level human feedback, using information extracted from sensor

inputs and human feedback to augment and revise the KB.

6.1 Bias Generation

It is a challenge to represent common sense knowledge in POMDPs, since the acquired

information may have varying levels of relevance to current and future tasks. Since an

answer set represents all that is currently believed to be true, This section describes our

novel approach to generate a bias, i.e., a prior belief distribution over a set of possible

underlying states, using the knowledge encoded in the ASP KB. For localizing objects in

a set of rooms, a robot computes the prior belief of existence (or non-existence) of objects

(in rooms). The robot uses knowledge of the object hierarchy—a tree of primary object

classes (e.g., printer and scanner) that are subclasses of other classes (e.g., electronics)—

and specific objects, and postulates that capture object co-occurrence relationships. We

illustrate this approach using postulates for target localization and visual processing; some

postulates (and their representation) may need to be revised when using this approach in

other domains.
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Postulate 1: Existence (or non-existence) of objects of a primary object class (in a room)

provides support for the existence (or non-existence) of other objects of this class (in the

room); level of support is proportional to logarithm of number of objects, inspired by Fech-

ner’s law1:

perception = ln(stimulus)+ const

This law is applicable to visual processing, which is used in this paper to recognize objects.

For a target object, support for its existence in a room is thus given by:

ψn =















0 i f an = 0

ln(an)+ξ otherwise

(6.1)

where an is the number of (known) objects of the primary class (of the target) in the room,

and ξ = 1 corresponds to const above. For instance, if the target is printer1 and the

robot knows that printer2 and printer3 are in a room, prior support for printer1

in the room is: ln(2)+ ξ . The probability of an object of class C to be located in room R

increases with the number of objects of C known to be located in R. Certain domain objects

may be exclusive, e.g., there is typically one fridge in a kitchen. Such properties can be

modeled by relevant rules in the KB and by including other postulates (e.g., see below).

Postulate 2: As the number of known subclasses of a class increases, the influence that

the subclasses exert on each other proportionately decreases. This computation is per-

formed recursively in the object hierarchy from each primary object class to the lowest

1Fechner’s law was introduced in 1860 and serves as the basis of modern Psychophysics. It states that

subjective sensation is proportional to the logarithm of stimulus intensity.
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common ancestor (LCA) of the primary class and the target object. Equation 6.1 is thus

modified as:

ψn =



















0 i f an = 0

ln(an)+ξ

∏
Hn

h=1Wh

otherwise

(6.2)

where Hn is the height of the LCA of the candidate primary class and target. For a class

node on the path from the primary class to the LCA, Wh is the number of its siblings at

height h; we set W1 = 1.

Postulate 3: Prior knowledge of existence of objects in different primary object classes

independently provide support for the existence of a specific object (in a room). This postu-

late enables elegant merging of support from different sources, and works well in practice.

For a target object, prior belief of existence in room k is thus the summation of evidence

contributed by all N primary object classes:

αk =
N

∑
n=1

ψn,k (6.3)

The prior belief of existence of the target object in the set of rooms is modeled as a Dirichlet

distribution with parameter set α , where αk represents support for the target’s existence in

room k. The values of αk are obtained as described above, using the cardinality of the set

of relevant answer set statements obtained through inference in the KB. The probability

density function (pdf) of this K-dimensional Dirichlet distribution is:

D(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K

∏
k=1

µαk−1
k (6.4)
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where Γ is the Gamma function used for normalization; µk ∈ [0,1] is a distribution of the

target’s existence over the rooms; and α0 = ∑K
k=1 αk. The expectation of this Dirichlet

distribution, E(µk), serves as the prior belief distribution that is to be merged with the

POMDP belief distributions. The probability that the target is in room k based on the

Dirichlet prior is given by (Ek represents the event that the target exists in room k):

p(Ek|D) = E(µk) = αk/α0 (6.5)

Although the Dirichlet distribution models the conditional probability of existence of the

target in each room given its existence in the domain, it does not address the objective of

learning from positive and negative observations, thus reasoning about the target’s non-

existence in a room or the domain. Towards this objective, parameters α also initialize

Beta distributions that model the existence of the target in each room:

Beta(φk|αk,βk) =
Γ(αk +βk)

Γ(αk)Γ(βk)
φ αk−1(1−φ βk−1) (6.6)

where Γ function is used for normalization and βk is the support for the non-existence of

target in room k. The expectation of the Beta distribution for room k, E(φk), serves as the

prior belief that the target exists in room k, with Ek and E representing the existence of

target in room k and the entire domain respectively:

p(Ek|Beta) = E(φk) =
αk

αk +βk

(6.7)
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The probability that the target does not exist in the domain can then be derived as follows,

assuming Ei and E j are independent events ∀i 6= j.

p(¬E) = ∏
k

p(¬Ek|B) = ∏
k

(1− p(Ek|B)) (6.8)

The Dirichlet distribution and Beta distributions thus elegantly model probabilities that

support the desired objectives. The Dirichlet distribution models generalized conditional

probabilities that directly use the information in the answer sets, while Beta distributions

model specific (marginal) distributions that can be updated by positive and negative obser-

vations as described below.

6.2 Belief Merging

Section 6.1 has enabled to generate a bias distribution from answer sets using a principled

strategy. The next question would be how to merge this bias distribution with a POMDP

belief distribution. A straightforward method is an arithmetic or geometric combination.

This section will introduce merging strategies using r-norm and Bayesian rules and these

belief merging strategies would be experimentally compared in Section 8.

6.2.1 Belief Merging based on Trust Factors

The probabilistic bias distribution (for target occurrence) computed from the answer set

is used to initialize or revise the POMDP belief vectors. Since the KB (and hence the

answer set) can contain incomplete or outdated information, the answer set-based bias dis-

tribution and POMDP beliefs are merged using relative trust factors, resulting in a r-norm

probability that is a generalized form of linear and logarithmic averaging methods [21],
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e.g., it computes the arithmetic average for r = 1.

b′i = β
{

(1−Ω)(bi)
r +Ω(bA

i )
r
}1/r

(6.9)

where bA
i is the answer set-based belief of target occurrence in room i, while bi and b′i are

the beliefs of target occurrence in room i before and after belief merging (respectively),

and β is a normalizer. The parameter Ω ∈ [0,1] represents the relative trust in the beliefs

encoded by the answer set. The effects of Ω and r on accuracy and computational efficiency

are analyzed experimentally in Section 8.3.

Consider the illustrative example in Figure 4.1. The corresponding answer set is used

to compute the ASP-based bias distribution bA = [0.3890,0.3361,0.0000,0.2749]. The

initial POMDP belief distribution (uniform in the absence of knowledge) is then revised

as described in Equation 6.9, with r = 1 (arithmetic average) and the trust factor Ω set

such that POMDP and ASP are trusted equally. The revised belief vector for the target

is [0.3195,0.2931,0.1250,0.2625]. The belief for each room is spread over grid cells in

the room using a large-variance Gaussian centered in the middle of the room to induce the

robot to move to a central location. Prior knowledge about likely locations of objects within

rooms suitably revises the mean and variance of the Gaussian. The updated beliefs are

used in the learned HL-POMDP policy to choose an action, resulting in the robot moving

to analyze a specific scene.

6.2.2 Belief Merging based on Bayesian Rules

The KB contains domain knowledge, including information that may not be directly

relevant to the current task. The POMDP belief summarizes all observations directly related

to the current task, but these observations are obtained with varying levels of uncertainty.
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Our prior work heuristically generated a belief distribution from answer sets and averaged

it with POMDP beliefs. In this paper, the use of Dirichlet distribution to extract prior beliefs

from answer sets supports Bayesian merging:

p′(Ek) =
p(Ek|D) · p(Ek)

∑i p(Ei|D) · p(Ei)
(6.10)

where p(Ek) is the probability that target is in room k based on POMDP beliefs.

