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ABSTRACT
A fundamental challenge in robotics is to reason with incomplete
domain knowledge to explain unexpected observations, and partial
descriptions of domain objects and events extracted from sensor
observations. Existing explanation generation systems are based on
ideas drawn from two broad classes of systems, and do not support
all the desired explanation generation capabilities for robots. The
objective of this paper is to first compare the explanation genera-
tion capabilities of a state of the art system from each of these two
classes, using execution scenarios of a robot waiter assisting in a
restaurant. Specifically, we investigate KRASP, a system based on
the declarative language Answer Set Prolog, which uses an elab-
orate system description and observations of system behavior to
explain unexpected observations and partial descriptions. We also
explore UMBRA, an architecture that provides explanations us-
ing a weaker system description, a heuristic representation of past
experience, and other heuristics for selectively and incrementally
searching through relevant ground literals. Based on this study,
this paper identifies some key criteria, and provides some recom-
mendations, for developing an explanation generation system for
robots that exploits the complementary strengths of the two classes
of explanation generation systems.

CCS Concepts
•Computing methodologies → Knowledge representation and
reasoning; Cognitive robotics; Reasoning about belief and knowl-
edge; Causal reasoning and diagnostics; Nonmonotonic, default
reasoning and belief revision; Logic programming and answer set
programming;

Keywords
Explanation Generation, Robotics, Answer Set Prolog, Heuristic
Guidance, Cognitive Systems

1. INTRODUCTION
Robots1 equipped with multiple sensors are being used to as-

1We use terms “robot” and “agent” interchangeably in this paper.
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sist humans in different applications such as disaster rescue and
healthcare. These robots receive an incomplete and inaccurate de-
scription of the domain based on the information extracted from
the sensor data. The robots also receive useful commonsense in-
formation (e.g., “books are typically in the library”) that holds in
all but a few exceptional situations (e.g., cookbooks may be in the
kitchen), but it is challenging to represent and reason with this in-
formation. To assist humans, robots thus need the ability to rep-
resent and reason with different descriptions of domain knowledge
and uncertainty. One fundamental challenge for such robots is the
generation of explanations for unexpected observations (e.g., of ac-
tion outcomes) and for partial descriptions (e.g., of the scene) ex-
tracted by processing sensor data. Existing explanation generation
systems in the artificial intelligence literature draw on ideas that
can be broadly categorized into two classes based on how they rep-
resent and reason with domain knowledge, and how and to what
extent they use heuristic guidance. However, neither class of sys-
tems nor approaches that combine ideas from these two classes,
support reliable, efficient, incremental and partial explanation gen-
eration for robots. The first objective of this paper is to explore and
compare the capabilities of a representative approach from each of
these two classes of explanation generation systems. Specifically,
the systems we compare are:

• KRASP, based on the declarative language Answer Set Pro-
log (ASP), supports non-monotonic logical reasoning with
incomplete knowledge, including default knowledge. KRASP
generates explanations based on the system description, ob-
servations of system behavior, and minimal use of heuristics.

• UMBRA is a custom engine that uses abductive inference
guided by heuristic rules. It does not fully support non-
monotonic logical reasoning, but interpolates observations
and background information with domain axioms and con-
straints to incrementally generate explanations.

This comparative study uses execution scenarios of a robot waiter
assisting in a restaurant by greeting and seating people at tables,
and by delivering orders and clearing tables.

The second objective of this paper is to use this study to identify
criteria, and provide recommendations, for developing an explana-
tion generation system for robots that exploits the complementary
strengths of the two classes of systems.

2. RELATED WORK
Explanation generation has been formulated in different ways in

the robotics and artificial intelligence (AI) research communities. It
has been formulated as diagnostics in the logic programming com-
munity, while it has been considered as an instance of abductive in-
ference in the broader AI community. Existing approaches can be
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broadly categorized into two classes based on how they represent
and reason with domain knowledge, and to what extent they use
heuristic guidance. One class uses elaborate system descriptions
and observations of system behavior, with minimal heuristics, to
explain unexpected occurrences [9, 21]. Approaches in the other
class are limited in their ability to represent and reason with sys-
tem descriptions, and depend more on heuristic representation of
experience and intuition to generate explanations [15, 17]. Other
approaches have combined ideas from these two classes of systems.

Existing approaches for explanation generation have drawn ideas
from different disciplines to represent and reason with domain knowl-
edge. Some approaches have used research in multiagent collabo-
ration towards shared objectives [23]. Other algorithms have built
on research in collaborative planning, incorporating other agents’
intentions in plans, and modeling mental states [5] or using logic
programming to make inferences about the outcomes of plans [18].
Research in activity and plan recognition tends to focus on discern-
ing and reasoning about agents’ observed behavior and top-level
tasks instead of state-action information [20]. Some approaches
have emphasized hierarchical structures, interleaving multiple agents’
actions [11] or capitalizing on prior knowledge [1]. More recent
work has developed cognitive architectures that use default reason-
ing to support inference over problem state descriptions [4], while
other work has combined probabilistic and first-order logic repre-
sentations for abductive reasoning [19].