6.3 Using Positive and Negative Observations

Although using lack of evidence for inference is a significant challenge, negative obser-

vations can be used to identify eventualities not modeled by the POMDPs, resulting in early

termination of tasks that can no longer be accomplished. For instance, not observing the

target or other related objects in multiple rooms can be used to reason about absence of the

object in the domain; this is not computed in the standard POMDP model, and introducing

a (special) terminal state in the POMDPs may invalidate the invariance properties exploited

for computational efficiency.

This section describes our approach to exploit all observations. Let D be the event that

the target is detected; and FoV the event that target is in the robot’s field of view. The

objective is to calculate p(¬E|D) and p(¬E|¬D), and thus p(E|D) and p(E|¬D), given

the POMDP belief state B and action a. Towards this objective, the distribution of target

existence and non-existence (in the domain) are updated in conjunction with the standard

POMDP belief update. The prior beliefs computed in Section 6.1 are (re)interpreted as

beliefs conditioned on the existence (or non-existence) of the target in the domain. Positive

and negative observations are then handled as follows.
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6.3.1 Negative Observations:

If the target is not detected, this observation should not change the probability of tar-

get’s existence outside the robot’s field of view, p(¬FoV |¬D), which is the product of the

probability of the target’s existence in the domain, and the probability that the target exists

outside the robot’s view given its existence in the domain—the latter probability can be

computed from the POMDP beliefs. The reduction in the probability of target’s existence

in the field of view will be added to the probability of non-existence of the target in the

domain:

p(¬E|¬D) = p(¬E)+ p(E)(p(FoV |E)− p′(FoV |E))

= p(¬E)+ p(E)( ∑
si∈Λ(a)

B(si)− ∑
si∈Λ(a)

B′(si)) (6.11)

where B(si) and B′(si) are the POMDP beliefs of state si before and after the Bayesian

update using this observation; Λ, a function of action a, is the set of states that imply that

the target is within the robot’s field of view.

6.3.2 Positive Observations:

If the robot detects the target, the POMDP beliefs in the local field of view should grow,

while beliefs outside this region and the probability of non-existence of the target (in the

domain) should decrease.

The computation of the posterior probability of target’s non-existence is based on the

probabilities of the target being detected given that it exists or does not exist in the domain.

The probability of the target being detected when it does not exist is assumed to be a fixed

small probability of false-positive observations. The probability of target being detected

when it exists depends on whether the target is inside or outside the robot’s field of view.
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If the target is in the robot’s field of view, the probability of a positive observation can be

computed using the POMDP observation functions; if it is outside the field of view, this

probability is modeled as the probability of false-positive observations. The probability

p(¬E|D) is then:

p(¬E|D) =
p(D|¬E)p(¬E)

p(D|E)p(E)+ p(D|¬E)p(¬E)
(6.12)

The conditional probability that the target is detected given that it exists (or does not exist)

is then given by:

p(D|E) = p(D|E,FoV )p(FoV |E)+ p(D|E,¬FoV )p(¬FoV |E) (6.13)

= p(D|FoV )p(FoV |E)+ p(D|¬FoV )p(¬FoV |E)

= ∑
si∈Λ(a)

p(D|si,a)B(si)+ ε ∑
si /∈Λ(a)

B(si)

P(D|¬E) = P(D|¬E,FoV )P(FoV |¬E)+P(D|¬E,¬FoV )P(¬FoV |¬E) (6.14)

= P(D|¬E,¬FoV ) = ε ∑
si /∈Λ(a)

B(si)

where ε is the probability of false positives, i.e., detecting a target when it does not exist;

p(D|si,a) is obtained from the POMDP observation function.

6.4 Knowledge Acquisition

The final component of the architecture in Figure 6.1 is the acquisition of knowledge

from sensor inputs and human feedback. To simulate high-level feedback from non-expert

humans with limited time, human feedback is limited to simplistic verbal inputs. Human

feedback may not be readily available and may be relevant to current and/or future tasks.
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While soliciting human feedback, a robot has to consider multiple factors such as: time

taken (or distance traveled) before a human is available to provide feedback; interruptibility

of humans (possibly) engaged in other tasks; and expertise of human in the task currently

being pursued by the robot [44, 81]. In this paper, the robot does not model individual

humans, their expertise or their interruptibility. Instead, the focus is on enabling robots

to verbally solicit human feedback when it is needed and available, and make best use of

minimal (and possibly unreliable) feedback from non-expert humans.

As the robot moves in the application domain, images are processed periodically to de-

tect humans (specific humans are not modeled separately). When a human is detected

nearby, the robot computes the need for human feedback based on entropy of the belief

distribution for the object being localized. A low entropy implies that the robot is confident

of the target object’s location—the human is then ignored (except for safe navigation). If

the entropy is high, the robot draws the human’s attention, followed by a query about a

room’s accessibility or the target object’s location. These queries and responses are based

on simplistic templates such as:

Robot: Where is the [object]?

Human: In [room]./I do not know.

Robot: Is [room] accessible?

Human: Yes./No./I do not know.

In addition to human feedback, the robot processes images at specific locations in the do-

main and low-resolution images as it moves between locations, detecting objects using

learned object models. An object detected with high certainty is added to the knowledge

base, using the detected position to form a suitable fact. This piece of information may be

relevant to the current task and/or to future tasks. In addition to domain objects of interest,
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robot may observe unforeseen changes in object configurations and obstacle locations, e.g.,

a door that was open may now be closed. The robot can confirm such changes using human

feedback, and changes detected with high certainty also update the KB. These updates and

additions to the KB occur incrementally and continuously, adding and eliminating areas

for subsequent analysis. Furthermore, the robot may observe unforeseen changes in object

configurations and the domain, e.g., a door that was open may now be closed. Such obser-

vations can also update the KB. The KB is thus augmented and revised incrementally and

continuously, adding and eliminating areas for subsequent analysis.

6.5 Summary

This chapter focuses on the integration of ASP and hierarchical POMDPs. Section 6.1

presented the algorithms used to generate a bias for POMDP belief initialization or revision.

When the KB changes in the running time, the new bias has to be merged with a POMDP

belief that already includes previous observations. Section 6.2 discussed four belief merg-

ing strategies. It is possible that the underlying state is not included in the POMDP state set.

In Section 6.3, task-level positive and negative observations are developed to identify such

situations and enable the robot terminate pursuing the task early. Finally in Section 6.4, an

entropy-based HRI strategy is developed to help the robot decide when to ask for human

feedback.

In the next chapter, a multirobot collaboration strategy will be presented using part of the

ASP+POMDP architecture, specifically the hierarchical POMDPs. The other components

of this architecture would be added into this collaboration strategy later.
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CHAPTER 7

MULTIROBOT COLLABORATION

Chapter 6 has introduced the novel architecture for knowledge representation and rea-

soning that can help a single robot create plans in real-world domains. One extension to

this ASP+POMDP architecture has been made—a multirobot collaboration strategy. How-

ever, this extension builds on the hierarchical POMDPs and ASP is not used for histori-

cal reasons. This chapter will focus on the multirobot collaboration strategy that enables

teamwork between multiple robots by adding a communication layer over hierarchical

POMDPs.

The visual planning and collaboration algorithms are illustrated in the context of a team

of robots localizing objects in large, complex and dynamic indoor domains such as offices.

These algorithms represent an intuitive approach where each robot uses the current infor-

mation about likely target locations to determine the object to locate next. The robot then

computes the 3D scene likely to contain the chosen target, moves to a suitable location to

capture images of the scene, analyzes suitable regions in the images using relevant pro-

cessing algorithms, and repeats these steps based on beliefs updated by observations and

information communicated by teammates.