Explanation generation approaches differ in how and to what ex-
tent they use heuristic guidance. For instance, approaches based
on ASP have been limited to using heuristics to prioritize rules for
explaining observations. Recent research has removed the need
to solve ASP programs entirely anew when the problem specifi-
cation changes, allowing (a) new information to expand existing
programs; and (b) reuse of ground rules and conflict information
to support interactive theory exploration [8]. However, these ap-
proaches cannot generate partial explanations incrementally, and
efficient operation poses the challenging problem of designing bet-
ter heuristics. Approaches that have developed sophisticated heuris-
tics to reason with domain knowledge, on the other hand, have fo-
cused on finding low-cost proofs to explain observations [13], and
on developing search strategies based on criteria such as parsimony
and coherence [17]. These approaches tend not to support the de-
sired capability of reasoning with commonsense knowledge.

Existing explanation generation approaches present some com-
mon challenges such as scaling, e.g., many require an exhaustive
search of the space of ground literals [20], and reasoning with
different (e.g., symbolic and probabilistic) descriptions of knowl-
edge and uncertainty. Existing approaches also do not support all
the desired capabilities such as efficient and incremental addition
of knowledge, generating partial explanations with incomplete in-
formation, default reasoning, and use of heuristics for optimized
interactive explanation generation. As a step towards developing
a system that supports these capabilities, this paper compares the
capabilities of two state of the art systems, and provides recom-
mendations for the design of an explanation generation system for
robots that exploits the complementary strengths of the two classes
of systems.

3. SYSTEM DESCRIPTIONS
This section describes and compares the capabilities of two rep-

resentative explanation generation systems. First, Section 3.1 de-
scribes the use of KRASP to represent incomplete domain knowl-
edge and use observations of system behavior to generate explana-
tions. Next, Section 3.2 describes the UMBRA architecture, which
uses heuristic abductive inference for generating explanations.
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Figure 1: Map of illustrative domain used for discussion,
with rooms, doors, and tables—the ais denote areas in rooms.
The humans and the robot are not shown for simplicity.
c© Mohan Sridharan

Illustrative Domain: Robot Waiter
As an illustrative example used throughout the paper, consider a
robot waiter that seats people at tables in a restaurant, and deliv-
ers orders. Figure 1 provides an example map of this domain; hu-
mans and the robot waiter can be in different areas of this map.
The sorts of the domain are arranged hierarchically, e.g., location
and thing are subsorts of entity; animate and inanimate are
subsorts of thing; person and robot are subsorts of animate;
object is a subsort of inanimate; and room, area, door, and
floor are subsorts of location. We consider specific rooms, e.g.,
kitchen and dining, and consider objects of sorts such as ta-

ble, chair and plate, to be characterized by attributes such as
size, color, shape, and location. The sort step is included
for temporal reasoning. If, for instance, the robot waiter believes
that person1 is unattended and table1 is unoccupied at a specific
time step, but then observes person1 at table1 at a subsequent
time step, it should infer that a waiter seated person1 at table1 at
some point in between.

3.1 System 1: KRASP
KRASP is based on ASP, a declarative language that can repre-

sent recursive definitions, defaults, causal relations, special forms
of self-reference, and language constructs that occur frequently in
non-mathematical domains, and are difficult to express in classical
logic formalisms. ASP is based on the stable model (answer set)
semantics of logic programs and research in non-monotonic log-
ics [9, 10]. ASP can draw conclusions from a lack of evidence
to the contrary, using concepts such as default negation (negation
by failure) and epistemic disjunction. For instance, unlike “¬a”,
which implies that “a is believed to be false”, “not a” only implies
that “a is not believed to be true”; and unlike “p ∨ ¬p” in propo-
sitional logic, “p or ¬p” is not a tautology. ASP supports non-
monotonic reasoning, i.e., adding a statement can reduce the set
of inferred consequences, which is a desired capability for robots.
ASP also supports reasoning in large knowledge bases [24], and
reasoning with quantifiers. These capabilities have led to the use of
ASP architectures in robotics by an international community [22,
27]. In the remainder of this paper, we use the terms KRASP and
ASP interchangeably—wherever appropriate, we highlight the dif-
ferences between KRASP and a standard ASP formulation.

Knowledge Representation: KRASP’s domain representation con-
sists of a system description D and a history with defaults H . D
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has (a) a sorted signature that defines the names of objects, func-
tions, and predicates available for use; and (b) axioms that describe
the transition diagram τ . To obtain D , the syntax, semantics and
representation of τ are typically described in an action language.
For instance, action language AL has a sorted signature contain-
ing statics, f luents and actions [9]. Statics are domain proper-
ties whose truth values cannot be changed by actions, fluents are
properties whose values are changed by actions, and actions may
be executed in parallel. AL supports causal laws, which describe
the effects of actions when certain conditions are met, state con-
straints, and executability conditions, i.e., conditions under which
one or more actions cannot be executed—the system description D
is thus a collection of AL statements.

Domain fluents are defined in terms of the sorts of their argu-
ments, e.g., has_location(thing, location). There are two types of
fluents. Basic fluents obey laws of inertia and are directly changed
by actions. Defined fluents, on the other hand, do not obey in-
ertia laws and cannot be changed directly by actions—they are
described in terms of other relations. The system description in-
cludes relations that define statics such as connections between
rooms. In addition, relation holds( f luent,step) implies that a spe-
cific fluent holds at a time step, and occurs(action,step) is used
to reason about a specific action occurring at a specific time step.
Each action is defined in terms of the sorts of its arguments, e.g.,
move(robot, location) and pickup(robot,ob ject), and domain dy-
namics are defined by the causal laws, state constraints and exe-
cutability conditions.

Domain history H has records of the form hpd(action,step)
and obs( f luent,boolean,step), which specify the occurrence of
specific actions and the observation of specific fluents (respectively)
at specific time steps. Unlike a standard ASP-based formulation,
H (in KRASP) also contains prioritized defaults describing the
values of fluents in their initial states, and exceptions (if any) [26].
For instance, it may be initially believed that plates are typically on
a table between the kitchen and the dining room—if not there, the
plates are typically on a table in the kitchen. Dirty plates are an
exception, and are stacked on a different table.

The domain representation is translated into a program Π(D ,H )
in CR-Prolog, which incorporates consistency-restoring (CR) rules
in ASP [3, 9]. Π includes the causal laws of D , inertia axioms2,
closed world assumption for actions and defined fluents, reality
checks, and records of observations, actions and defaults from H .
Every default is turned into an ASP rule and a CR rule that lets us
assume the default’s conclusion is false to restore Π’s consistency.

Planning and Diagnosis: Given the CR-Prolog program Π, the
ground literals in an answer set obtained by solving Π represent
the beliefs of an agent associated with Π. Statements that hold
in all such answer sets are program consequences, i.e., the result
of inference using the available knowledge. It has been shown that
planning can be reduced to computing answer sets of program Π by
adding a goal, a constraint stating that the goal must be achieved,
and a rule generating possible future actions [9]. An ASP-based ar-
chitecture can also be used to explain unexpected observations [2]
by reasoning about exogenous actions and partial descriptions. For
instance, to reason about a door between the kitchen and the dining
room being locked by a human, and to reason about a person mov-
ing away from a known location, we can introduce locked(door)
and moved_ f rom(person, location) as exogenous actions, and add
(or revise) axioms appropriately. The expected (i.e., ideal) obser-
vations of the values of attributes (e.g., color, shape and parts) of

2A basic fluent retains its truth value between steps unless there is
evidence to the contrary.

domain objects can also be encoded in the CR-Prolog program
Π. To generate explanations, we introduce an explanation gen-
eration rule, awareness axioms for actions, and reality check ax-
ioms that cause inconsistencies when observations do not match
expectations. Consistency can be restored by using the explanation
generation rule to provide all explanations, or by defining a partial
ordering over sets of CR-rules to generate the minimal explanation.
For any unexpected observation, we consider candidate explana-
tions as sets of CR rules that can be triggered, and pick the set with
lowest cardinality as the preferred or minimal explanation [6].

Computing Answer Sets: Algorithms for computing answer sets
of a logic program are generate and test reasoning algorithms. In
their first step, they replace the program Π with its ground instanti-
ation. Existing methods for grounding are sophisticated, e.g., they
use algorithms from deductive databases, but grounding a program
containing variables over large domains is still computationally ex-
pensive. The second step recursively computes the consequences
of the grounded program and its partial interpretations. The algo-
rithm considered in this paper takes as input the domain knowledge
specified as a CR-Prolog program, including the sequence of obser-
vations3. This program is solved using disjunctive logic program-
ming and a satisfiability solver [14]. The output (i.e., answer set)
includes the minimal explanation for the observations4.