Figure 7.1 summarizes the POMDP-based approach for sensing, processing and collab-

oration. Each robot uses a POMDP hierarchy to locate target objects. The top-level visual

search (VS)-POMDP computes the sequence of 3D scenes to process to locate a specific

target. For any chosen scene, the scene processing (SP)-POMDP uses one of two layers

(depending on scene complexity) to determine the sequence of algorithms to apply on a

sequence of regions of interest in images of the scene. Each robot also shares beliefs with
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Figure 7.1: An overview of the POMDP hierarchy and scenario.

teammates to collaborate robustly despite unreliable communication.

Consider a team of X robots that is tasked with locating Y target objects in an office

environment. Each robot in the team maintains a separate belief vector (over the domain

map) for each target. Each robot also uses hierarchical POMDPs (as described above) to

tailor visual sensing and information processing to the task and the domain. This section

describes a probabilistic approach for the team of robots to share beliefs and collaborate

robustly to locate the desired target objects.

For the experiments reported in this paper, the targets are assumed to be unique. It is also

assumed that observations of different targets are independent of each other. In addition,

in the experiments below, the targets are assumed to stay within a local area while they are

being located by the team of robots. However, these simplifications are only used to study

the effects of associated factors (e.g., prior knowledge and communication failures)—the

POMDP hierarchy and the belief sharing approach (below) are suitable for objects that can

move, as long as the movement is not very frequent. To enable multirobot collaboration,
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each robot in the team stores a data structure as described below:

{Bi, fi}, ∀i ∈ [1, |TL|] (7.1)

where Bi is the belief vector for a specific target i among the list of target objects (T L) and

fi is a binary flag that states if the target has been discovered. In addition, the robot stores

an action map M , a vector of the same size as the belief vector. Each entry in this vector

stores the number of times the robot has visited the corresponding grid-cell in the domain

map:

M = 〈m1, · · · ,mN〉 (7.2)

where mi is the normalized count of the number of times grid-cell i has been visited. The

entries in the action map corresponding to locations that have not been visited in the recent

past decay over time. As a robot moves to detect a specific target, it updates its action

map and uses each observation to update the appropriate belief vector. After such a be-

lief update, the robot communicates with teammates by broadcasting a UDP package that

includes current belief vectors for all objects (∀i, Bi), discovery flags (∀i, fi), action map

(M ) and own position. If the bandwidth is limited, only changes in the data structure need

to be communicated.

Since communication and sensing are unreliable, a robot cannot blindly trust information

received from teammates. At the same time, the communicated estimates provide useful

information about (possibly large) regions of the domain that the robot has not visited and

hence has no knowledge about. In the belief merging scheme, each robot therefore assigns

probabilistic weights to own beliefs and beliefs communicated by each teammate. The
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intuitive idea is to assign greater importance to estimates communicated by a robot if the

robot has visited the corresponding region of the map recently. Each robot therefore uses

the action map entries as a probabilistic weight distribution to merge beliefs (acquired by

sensing) with communicated beliefs:

b
j,own
i =

m
j,own
i ·b

j,own
i +m

j,comm
i ·b

j,comm
i

m
j,own
i +m

j,comm
i

(7.3)

∀ j ∈ [1,N], ∀i ∈ [1, |TL|]

where b
j
i is jth entry of the belief vector corresponding to target i, while m

j,own
i and m

j,comm
i

are entries of action maps of the robot and the teammate whose communicated belief is

being merged. The action map entries are not merged to prevent rumor propagation among

teammates. In addition, data association is achieved by matching the belief vectors (to the

extent possible) based on the communicated locations of the robots. Each robot is thus able

to robustly assimilate communicated estimates that may complement or contradict own be-

liefs, and the merged beliefs are revised as each robot’s beliefs change. Although this belief

merging approach can (in theory) be sensitive to the order in which the communicated be-

liefs are merged, it works well in practice.

Each robot also updates the vector of flags representing the discovery of target objects,

i.e., fi, by considering the efforts of all the robots in the team:

F = { f own
i || f comm

i ;∀i ∈ [1, |TL|]} (7.4)

where each target is assumed to be found when at least one robot in the team has commu-

nicated its discovery (belief in a grid above a threshold) to teammates. There may hence

be times when a target object is being searched for by more than one team member. This
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overlap of targets among robots in a team is allowed (intentionally) to ensure effective cov-

erage of the desired target objects by robots in the team. However, in practice, multiple

robots rarely search for the same target.

Once a target is discovered, a new target has to be chosen from the list of undiscovered

objects in T L. This choice of the next target object is made as described below:

targetID = argmaxi{max
j

Bi( j)} (7.5)

where the goal is to identify target i whose location the robot is most certain about based

on the merged beliefs of all members in the team. In other words, the robot selects the

target object that it is likely to discover (i.e., locate) with the least effort. This choice of a

new target can also include a heuristic cost based on distance of travel and relative priority

of the remaining targets (if such information is available). These costs can be incorpo-

rated as weights on the belief vectors, similar to the policy re-weighting in Equation 5.11.

The key aspect of this collaboration approach is that robots in a team are able to reliably

and efficiently coordinate their efforts towards a common objective. Dynamic changes in

team composition are addressed automatically and the lack of communication causes each

robot to smoothly transition to operating as if it were the only robot in the team. The next

chapter evaluates the visual sensing, information processing and multirobot collaboration

capabilities in dynamic domains.

This chapter presents a multirobot collaboration strategy where each robot shares its

POMDP beliefs with teammates and each robot merges its beliefs with the communicated

beliefs of teammates. As a result, a team of mobile robots is able to collaborate robustly

in simulation and in the real-world. However, as an extension to the ASP+POMDP ar-

chitecture presented in Section 6, this collaboration strategy does not use the capability of
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non-monotonic knowledge representation of ASP. Future work will follow this path and

develop a multirobot collaboration strategy using ASP+POMDP architecture.
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CHAPTER 8

EXPERIMENTAL RESULTS

Previous chapters have presented the ASP+POMDP architecture for knowledge repre-

sentation and reasoning for robots. This chapter will focus on evaluating the efficiency and

effectiveness of this architecture. Specifically, the following hypotheses will be evaluated

experimentally:

• combining ASP and POMDP improves target localization accuracy and time in com-

parison with the individual algorithms, including:

– the constrained convolutional (CC) policy is more efficient than non-convolutional

policy while providing similar accuracy;

– the belief merging strategy enables a team of robots to share beliefs and collab-

orate robustly despite unreliable communication.

• the entropy-based strategy enables a robot to make best use of human feedback;

• using positive and negative observations helps robots identify tasks suitable for early

termination.

Experiments have been comprehensively conducted in simulated and physical robot plat-

forms on a target localization problem. Since it is a challenge to run many trials on robots,

the architecture was evaluated extensively in simulation, using learned object models and

observation models to realistically simulate motion and perception [55]. For instance, a

simulated office domain consisted of four rooms connected by a surrounding hallway in a

15× 15 grid as shown in Figure 8.1. Fifty objects in 10 primary classes (e.g., office elec-

tronics) were simulated, and (in each trial) some objects were randomly selected as targets
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Figure 8.1: Simulated domain map.

whose positions were unknown to the robot. The robot revises the KB, including the basic

object hierarchy mined from repositories, during experimental trials. Each data point in the

results described below is the average of 5000 simulated trials. In each trial, the robot’s lo-

cation, target object(s) and location(s) of object(s) are chosen randomly. A trial ends when

belief in a grid cell exceeds a threshold (e.g., 0.80); some trials included a time limit.

8.1 Experiments with KRR Using ASP

A robot was firstly tasked with using domain knowledge and Equations 6.1-6.4 to infer

the target objects’ locations. Note that ASP can only infer object existence in rooms and

cannot infer the specific location of objects in rooms. Figure 8.2 shows that when the robot

has all the domain knowledge, i.e., value= 1 along x-axis, it can (as expected) correctly

infer the room containing the object. However, the accuracy decreases when the domain

knowledge decreases, e.g., with 50% of domain knowledge, the robot can correctly identify

the target’s (room) location with only 0.7 accuracy. Also, with 50% domain knowledge,

the correct room location is in the top two choices in 95% of the trials. When no domain
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Figure 8.2: Target localization accuracy using only ASP.

knowledge is given (which corresponds to the left end in x-axis), the claim on target po-

sition would be a random guess, so it is evenly distributed over all possible rooms. One

key expected outcome of using ASP-based inference (and the associated beliefs) is thus the

significant reduction in target localization time.

8.2 Experiments with Hierarchical POMDPs

Experiments were designed to evaluate the following hypotheses: constrained convolu-

tional (CC) policy provides similar detection accuracy to non-convolutional (i.e., baseline)

policy but is much more efficient; CC policy significantly reduces time for reliable target

localization compared with manually-tuned heuristic search strategies; and belief merging

enables a team of robots to fully utilize prior knowledge and collaborate despite unreliable

communication. The first hypothesis was evaluated in simulation while the second and

third hypotheses were evaluated in simulation and on robots.
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8.2.1 Experiment on a Simulated Robot

Simulation experiments were included because of the intractability of executing many

trials on the physical robot. The simulator is realistic because it uses the same model

parameters computed for the physical robot—Section 5.2. In each simulated trial, a grid

map of a specific size was generated with the locations of the target object and the robot

chosen randomly. Then, the ability of the robot to detect the target with different initial

beliefs was analyzed.

A baseline policy was computed for a relatively small grid map: 5× 5, from which the

3× 3 policy kernel was derived. The kernel computation is an one-time process. Though

the POMDP model for this grid has only 25 states, it takes ≈ 5 hours to get an acceptable

policy with the average reward still growing. Using the convolutional policy hence provides

significant benefits for larger maps.
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Figure 8.3: CC policies performance similarly to the baseline policy

First, the constrained convolutional (CC) policy was evaluated against the baseline (i.e.,

non-convolutional) policy on simulated grids. Over a set of 1000 trials (with targets at
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random locations), the CC policy’s detection accuracy was similar to the baseline policy. A

trial was deemed successful if the target was identified in the correct grid-cell. Figure 8.3

shows the results for a 5× 5 grid—the x-axis shows the number of times the policy was

invoked, as a fraction of the number of states. Unlike the baseline policy, the CC policy

was computed in no time from the 3×3 kernel.

The convolutional policy’s performance was then compared against a policy that gener-

ates random actions, as a function of the number of actions the robot is allowed to execute

(expressed as a fraction of the number of states). These experiments used a 15×15 convo-

lutional policy generated from a 3× 3 kernel. As before, the location of the robot and the

target were randomly selected. In order to simulate prior knowledge of target location, 70%

of the belief was uniformly distributed over all grids, and 30% of the belief was Gaussian-

distributed surrounding the target. Each point in Figure 8.4 is the average of 1000 trials. At

the end of each trial, the belief vector entry with the largest value was taken as the target

location. The robot’s performance was scored as the weighted distance between the actual

target location and the detected location. The convolutional policy was observed to greatly

reduce the number of steps taken to compute the target’s location. The same CC policy was

also used to compare directed re-weighting (Equation 5.10) against the policy execution

without the special belief update scheme (Equation 5.4. Figure 8.5 shows that the directed

re-weighting provides better performance despite added noise in the distance and bearing

measurements.

The next experiment computed the number of actions required to achieve a high detection

accuracy (0.95), as a function of the initial bias and variance. Table 8.1 reports the average

number of action steps as a fraction of the total number of states. As expected, a smaller

number of actions are required to find a target with a larger initial bias. In addition, if the

81



Texas Tech University, Shiqi Zhang, August 2013

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

ur
ac

y

Constrained Convolutional vs. Ad-hoc Policy

 

 

Ad-hoc Policy
Convolutional Policy

Figure 8.4: Convolutional policies performs better than a ad-hoc search strategy

initial bias has a larger variance, a larger number of actions are required to find the target.

Table 8.1: Average number of steps to achieve accuracy of 0.95

Bias Covariance

0.1 0.2 0.3

10% 0.877 1.132 1.357

30% 0.521 1.019 1.274

50% 0.462 1.000 1.236

8.2.2 Experiments on a Wheeled Robot

The sensing and decision-making capabilities of a mobile robot (using hierarchical POMDPs)

were evaluated on the Erratic robot platform shown in Figure 8.6. This robot is equipped

with stereo and monocular cameras that provide 640× 480 images at 30Hz, and a laser

range finder with an angular range of ±135o for a distance of 30m. All processing is

performed using an on-board dual-core 2.6GHz processor. Experimental trials were con-

ducted in an indoor office domain and the corresponding occupancy-grid map, generated

by a simultaneous localization and mapping algorithm, is shown in Figure 8.7. This map
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Figure 8.5: Accuracy comparison from simulated trials and directed re-weighting.

corresponds to an entire floor of the CS department at Texas Tech University—it has three

research labs, 13 faculty offices, a conference room and a common area with a kitchen. The

size of each grid cell in the map is ≈ 3m.

Figure 8.6: Erratic robot

The object models (learned by the robot) consist of color distributions and the Binary

Robust Independent Elementary Features (BRIEF) [15], i.e., objects were characterized

by color and local image gradient features. The robot classified cluttered and uncluttered
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Figure 8.7: Domain map used in experiments.

Occupancy-grid map of the third floor of the CS department with 13 faculty offices, three

research labs, a conference room and a common area with a kitchen.

scenes based on the number of ROIs and detected visual features. Although BRIEF features

are not rotation and scale invariant, images of an object (captured during the learning phase)

are automatically rotated and scaled to generate a set of images that model a range of

rotations and scale changes—features extracted from these images are used to populate the

object model. Figure 8.8 is a screenshot that shows the BRIEF features in a test image

being matched with those in a learned model to recognize an object. Images from different

viewpoints are considered at any given location. Target objects included boxes, cups, books

and other robots in backgrounds with varying levels of clutter.

To enable modular software development, the algorithms were implemented within the

Robot Operating System (ROS) [79] framework. Figure 8.9 presents an overview of a rel-

evant subset of the implementation. Our planning algorithms are placed in the vs planner

node, which accepts messages from the vs vision node that processes input images to pop-

ulate the <v pack> package. This package contains the ID of detected objects, distance

and bearing of the objects (relative to the robot), and (probability) measures of the cer-
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Figure 8.8: Illustrative example of the use of BRIEF descriptor.

tainty associated with the observations. Belief updates occur when the robot: (1) arrives at

a desired grid cell and processes some images of the scene; or (2) processes images during

navigation to a desired grid cell. The planner node sends coordinates of desired grid cells

to the movement control node move base and then waits for a response, e.g., arrived,

canceled or not-arrived. The not-arrived response is usually caused by a

change in the domain, e.g., closing a door makes an office inaccessible. The hokuyo node

provides laser readings to the motion control node and the localization node amcl. The

platform driver node erratic base driver moves the robot platform based on the velocity

command cmd vel. The position and goal are sent and received by the amcl and

navigation goals nodes to aid in local path planning, localization and navigation.

The wheeled robot was asked to locate different objects in the domain shown in Fig-

ure 8.7—the target position and initial position of the robot were chosen randomly. The

belief distributions were initialized to give the robot some prior knowledge of target lo-

cations. The left half of Table 8.6 summarizes target localization time for specific target

objects (i.e., a subset of experiments). Each data point is an average of 10−15 trials. Since

the positions of robot and targets differ between trials, results for random and heuristic

strategies are expressed as a multiple of the proposed strategy’s results—e.g., the average

time taken to localize the Box using the POMDP hierarchy is 4.08mins. Table 8.6 does not
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Figure 8.9: Connections between a relevant subset of nodes in the ROS implementation.

show result for the random strategy due to the large variance—many trials do not terminate

even after 15mins. Across different target objects (boxes, robots, books), the POMDP hi-

erarchy significantly reduces the localization time in comparison to heuristic (multiplying

factor is 1.5) and random strategies. The results are more pronounced than in the simulated

experiments because the real-world domain (see Figure 8.7) is more complex.