Although not included in this study, it is possible to model heuris-
tics or numerical costs in an ASP program. Recent answer set
solvers improve computational efficiency through partial grounding
and heuristic ordering of variables and rules, allow new information
to expand existing programs, reuse ground rules, and support inter-
active query answering [8]. However, grounding and computing all
consequences of a program is still expensive for complex domains,
and better heuristics are needed for optimized explanation genera-
tion. The design of such systems can be informed by the insights
gained from the study of systems that rely on heuristic guidance for
incremental explanation generation.

3.2 System 2: UMBRA
UMBRA is a cognitive architecture that leverages abductive in-

ference to generate explanations. Previous work has discussed its
performance on cognitive tasks involving dialog [12], planning [15],
and social understanding [16]. This section describes UMBRA’s
semantic representation and the processes that operate over it.

Working Memory: UMBRA has a working memory that stores in-
formation arriving from the environment, e.g., statements about an
agent’s behavior, and the system’s inferences. This memory con-
tains mental states, i.e., beliefs regarding factual statements, and
goals comprising views about what the system intends to achieve.
These are stated as logical literals with propositional structure. Each
working memory element specifies (a) the agent A holding the be-
lief or goal; (b) its content C; (c) start time for the mental state,
denoting when A first entertained C; and (d) end time encoding
when A stopped believing or abandoned its intention towards C.
Unbound variables (implemented as skolem constants) in the argu-
ments related to time denote unknown times.

For literals that are true over a temporal interval, the relevant
times may be unknown. UMBRA has a third form of mental state
predicate for such literals, constraint, which specifies relations such
as inequalities or temporal orderings, e.g., during(skol1, time1, skol2,
skol3). Working memory elements may refer to domain-level liter-
als, e.g., at-location(person1, area1, time2), but may also be em-
3For simplicity, in the case studies in this paper, all observations
are given concurrently and analyzed incrementally as required.
4It also provides a minimal set of actions for a planning task.
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bedded. A mental state may thus refer to another mental state
rather than a domain predicate, e.g., belief(robot1, goal(waiter1,
seat(person1, table1, skol5), time3, skol6), time4, skol4) implies
that robot1 believes from time 4 to time skol4 that waiter1 has the
goal (from time 3 to time skol6) to seat person1 at table1 at time
skol5. Such embeddings could in principle be arbitrarily deep, but
studies suggest that people cannot readily use more than the fourth-
order mental state nesting that UMBRA models [7].

Axiom Representation: UMBRA also has a long-term memory
containing conceptual rules and skills that encode generalized knowl-
edge about states and actions. A conceptual rule is equivalent to a
Horn clause associating a predicate in the head with a relational sit-
uation described in the body. A skill associates a predicate in the
head with a set of preconditions, postconditions, invariants, con-
straints, subtasks, and operators. The two types of axioms are
not always distinguished during processing. Higher-level predi-
cates are defined in terms of lower-level ones, so that long-term
memory is organized similarly to a hierarchical task network or
a concept grammar. Axioms often include logical constraints that
specify orderings on times associated with antecedents or assert the
non-equivalence of two elements. Much of an agent’s axiomatic
knowledge deals with its goals and beliefs about the environment.
However, as social axioms include goal-directed evaluation and al-
teration of others’ mental models [16], this knowledge may also
involve embedded mental states. It is difficult to encode prioritized
defaults (and exceptions to defaults) in such a representation, due
to (a) its binary truth values; (b) focus on structural knowledge;
and (c) emphasis on assumption as a process over content encoded
within axiomatic knowledge.

Explanation: UMBRA is implemented as a layer above SWI-
Prolog [25]. It builds on Prolog’s support for relational logic and
embedded structures to perform directed abductive inference gov-
erned by heuristic rules, and to make plausible assumptions instead
of strict derivations. The system receives a sequence of observa-
tions as inputs and uses them to construct an explanation. Since
robots receive observations sequentially, the explanation mecha-
nism operates in an incremental manner5, building on earlier infer-
ences by chaining from observations and heads of rules, rather than
Prolog-style top-down chaining from queries. It is not necessary
to repeatedly reconstruct explanations or perform extensive belief
revision—the explanation at any given time may include fewer or
more than one top-level activity. The domain axioms, when bound
to elements in the working memory, explain observed events. Since
memory elements may be used in multiple rule applications, an ex-
planation is a proof lattice of a directed acyclic graph.

Processing: UMBRA operates over a series of input cycles in
which it receives and adds input observations to working memory
as beliefs (with start times equivalent to the current time), then en-
acts one or more low-level inference cycles. Each of these stages
involves a rule application that adds beliefs to working memory.

In an inference cycle, UMBRA first identifies each piece of ax-
iomatic knowledge (rule) R with at least one component C that can
unify with some element E in working memory. For each such R-E
pair, it generates the partially instantiated head H by the unification
of C with E. The system creates a set of candidate rule instances
for each partially instantiated rule head H, unifying as many rule
components with working memory elements as possible, and mak-
ing the minimum number of default assumptions to complete R.
Should R’s components include unbound variables, UMBRA in-

5As before, observations are given concurrently in the case studies,
and analyzed incrementally, for simplicity.

serts skolem constants into component literals, e.g., to denote un-
known times that satisfy a temporal relation in a constraint. When
these variables are instantiated, any rule instance with a literal that
is inconsistent with working memory is eliminated.

UMBRA uses heuristic rules to determine which domain axioms
to apply, and whether further search should continue or a new cy-
cle should begin. The set of candidate rule instances is pruned us-
ing heuristic rules to retain instances that can (a) incorporate cur-
rently unexplained elements; (b) improve explanation by incorpo-
rating multiple rule elements that are otherwise disparate; or (c) be
applied deductively without assumptions. These rule instances I
are ranked by cost, using an evaluation function that considers the
proportion and number of I’s antecedents that the system needs to
assume, and the proportion of candidate explanation elements not
yet explained by other rule instances. The explanation is then ex-
tended by adding inferences from the lowest-cost rule instance to
the working memory.

The input cycle ends if the rule instance exceeds a limit on the
total number of assumptions per cycle. Since each cycle incremen-
tally extends the explanation to account for the observations, the
output is an account of the input in terms of the instantiated axioms.
In producing this explanation, candidate literals are generated in a
local manner that amounts to a heuristic search with rules for a one-
step look-ahead. UMBRA is thus not guaranteed to find a minimal
explanation or to refrain from unnecessary inferences. Since ex-
planations are expanded by extending working memory monotoni-
cally, UMBRA does not fully support non-monotonic reasoning.

In the performance tasks discussed in Section 4, we use a stan-
dard parameterization of UMBRA, with assumption limit of 2, and
runs limited to 12 input cycles [15]. Since UMBRA’s ability to rea-
son over nested expressions has been explored extensively, our test
cases usually involve only direct beliefs about the world.

4. DISCUSSION OF SCENARIOS
In this section, we compare the capabilities of the two systems

described above, using scenarios from the robot waiter domain in
Section 3. As stated earlier, the robot waiter assists in a restaurant
by greeting and seating people at tables, and by delivering orders
and clearing tables.

4.1 Basic Approach to Explanation
Scenario-1 presents a basic anomaly: at time 2, robot1 believes

person1 is unattended, and that table1 is unoccupied in Figure 1.
Then at time 3, robot1 observes that person1 is at table1.

Inference in the KRASP program containing these statements
and the system description identifies an inconsistency because the
expected observations, obtained by propagating initial beliefs with
inertia axioms, do not match actual observations. Consistency is
restored by invoking a CR rule that provides a minimal explana-
tion: expl(waiter_seated_person(person1, table1),2), i.e., an ex-
ogenous action that a waiter seated person1 at table1 at time 2.

UMBRA is able to combine its beliefs with the observations pro-
vided, and apply the conceptual rule for exogenous actions, need-
ing only to assume waiter_seated_person actually occurred. Since
this incorporates all working memory elements, no more inputs are
given and no further reasoning is attempted.

Assume that robot1 has prior (default) knowledge that unattended
people usually wait near the entrance (in area10 in Figure 1), and
knows that person1 is unattended initially (at time 0). If robot1
is asked to seat person1 at time 2, a plan generated by inference in
KRASP will have the robot go to area10 because it continues to be-
lieve that person1 is still next to the entrance. Now, when person1
is observed at table1 at time 3, one possible explanation is that
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person1 directly walked to table1 to meet friends, and is thus an
exception to the initial state default. The non-monotonic reasoning
capability of KRASP enables the robot to draw such conclusions,
and to build a different model of history to revise the result of pre-
vious inferences. UMBRA does not fully support such default rea-
soning, and cannot perform non-monotonic reasoning.

This scenario illustrates that efficiency, accuracy (including both
good precision and good recall), and the ability to revise previous
beliefs, are key criteria for explanation generation.

4.2 Multiple Concurrent Goals
Although considerable work in explanation generation has fo-

cused on identifying a top-level goal, a robot in social scenarios
must maintain beliefs about agents who may follow separate plans.
We next consider scenarios with tasks performed concurrently.