Table 8.2: Target localization time using ASP and POMDPs

Target localization time expressed as a fraction of the time taken by the proposed

approach. Use of POMDP hierarchy enables the wheeled robot to identify targets reliably

and efficiently. Sharing POMDP beliefs enables a team of humanoid robots to improve

target localization time.

Search and Target localization time

Collaboration Wheeled robot Humanoid robots

Strategies Box in Fig. 8.8 Nao robot Boxes Balls

Random – – 1.93 1.64

Heuristic 1.47 1.44 1.2 1.03

Proposed 1 1 1 1
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8.2.3 Experiments with Collaboration on Simulated Robots

Experiments have also been conducted on multiple robots in simulation. In each simu-

lated trial, a grid map of a specific size was generated with the locations of the target object

and the robot chosen randomly. When the belief in a grid cell exceeded 0.9, the grid cell

was assumed to contain a target. Each data point in the following results is the average of

1000 simulated trials.

Assuming that all robots in a team move at the same speed, the average distance moved

by robots in a team (in an episode/trial) was used as a measure of the team’s performance—

better collaboration will result in lower values of this measure. In each trial, robots and

targets were placed randomly in a grid map, with no more than one robot or target in each

grid-cell. A Gaussian bias (20%) was added to the initial belief in a 3× 3 area around

every target—the belief vector is then normalized. To simulate the unreliable communi-

cation, a communication success rate (CSR) parameter was introduced and set to 0.5, i.e.,

approximately every other broadcasted package was not received. Figure 8.10 shows the

results for different combinations of robots and targets in a 15× 15 grid map based on a

real-world office scenario. The results show that the robots collaborate effectively to find

the targets—similar results were obtained when experiments were conducted with maps of

different sizes (4×4 to 25×25) with different amounts of initial belief and different values

of CSR.

In real-world applications, it is common for the robot to have some prior knowledge of

the likely location of the target object (e.g., a microwave is likely to be found in the kitchen).

We therefore evaluated the ability of the collaboration approach to use prior knowledge in

the form of an initial bias in the target locations. Figure 8.11 shows the performance of

a team with two robots tasked with localizing two targets as a function of the bias in the
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Figure 8.10: Robust multirobot collaboration in traveled distance needed
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Figure 8.11: Performance improves if prior information is incorporated

initial belief. The robots are able to identify the targets faster as more information about

target locations is made available or the information available about the targets’ positions

is more accurate (i.e., smaller variance of bias). Similar performance is observed for teams

of different sizes searching for targets in domains of different sizes.

As stated in Chapter 7, communication between robots in the real-world is not reliable.

The effect of communication uncertainty on multirobot collaboration was therefore evalu-

ated next. The uncertainty in communication was simulated by changing the value of CSR.
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Figure 8.12: Performance is robust to dropped packages

Figure 8.12 shows results of experiments as a function of varying CSR, where robot teams

were asked to locate two targets. Although a low likelihood of successful communication

hurts the team’s performance, results show that the time taken to localize targets stabilizes

as CSR increases and is then no longer sensitive to the value of CSR. Similar performance

was observed in experiments conducted with a different number of robots and targets.

Next, Table 8.3 summarizes target localization accuracy as a function of the (normalized)

distance traveled by the robots, when two robots searched for targets in a 15×15 map. The

initial positions of robots and targets were randomly assigned in each trial. The proposed

approach (belief sharing with hierarchical POMDPs) was compared with: (a) random se-

lection of actions and assignment of targets to robots (row labeled “random”); and (b) a

heuristic policy which selects targets and actions based on the grid cell with the largest

belief (row labeled “heuristic”). To simulate realistic scenarios, prior belief was assigned

to multiple areas in the map (including the target location). The results show that belief

sharing in hierarchical POMDPs results in the robots traveling a much smaller distance to

detect targets with high accuracy. Over extensive simulation experiments (and robot trials,
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Table 8.3: Target localization accuracy using hierarchical POMDPs

Target localization accuracy as a function of the (normalized) distance traveled by the

robots. The proposed approach enables a team of robots to detect targets more accurately

than random and heuristic search strategies.

Approach Normalized covered distance

0.5 1.0 1.5 2.0

Random 0.033 0.171 0.382 0.537

Heuristic 0.079 0.334 0.549 0.817

Proposed 0.153 0.544 0.825 0.957

as described below) in different maps (3×3 to 25×25), using hierarchical POMDPs with

the communication layer enables a team of robots to collaborate and localize target objects

reliably and efficiently. There are some instances of more than one robot searching for the

same target, but this overlap is intentional and occurs very infrequently.

Figure 8.13 is a pictorial representation of the POMDP approach for multirobot collab-

oration, when two robots repeatedly attempt to localize two targets in a 15× 15 map with

obstacles. The two figures show the number of times the robots visited each grid-cell. In-

tuitively, each robot trying to locate a target should first look around its starting position

(in the absence of prior information of target location) and then explore other areas. Once

the target is sighted, the robot should verify that the target is in the observed location. The

actions taken by the robots are recorded over 100 simulated trials—a trial ends when the

targets are located. In Figure 8.13, each grid cell’s color changes from blue to red along the

vibgyor spectrum based on repeated visits by the robot. Results shows that the obstacles

are never visited and grid cells near the targets are visited more often than other grid cells.

The radius of the yellow area reflects the largest distance of effective observation. In the

absence of significant prior bias, the robots cannot move towards the targets until the first

sighting of a target, which happens only when the robot is in a grid-cell near the cell with a
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target. There is hence no clear path (in the figure) between the starting positions of robots

and the target locations. Similar performance is observed for other simulated grid maps

with different number of targets and robots. As stated earlier, there can be some instances

of more than one robot searching for the same target, but this overlap is intentional and

occurs very infrequently.

Figure 8.13: Numbers of times of cells visited in colors

Simulated trials with 2 robots and 2 targets. Obstacle locations are shown in blue, target

locations in dark red and robot starting positions in red. Other cells show the number of

times they were visited using colors ranging from blue to red along the visible spectrum.

8.2.4 Experiments with Multirobot Collaboration on Humanoid Robots

Multirobot collaboration experiments were conducted on humanoid Nao robots [65] as

shown in Figure 8.14 because multiple wheeled robots were not available. The Nao is

equipped with multiple monocular cameras that provide 640× 480 images at 30Hz, and

ultrasound sensors for obstacle avoidance. Since stable navigation on different surfaces

is a challenge on humanoids, experiments were conducted on an indoor (4m× 6m) robot

soccer field, which is typically used by a team of robots to play a competitive game of

soccer. This moderately constrained domain captures the collaboration challenges we seek
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Figure 8.14: Humanoid robots

to address. Each robot has a domain map and localizes based on domain landmarks such

as goals and field corners (with known map positions) detected in input images. All scenes

in this domain are treated as uncluttered. Challenging scenarios were created by artifi-

cially introducing obstacles that the robot(s) had to walk around to see the desired targets

(and landmarks). All computation (e.g., visual processing, localization and navigation) was

performed on-board the robots using a 500MHz processor. The robots used UDP to broad-

cast packages to teammates to share information. The size of each grid cell in the map is

≈ 0.5m.