Scenario-2 extends Scenario-1 with statements: robot1 searches
for person1 in area2 at time 1, then greets person1 (at table1) at
time 3. As before, inference in KRASP invoked a CR rule to infer:
expl(waiter_seated_person(person1, table1),2), i.e., person1 was
seated at table1 by a waiter at time 2, and reasoned to account for
other observations. UMBRA also produced the correct “search”
and “greet person” rule instances but, in the following cycles, pre-
ferred conceptual rules that it was able to prove cheaply, e.g., to ex-
plain why table1 was considered “occupied”. It also inferred vari-
ations of rule instances with different time constraints, primarily
due to a lack of effective ways to implement axiomatic constraints
as opposed to persistent constraints in working memory. This phe-
nomenon was also seen in some other scenarios. When run for
additional cycles, UMBRA ran out of cheap conceptual rules and
correctly inferred waiter_seated_person.

Scenario-3 is a variation of Scenario-1 that features a second,
unrelated anomaly. In addition to the statements in Scenario-1, at
time 2, robot1 believes that dish1 is empty and located at unoccu-
pied table1 in area1 in Figure 1. At the same time, robot1 travels
from the kitchen door to table1 with the goal of clearing dish1.
At time 3, the robot observes person1 at table1, and observes that
dish1 is not at table1. These observations make sense if a waiter
cleared dish1 and seated person1 at table1. Computing the answer
set of the KRASP program restores consistency by invoking ex-
ogenous actions: expl(waiter_seated_person(person1, table1),2)
and expl(waiter_cleared(dish1),2), i.e., the correct explanations
are generated. UMBRA also made most of the correct inferences,
but was again distracted by cheaper conceptual rule applications in-
stead of inferring waiter_seated_person. Reducing the preference
for cheaper rules allowed UMBRA to make the right inferences.

These scenarios help identify that leveraging knowledge effec-
tively to explain multiple simultaneous behaviors or events, is a
key criterion for explanation generation systems.

4.3 Strategies for Explanation Selection
Explanation generation searches for a model of the world that is

as similar as possible to the ground truth. Some approaches, such as
UMBRA, guide search with heuristic measures of similarity such
as minimality and coherence. Others, such as KRASP, search the
space of known objects and axioms. As the number of literals and
(grounded) instances increase, inference in ASP becomes compu-
tationally expensive. Even with (recent) ASP-based systems that
support interactive exploration, generating incremental and partial
explanations is challenging. Scaling to complex domains is diffi-
cult for UMBRA too, but heuristic measures improve tractability.

A strategy for belief maintenance is necessary when the system
receives input dynamically (because observations may contradict
assumptions), or if it is incremental and non-complete (due to lo-

cal optima). Typical approaches for belief maintenance re-run the
process from scratch, or maintain multiple competing hypotheses.
Since KRASP performs a more elaborate search, standard usage
would re-plan from scratch for incremental inputs. UMBRA, on
the other hand, is non-rigorous, heuristic, and incremental. It de-
lays deciding in the face of ambiguity, seeking the lowest-hanging
fruit, and committing when its parameterization allows; after that,
it can only rebuild explanations from scratch.

In Scenario-4, robot1 believes at time 0 that person1 is located in
area4 in Figure 1, and travels from the kitchen to area4. At time 1,
robot1 observes that person1 is not in area4. At time 0 and time 1,
robot1 does not know whether person1 is unattended or seated at a
table, making it difficult to arrive at a single explanation—person1
may not have been in area4, or may have been in area4 and moved
away. Inference in the KRASP program provides two explana-
tions, corresponding to two possible worlds that trigger the same
number of rules: expl(person_moved_away(person1,area4),0) or
expl( f alse_request(person1),0). Unlike UMBRA, KRASP does
not include variable heuristic costs of relaxing different rules. The
first explanation implies that person1 was not really waiting to
be seated to begin with, and the second explanation implies that
person1 has moved away from the previous location. The dynam-
ics of these exogenous actions need to be modeled explicitly in
KRASP before these actions can be used to generate explanations.
UMBRA, on the other hand, works analogously to local greedy
search with one-step look-ahead and monotonic commitments. It
cannot generate and directly compare different multiple-step ex-
planations. For this scenario, UMBRA explained the absence of
person1 by assuming that person1 had been there, but left the
building. Based on UMBRA’s heuristics, this assumption resulted
in as cheap and coherent an explanation as the alternatives.

This scenario suggests that an explanation system for robots should
have a formal model of explanation generation, and be flexible
enough to decide when and how to maintain competing hypothe-
ses, or to revise baseline beliefs.

4.4 Including Different Assumptions
Providing a meaningful explanation frequently involves making

assumptions about different aspects of the world, e.g., the observa-
tions may include false negatives. Scenario-5 states that at time 1,
robot1 is in the kitchen, and believes person1 is seated at table1 in
area1 (Figure 1) and has ordered pasta. At time 1, robot1 picks up
a dish believing it to contain pasta. At time 2, robot1 observes its
own location to be area1. At time 3, robot1 observes that person1
is not at table1. The explanation, that person1 has moved and left
the restaurant, requires the system to reason about (a) an exoge-
nous event; (b) a domain object (a dish containing pasta); and (c)
a movement action (i.e., robot moving from kitchen to area1).

KRASP can only reason about actions that have been modeled,
and cannot reason about object instances that have not been spec-
ified. Inference in the KRASP program for this scenario provides:
expl(person_moved_away(person1,area1),2) to explain the un-
expected absence of person1 at table1. If, in addition to the move
action, the KRASP program includes action robot_moved_to to
reason about the robot having moved to a specific location, infer-
ence also generates expl(robot_moved_to(robot1,area1),2) as an
explanation. However, there is no further reasoning about the dish
that has been picked up.

UMBRA may assume any literal, but this ability causes it to
sometimes make unnecessary or irrelevant assumptions. Being in-
cremental and boundless, UMBRA is constrained only by cycle
limits, its cost function, and sparsity of inputs. For Scenario-5,
UMBRA successfully inferred that robot1 traveled from the kitchen
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to area1, identified the abnormality, and explained that person1
left the building. However, rather than assuming a new instance
of a dish and its various properties, the low(er) cost option was to
assume that robot1 was a dish! This scenario is another instance
where integrated constraint-like axioms, especially if incorporated
into concept rule definition, would improve representational power
and give more accurate results.

4.5 Explanations with Inconsistent Inputs
So far we have discussed input omissions, but observations re-

ceived by the robot may include false positives and false negatives.
Scenario-6 includes such irrelevant, incorrect literals. At time 1,
robot1 believes person1 has ordered pasta, believes dish1 contains
pasta, observes dish0 is empty, and travels from kitchen to table1
in area1 of Figure 1. Once robot1 is in area1 at time 2, it observes
person1 seated at table1, dish1 is at table1 and contains noodles,
and person2 is seated at table2. Possible explanations are that the
wrong dish (noodles) has been delivered to person1, or that the
initial belief about dish1 was incorrect.

Inference in the KRASP program only explains the state of dish1;
nothing else needs explanation. The corresponding explanation
expl(mixed_up(dish1,noodles),1) invokes an exogenous action to
imply that dish1 has been mixed up and the wrong dish has been
delivered to person1 instead of pasta. The other possibility is not
considered because the domain knowledge does not include any
measure of uncertainty for the initial belief about the state of dish1.
Interestingly, if the number of time steps is increased between the
initial belief and final observation of dish1, KRASP hypothesizes
that the dish got mixed up at different points in this interval.

For UMBRA, this scenario was one of the least accurate cases,
and the explanation mostly consisted of applying cheap conceptual
rules. UMBRA also assumed that robot1 was a person that had
left the restaurant, i.e., the most crucial anomaly went unexplained.
It is often difficult to establish why a heuristic-directed reasoning
process ends up making an error on a particular case, but expla-
nation based on non-complete search can only be as good as the
heuristic it uses for inference choice. Furthermore, since UMBRA
aims to produce reasonable assumptions given reliable partial in-
puts, rather than create a maximally consistent explanation given
unreliable inputs, it cannot readily redact beliefs.

A robot may encounter inputs that are more problematic than
the type of false positive considered above. Consider Scenario-7,
which states that: at time 2, robot1 believes that table1 is unoccu-
pied, dish1 is located on table1 in area1, and dish1 is empty. The
robot moves to area1 to clear dish1. At time 3, robot1 observes
that there is no dish1 on table1. Inference in KRASP generates
the explanation: expl(waiter_cleared(dish1),2), i.e., that a waiter
cleared dish1 at time 2. For this scenario, UMBRA is able to gen-
erate the correct explanation as well.

Now, consider two variants of Scenario-7 that feature unexpected
inputs. In the first variant, new literals are added to describe a pre-
viously unknown attribute of robot1 or a previously unknown rela-
tionship between dish1 and table1. KRASP cannot deal with such
new additions that have not been defined previously. UMBRA, on
the other hand, succeeds in ignoring the foreign literals until an op-
portunity comes up to incorporate those observations. The second
variant involves contradictory observations, e.g., at time 3, dish0
is observed to have state pasta, and dish0 is observed to have state
noodles. Inference in the KRASP program cannot deal with this in-
consistency and no solutions are provided. UMBRA, on the other
hand, constructs the explanation when provided the inputs incre-
mentally; when the contradictory input is received, it fails.

These scenarios highlight some key criteria for explanation gen-

Table 1: Comparison of KRASP and UMBRA in terms of sup-
port for some desired explanatory capabilities.