Target objects include boxes and balls of different colors and shapes. Since objects are

composed of homogeneous colors, gradient features are not used in the object models and

visual processing operators consist of algorithms that detect the dominant color and shape

in each ROI. Scene processing was modeled as a two-layered POMDP, with a POMDP that

selects operators (i.e., algorithms) to apply on each salient ROI in an image, and a POMDP

that controls the selection of image ROIs for processing. The transfer of control between
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SP-POMDP and VS-POMDP is described in Section 5.3.

In all multirobot collaboration experiments, a team of (1−4) Naos successfully localized

one or more targets much faster than a heuristic collaboration strategy (manually) designed

for this domain. The right half of Table 8.6 summarizes a subset of these experiments,

where two humanoid robots localized two targets (different boxes and balls). Similar to the

experiments on wheeled robots, target localization times with heuristic and random collab-

oration strategies are expressed as a multiple of the results with the proposed collaboration

strategy—the average time taken by two Naos to localize two boxes is 1.01min. The target

localization times are smaller (compared to experiments on wheeled robot) due to the col-

laborative effort and the relative simplicity of the domain (compared to Figure 8.7). Similar

results are obtained for different combinations of robots and targets—the proposed strat-

egy significantly reduces the target localization time in comparison to random and heuristic

strategies. Delayed or lost packets (between robots) did not have a major effect on the tar-

get localization performance as long as the communication success ratio (CSR) was above

a low threshold—the results reported in Table 8.6 correspond to a CSR of ≈ 0.5. Further-

more, the robots were able to deal with changes in team composition, e.g., adding a new

robot or removing an existing team-member resulted in the smooth re-distribution of tar-

gets among robots. These experiments show that the POMDP hierarchy and belief sharing

strategy enable one or more robots to adapt visual sensing and information processing to

the task at hand, and collaborate robustly with teammates.

8.3 Experiments with ASP+POMDPs

Experimental trials were conducted in simulation and on wheeled robots visually iden-

tifying the locations of target objects in indoor domains. The following hypotheses were

evaluated: (I) integrating ASP and POMDP enables reliable target localization while sig-
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nificantly reducing target localization time in comparison with using ASP or POMDP in-

dividually; and (II) entropy-based strategy enables the robot to make best use of human

feedback to localize targets.

A realistic simulated domain was designed to extensively evaluate the architecture, us-

ing learned object models and observation models to simulate motion and perception. Fig-

ure 8.15 shows an instance where four rooms are connected by a surrounding hallway in

a 15× 15 grid. Fifty stationary objects in 10 primary classes are simulated, and one or

more of these objects are randomly selected as targets whose positions are unknown to the

robot.a Table 8.4 shows the corresponding 50 objects in 10 different primary classes. The

robot automatically creates the corresponding category tree from the KB. Each data point

in the results described below is the average of 5000 simulated trials. In each trial, the

robot’s location, target object(s) and location(s) of target object(s) are chosen randomly.

Unless stated otherwise, a trial ends when the belief in a grid cell exceeds a threshold (e.g.,

0.90).

Table 8.4: Object classes for the simulated domain.

Root level 1

Classes Internal level 1 1 1

Primary level 1 2 3 4 5 6 7 8 9 10

room1 3 2 3 1

Object room2 3 4 2 1

numbers room3 1 1 7 6 1 2

room4 2 3 2 1 3 2

8.3.1 Overall Performance using Trust Factors

Accuracy, localization time and the ratio of these values evaluated. The accuracy is max-

imum when reported position and ground truth position of an object are identical (e.g.,
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Figure 8.15: Simulated domain.

same grid cell), and drops off exponentially as the distance between reported position and

ground truth position increases. Figures 8.16-8.18 summarize experimental results, with

the x-axis depicting the extent to which ASP beliefs are trusted (Ω)—all results in these

figures are statistically significant. Figure 8.16 shows that when ASP beliefs are not con-

sidered (0 along the x-axis), the accuracy is high (≈ 0.95) irrespective of the value of r

(Equation 6.9). Even the few errors correspond to objects close to the edge of a grid cell

being localized in one of the neighboring cells. However, the corresponding target local-

ization time is large, as shown in Figure 8.17. As the robot starts considering ASP-based

beliefs, i.e., Ω grows from 0 to 1, the target localization time decreases substantially. The

effect of ASP-based beliefs on accuracy also depends on the value of r, e.g., a decrease

in accuracy is observed very soon for r = 0.05 but not for r = 0.2. Target localization

accuracy and time have different relative importance in different situations. The trade-off

between these two measures is modeled by computing their ratio. Figure 8.18 displays the

value of this third measure as a function of the value of Ω. We observe that irrespective

of the value of r, the best accuracy-time balance occurs when the value of Ω (i.e., trust in

ASP-based beliefs) is neither too high nor too low. We therefore conclude that combining
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Figure 8.16: Performance measures for our architecture in accuracy.

answer sets and POMDP beliefs exploits their complementary properties, resulting in high

accuracy while reducing the target localization time.

Some errors in the experimental trials are due to the incorrect organization of the classes

(extracted from online repositories), and the robot not receiving sufficient observations

to correct these KB errors. Another reason is that the evidence from “related” objects

can sometimes overwhelm certain facts. For instance, when the scanner in room2 is

selected as the target in Figure 4.1, room1 has the highest initial belief based on the answer

set. It is a challenge for robots to recover from such situations if ASP-based beliefs are

trusted substantially, especially when this trust is combined with false positive observations

of target(s).

To investigate how the robot performs in individual trials, some data points from the plot

corresponding to r = 0.2 in Figure 8.17 were selected and expanded into a set of cumulative

density function (CDF) plots, as shown in Figure 8.19. A data point in Figure 8.19 should

be interpreted as the robot completing a certain percentage of trials (values along y-axis),
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Figure 8.17: Performance measures for our architecture in time.

i.e., successfully localizing the target(s), within a certain amount of time, or equivalently,

by traveling less than a certain distance (values along x-axis)—distance is measured in

units of grid cells. The black line with Ω = 0.0 corresponds to trials when the ASP KB

is not included, i.e., the robot plans using just the POMDPs—in more than 60% of the

trials, the robot localizes the desired target objects by traveling≤ 100 grid cell units. When

domain knowledge is included in the ASP KB and used for planning, the robot is able

to successfully complete a larger percentage of trials within the corresponding limits on

the distance traveled. All plots in Figure 8.19 corresponding to Ω ∈ [0.1,0.9] also display

an interesting (repeated) pattern of (almost) piecewise change in the robot’s performance.

For instance, the cyan plot shows that there are hardly any trials in which the distance

traveled by the robot is in the range of [40,80] grid cell units. Each plot has more than one

occurrence of this pattern (see “zoom-in area” in Figure 8.19. These piecewise changes

can be explained as follows: if merging the ASP and POMDP beliefs does not provide a

good initial location (e.g., room) for the robot to investigate, the robot may have to move a
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Figure 8.18: Performance measures for our architecture in accuracy-time ratio

considerable distance (e.g., to a different room) before it is likely to find the desired target.

In addition, Figure 8.19 shows that as the amount of domain knowledge increases, the

robot completes a larger % of trials by traveling a smaller distance. Furthermore, including

a small amount of randomly selected knowledge (in the KB) can result in performance that

is worse than considering no domain knowledge at all.

8.3.2 Reasoning with Different Amounts of Domain Knowledge

Once ASP identifies likely locations of target objects, POMDP beliefs can be used to

focus the robot’s sensing and navigation to identify the specific locations of objects in

the rooms. Figure 8.20 summarizes the results of these experiments as a function of the

amount of domain knowledge included in the KB and used to generate the prior beliefs—

there is a time limit of 100 units in these trials. The trials corresponding to value= 0 on

the x-axis represents the use of just POMDPs to localize objects. Combining prior beliefs

extracted from answer sets with POMDP beliefs significantly increases the target localiza-

tion accuracy (0.96) when all relevant domain knowledge (except the target) is provided;
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Figure 8.19: CDF plot of traveled distances in 5000 trials.

the errors correspond to trials where objects are at the edge of grid cells. The second data

point in Figure 8.20 corresponds to a small amount of prior domain knowledge. Since this

knowledge is selected randomly in the simulated trials, it can be incomplete and mislead-

ing. Robots can waste time exploring irrelevant locations, reducing localization accuracy

especially when incorrect observations are made and/or the time provided to localize the

target objects is exceeded. Even in such trials, the POMDP-based beliefs can help the robot

recover from observation errors if the time limit is relaxed. As more knowledge is made

available, we observe that the robot’s localization accuracy improves quickly.

8.3.3 Comparison of Belief Merging Strategies

Next, we evaluated our approach of generating and merging beliefs. The KB is initial-

ized with 20% domain knowledge. Periodically, information about a few randomly chosen

objects is added into the KB to simulate learning from sensor inputs or human feedback.

Inference in ASP produces new answer sets that are used to create new prior beliefs to
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Figure 8.20: TL accuracy as a function of % of domain knowledge.

Combining ASP and POMDPs significantly increases the accuracy in comparison with

just using POMDPs (left-most point on the curve).

be merged with the POMDP beliefs, thus guiding subsequent action selection. As stated

earlier, the Bayesian belief merging is compared with three other strategies, and the re-

sults are summarized in Figure 8.21. The x-axis represents the localization error in units

of grid cells in the simulated domain, while the y-axis represents % of trials where error

is below a specific value. For instance, with Bayesian merging, more than 80% of the tri-

als report an error of ≤ 5 units. This error is much smaller than our previous approach

that used weighted averaging (“trust factors”) to merge beliefs [105]. To compare with the

Dirichlet-based weighting scheme, the individual beliefs were assigned weights based on

the degree of correspondence with the Dirichlet distribution (i.e., beliefs extracted from

answer sets may be assigned higher weights). These results indicate that Bayesian belief

merging/revision performs better than other strategies (results are statistically significant).

Similar results were observed with different levels of (initial) domain knowledge; assign-

ing undue importance to ASP or POMDP beliefs can (in fact) hurt performance even when

significant domain knowledge is available.
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Figure 8.21: Comparison of belief merging strategies.

Using Dirichlet distribution for extracting prior beliefs from answer sets, and Bayesian

belief merging result in lowest localization errors.

8.3.4 Evaluation of Entropy-based HRI Strategy

Human feedback is then considered in addition to sensor inputs. The simulator uses

known ground truth to simulate human feedback that is available to the robot approxi-

mately once every five actions. In addition, there is a 20% likelihood of the feedback being

incorrect. The results in Figure 8.22 are for the domain in Figure 8.15. Humans can help

identify the room containing the target (but not the exact location) and comment on accessi-

bility of rooms, as described in Section 6.4. The x-axis shows the belief entropy threshold

above which the robot seeks human input. The three solid lines correspond to different

costs associated with human feedback (in units of time). As a baseline for comparison,

the three dashed lines (different colors correspond to different costs) represent the random

acquisition of human feedback without considering the entropy. The trust factor for ASP

is chosen in the range (≈ 0.2−0.6) that results in good performance in Figures 8.16–8.18

and r is 1. When the threshold equals the maximum entropy (≈ 5.4), the robot never asks

for human feedback, whereas the robot always solicits human feedback (when available)
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Figure 8.22: Target localization time with human feedback

when the threshold is 0. Since human feedback can be unreliable, acquiring and using a lot

of human feedback increases target localization time. At the same time, if the robot rarely

solicits human feedback (high entropy threshold), target localization takes more time. For

any entropy threshold between 2.5−5.0, time taken by the robot to localize targets is min-

imum. Human feedback thus helps significantly if used when needed. Furthermore, as cost

of interacting with humans increases, feedback should be acquired more judiciously.

Another set of experiments were conducted by requiring the robot to localize target ob-

jects within a time limit, e.g., 100 time units. The robot uses ASP and POMDP beliefs

(Bayesian merging) and starts with a fixed amount of domain knowledge in each trial. The

robot can terminate the search if the POMDP beliefs converge, e.g., one of the cells has

a belief larger than 0.8. Human appears with 0.5 probability after every action. When a

human is detected, the robot evaluates the need for human feedback based on entropy of

POMDP beliefs. Interacting with a human is modeled as taking twice as much time as (i.e.,

twice the cost of) a normal POMDP action. The (simulated) human responds to the robot’s

queries. The human may provide no useful information or even incorrect information; this

is simulated by providing no answer or an incorrect answer periodically. Figure 8.23 sum-
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Figure 8.23: Entropy-based strategy to solicit human feedback.

Acquiring human feedback only when needed increases localization accuracy while

reducing localization time.

marizes results of these experiments. When the entropy threshold is too small, the robot

will always ask questions (when human is nearby), consuming a considerable amount of

time in acquiring high-level information. This hurts the robot’s ability to accurately localize

objects within the available time. At the same time, when the entropy threshold is too high,

the robot rarely asks for feedback, which also hurts localization accuracy. However, over

a wide range of entropy values that represent true need for feedback (i.e., performance not

very sensitive to choice of threshold), the robot localizes targets with high accuracy while

minimizing localization time. Similar results were observed in trials that used different

levels of (initial) domain knowledge.

8.3.5 Evaluation of Positive and Negative Observations

Experiments were then conducted to evaluate the modeling of positive and negative ob-

servations described in Section 6.3. The KB is fixed and target localization trials are con-

ducted. In each trial, the target is randomly selected to be present or absent, i.e., the target

does not exist in ≈ 50% of the trials. A baseline policy (for comparison) is designed to
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Figure 8.24: Using positive and negative observations.

Using positive and negative observations enables robot to terminate trials early when the

target does not exist in the domain.

use ASP and POMDP beliefs (similar to experiments described above); this policy claims

absence of target if it cannot be found within the time limit. Results are summarized in

Figure 8.24 and Table 8.5. For instance, Figure 8.24 shows that exploiting positive and

negative observations enables the robot to complete trials within 75 time units in 90% of

the trials; trials are mostly completed much before the time limit especially when the tar-

get does not exist in the domain. However, when using the baseline policy with different

time limits, the robot can never terminate when the target does not exist in the domain

(obviously as predefined). Table 8.5 presents more results on the average time needed and

accuracy. It shows that exploiting positive and negative observations results in much higher

target localization accuracy while significantly lowering localization time compared with

the baselines. To achieve a comparable accuracy to the proposed strategy, the baseline

requires a large time limit (between 100 and 120). However, the proposed strategy using

positive and negative observations requires an average time of 58.11 only that is roughly

half of the baselines.
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Table 8.5: Using positive and negative observations results in better performance.

Baseline

Proposed (with time limit)

60 80 100 120

Time 58.11 54.94 67.51 79.05 90.42

Accuracy 0.952 0.795 0.896 0.949 0.972

8.3.6 Experiments on Physical Robots

Experiments were also conducted on physical robots operating on two floors of the Com-

puter Science department at our University. The second floor, for instance, has three class-

rooms, a conference room, eight offices, a research lab, a kitchen and a common area—see

Figure 8.25. The test platform was a wheeled robot (inset in Figure 8.25) equipped with

cameras, range finder, microphones and on-board 2GHz processor. Algorithms were im-

plemented on the robot using the Robot Operating System [79].

Figure 8.25: Domain map and wheeled robot platform

Figure 8.26 shows examples of target objects in this domain. Objects are characterized

using visual features such as color and local image gradients. The robot uses our visual
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learning algorithm to autonomously learn object models as a combination of models for

these individual features [54]. Inputs from sensors and humans are processed to populate

the KB. Plan execution in the lowest level of hierarchical POMDPs causes the robot to

apply a sequence of actions, i.e., operators based on individual feature models in the learned

object models, on input images, merging evidence to identify target objects.