Capability KRASP UMBRA
High accuracy and quantity of infer-
ences, including ability to explain con-
current behaviors/events

Yes Partial

Leverage rule types (e.g., axiomatic
constraints, default rules, HTNs, con-
cept taxonomies) in appropriate ways

Yes Partial

Can apply and maintain constraints Yes Partial
Flexible approach to ambiguity and be-
lief maintenance

Partial No

Different strategies for belief revision
and maintain competing hypotheses

Partial No

Formal guarantees about inferences Yes No
Search is scalable, and uses heuristic
rules to focus on those elements with
higher demand for explanation

No Partial

Incorporate sensor data incrementally,
reduce search cost through heuristics

No Yes

Explain false positive and partial de-
scriptions

Yes Partial

eration systems (a) robustness with respect to observed false posi-
tives and false negatives; (b) ability to decide what observations to
focus on; and (c) graceful failure (when failing is unavoidable).

4.6 Summary
Table 1 summarizes some desired capabilities of an explanation

generation system for robots, identified based on the scenarios dis-
cussed above. Table 1 also documents the extent to which the ex-
planation generation systems KRASP and UMBRA, as described
in Section 3.1 and Section 3.2 respectively, support these desired
capabilities. We observe that the two systems largely complement
each other in their ability to support these capabilities.

The differences in the capabilities of the two systems are pri-
marily due to what kind of information and knowledge they can
represent, how they generate explanations, i.e., process informa-
tion, and how they handle different forms of uncertainty. KRASP
generates explanations using the system description and observa-
tions of system behavior. This approach is formally well-defined
and provides satisfying guarantees, besides supporting appealing
capabilities such as non-monotonic reasoning and default reason-
ing. However, it is challenging to include new relations or objects,
and the system cannot reason with observation inconsistencies or
produce partial explanations incrementally. This approach can also
become computationally expensive if inference is not done selec-
tively as the number of relations and grounded instances increases.

UMBRA’s incremental, heuristic approach to explanation gener-
ation, on the other hand, is robust to the unexpected observations of
objects, and allows guidance through heuristic rules. However, this
approach is susceptible to local minima, and may face difficulties
in reasoning in a targeted manner. It is also not capable of non-
monotonic reasoning, and does not provide formal guarantees for
the conclusions drawn. The ideal explanation generation system
for robots would include the best features of these systems, e.g., it
would support (a) an elegant representation for incomplete domain
knowledge; (b) non-monotonic (and default) reasoning; and (c)
scalable, incremental, and partial explanation generation through
(well-designed) heuristic guidance.
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5. CONCLUSIONS AND FUTURE WORK
Existing explanation generation systems are based on ideas drawn

from two broad classes of systems, and do not support all the de-
sired explanation generation capabilities for robots. The objective
of this paper was twofold. First, we investigated a representative
state of the art example from each of the two broad classes of expla-
nation generation systems. Specifically, we compared (a) KRASP,
a system based on Answer Set Prolog, which uses an elaborate
system description, observations of system behavior, and minimal
heuristics, to generate explanations; and (b) UMBRA, a system that
generates explanations using a weaker system description, and ab-
ductive inference guided by a heuristic representation of past expe-
rience and other heuristics for selective and incremental search. We
used execution scenarios of a robot waiter assisting in a restaurant
to highlight the strengths and limitations of these systems. Sec-
ond, we used this study to identify important criteria for explana-
tion generation systems for robots. We have also confirmed that
the two systems pose some common challenges, such as scaling
and reasoning with different descriptions of uncertainty. Exploit-
ing the complementary strengths of the two systems may provide
solutions to these challenges, and this paper opens up many direc-
tions for further research.

First, we will focus on computational efficiency, scalable search,
failure recovery, and improved guidance by knowledge, in UM-
BRA. This will include a better theory of explanation generation,
using lessons learned from KRASP to support reasoning with de-
fault knowledge and a selective hierarchy of elements to explain. It
will also employ better cost functions for search, and an improved
approach to determine which hypotheses to maintain and when to
prune the hypotheses.

Second, we will explore the design of heuristics that can improve
the scalability of KRASP for complex domains. We will build
on lessons learned from the study of heuristics used by UMBRA,
while still retaining KRASP’s ability to reason with commonsense
knowledge. Such a system will operate over the same representa-
tions as KRASP, and incorporate fine-grained heuristic control for
scalable, incremental generation of explanations.

Third, we will investigate the inclusion of a probabilistic descrip-
tion of knowledge and uncertainty with non-monotonic logical rea-
soning. We will build on recent work that uses ASP and probabilis-
tic models with robots [6, 26, 27]. Such a system would extend
the representation used by KRASP to consider different possible
worlds, but use heuristics to generate explanations that are highly
probable. The long-term objective is to provide a reliable, efficient
and well-defined approach for explanation generation, as a funda-
mental capability for human-robot collaboration.
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