Figure 8.26: Examples of target objects in domain

The robot starts with learned object models, learned domain map and some domain

knowledge, which are revised incrementally. In all experimental trials, the robot success-

fully localized target objects in the appropriate positions. The results were similar to the

simulated trials summarized in Figure 8.22 and Figure 8.18. In these trials, target local-

ization times vary substantially depending on the initial positions of robot and targets. We

therefore do not report the actual target localization times measured in the individual trials.

However, using ASP-based beliefs and POMDP beliefs significantly reduces the target lo-

calization time by a factor of ≈ 0.6 (on average, with Ω = 0.4) compared with just using

POMDP beliefs. Trusting ASP beliefs a lot more than POMDP beliefs reduces localization

accuracy—just using ASP beliefs results in trials where the robot does not find the targets

even after a long period of time. Furthermore, judicious use of human feedback enables the
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robot to interact with different humans and further reduce target localization time.

We summarize results of 30 experimental trials (each) with two specific target objects,

a microwave oven and a humanoid—in each trial, the robot’s starting location was chosen

randomly. In a large subset of trials (25 out of 30), the targets were placed in expected lo-

cations, e.g., kitchen for microwave, and lab and office for humanoid—targets were placed

in random locations in the remaining trials. The ground truth locations of the target objects

are not provided to the robot, but it is equipped with learned object models, learned domain

map and some domain knowledge. The proposed ASP+POMDP architecture was com-

pared with two baseline strategies: (a) just using POMDP beliefs; and (b) using a heuristic

policy that makes greedy action choices.

In all experimental trials, the robot successfully localized target objects. The results

shown in Table 8.6 are similar to the simulated trials summarized in Figure 8.16-8.24.

The actual target localization times vary substantially depending on the initial positions of

robot and targets. We therefore report the target localization time of the baseline strategies

as a factor of the target localization time of the proposed ASP+POMDP approach. Us-

ing ASP-based beliefs in conjunction with POMDP beliefs significantly reduces the target

localization time. The target localization time with just POMDP beliefs is ≈ 1.6 times (av-

eraged across different targets) that of the proposed architecture, while the factor is ≈ 2.4

for the heuristic policy. Similar to the results in simulation trials, trusting ASP beliefs a

lot more than POMDP beliefs reduces the localization accuracy—just using ASP beliefs

results in trials where the robot does not find the targets even after a long period of time.

Furthermore, judicious use of human feedback enables the robot to interact with different

humans and further reduce target localization time.

Consider a trial where the robot knows the presence of a refrigerator and a microwave
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Table 8.6: Target localization time on physical robot platforms.

Target localization time expressed as a fraction of the time taken by the proposed

approach.

Search strategies Localization time for specific targets

Microwave Humanoid

Heuristic 2.96 1.78

POMDP only 1.96 1.32

ASP+POMDP 1 1

in the “kitchen” and has to localize a coffee maker. Based on the object class tree of

the current knowledge base, the robot concludes that the coffee maker is highly likely to

occur in the same room with other kitchenware, resulting in high initial belief (of target

occurrence) in the kitchen after merging the answer set-based bias distribution with the

POMDP beliefs. As the robot moves to the kitchen, it meets a human but does not ask

for input because the belief entropy is not high. In the main office outside the kitchen, the

robot detects an HP printer that had recently been moved from the floor above, and the door

to an instructor’s office that was closed recently. These pieces of information, though not

relevant to the current task, revise the KB for later use. When the robot reaches the kitchen,

it processes images of different scenes and localizes the coffee maker. If the robot has to

enter the instructor’s office or find the (recently moved) HP printer in subsequent trials, it

uses the existing knowledge to automatically generate suitable initial belief distributions

and solicits human input appropriately. The video of an experimental trial is available

online: http://youtu.be/psCKXegot1c

Figure 8.27 shows some screenshots of an experimental trial in an indoor office domain.

The uses a learned map with some known semantic labels and the target object to be local-

ized is the humanoid observed in the last row. Screenshots show external view of the robot,

location of robot in learned domain map, and robot’s view that lags slightly behind the

108



Texas Tech University, Shiqi Zhang, August 2013

robot’s actual location: (a) robot starts in learned domain map with some known semantic

labels and plans path (pink curve) to first location (“main office”), trading off distance to

be moved against likelihood of finding the target; (b) robot about to reach the first location;

(c) robot processing a set of images in the specific scene; (d) belief update after target was

not detected in this location; (e) robot plans path (pink curve) to next likely target loca-

tion (“robot lab”); (f) robot avoids obstacle (human) on its way to the desired location;

(g) robot analyzes images of the scene and obtains first positive observation of target; (h)

robot moves closer to confirm the existence of target and accurately localize the target.

Robot dynamically revises the learned map and periodically processes images as it moves

between desired locations.The screenshots capture specific steps in the sequence of actions

executed by the robot as it analyzes different images of a specific subset of scenes. Note

that the robot dynamically revises the learned map and periodically processes images (at

low resolution) as it moves between desired location. The video of such experimental trials

can be viewed online:

• http://youtu.be/EvY\_Jt-5BqM

• http://youtu.be/DqsR2qDayGQ
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.27: Screenshots of an experimental trial in which the target is a humanoid.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

A novel architecture is developed for knowledge representation and reasoning in robotics.

This architecture integrates answer set programming and hierarchical POMDPs to enable a

mobile robot to: represent, reason with and revise domain knowledge, automatically adapt

sensing and information processing to the task at hand, merge non-monotonic logical infer-

ence with probabilistic beliefs, and acquire and use high-level human feedback when such

feedback is available and necessary.

A hierarchical decomposition of POMDPs enables a mobile robot to automatically tailor

visual sensing and information processing to each of a range of tasks at hand. Adaptive

constrained convolutional policies and automatic belief propagation enables the robot to

operate reliably and efficiently in complex indoor domains. Belief sharing between a team

of robots is accomplished by augmenting the hierarchical POMDPs by a communication

layer, enabling each robot to merge beliefs acquired by sensing the environment with the

beliefs communicated by teammates. The robots are thus able to fully utilize the available

information and collaborate robustly in simulated and real-world domains. Experimental

results show that the architecture enables a robot to localize objects in complex indoor

domains, making best use of domain knowledge, sensor inputs and human feedback.

Answer set programming enables a mobile robot to represent, reason with and revise

domain knowledge obtained from sensor inputs and high-level human feedback. The prior

beliefs extracted from relevant answer sets are represented by a Dirichlet distribution whose

parameters are learned using a principled method. A few merging strategies are then com-

pared including the arithmetic-geometric merging scheme and Bayesian updates. In par-
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allel with the Dirichlet distribution, a set of Beta distributions are used to independently

estimate whether each individual state is the underlying state by exploiting the positive and

negative observations. Positive and negative observations enable a robot to identify situa-

tions in which assigned tasks can no longer be pursued. Grounding the architecture in a

target localization domain shows that a mobile robot is able to use all available knowledge

to reliably and efficiently localize target objects in an office domain.

The architecture opens many directions of future research, e.g., to explore a tighter cou-

pling between logical inference and probabilistic planning for intelligent robots and agents,

to investigate other algorithms for bias generation from answer sets, and consider other

tasks such as information gathering and area coverage for evaluating the architecture. An-

other research direction is the choice of questions for human feedback to enable more

realistic human-robot interaction. Regarding multirobot collaboration, one direction of fur-

ther investigation is to explicitly model the sensing and actuation capabilities of different

robots, and incorporate these learned models to improve the collaboration capabilities. Ex-

periments will also be conducted using a larger number of robots and targets, and different

types of robots. The ultimate goal is to enable widespread deployment of mobile robots

that can interact and collaborate with humans in complex real-world domains.
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