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Abstract A robot’s ability to provide explanatory
descriptions of its decisions and beliefs promotes
effective collaboration with humans. Providing the
desired transparency in decision making is chal-
lenging in integrated robot systems that include
knowledge-based reasoning methods and data-
driven learning methods. As a step towards ad-
dressing this challenge, our architecture combines
the complementary strengths of non-monotonic
logical reasoning with incomplete commonsense
domain knowledge, deep learning, and inductive
learning. During reasoning and learning, the ar-
chitecture enables a robot to provide on-demand
explanations of its decisions, the evolution of as-
sociated beliefs, and the outcomes of hypothetical
actions, in the form of relational descriptions of
relevant domain objects, attributes, and actions.
The architecture’s capabilities are illustrated and
evaluated in the context of scene understanding
tasks and planning tasks performed using sim-
ulated images and images from a physical robot
manipulating tabletop objects. Experimental re-
sults indicate the ability to reliably acquire and
merge new information about the domain in the
form of constraints, preconditions, and effects of
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actions, and to provide accurate explanations in
the presence of noisy sensing and actuation.

Keywords Explainable reasoning and learn-
ing · Non-monotonic logical reasoning · Deep
learning · Scene understanding · Robotics.

1 Introduction

Imagine a robot arranging objects in desired con-
figurations on a table, and estimating the occlu-
sion of objects and stability of object configura-
tions. Figure 1a illustrates a scene in this set-
ting. An object is occluded if the view of any min-
imal fraction of its frontal face is hidden by an-
other object, and an object configuration (i.e., a
vertical stack of objects) is unstable if any ob-
ject in the configuration is unstable. To perform
these tasks, the robot extracts information from
on-board camera images, reasons with this infor-
mation and incomplete domain knowledge, and
executes actions to achieve desired outcomes. It
also incrementally learns and revises previously
unknown constraints, and preconditions and ef-
fects of actions, and responds to questions about
its plans, actions, decisions, and beliefs. For in-
stance, assume that the goal in Figure 1b is to
have the yellow ball on the orange block, and
that the plan is to move the blue block to the ta-
ble’s surface before placing the ball on the orange
block. When asked about a plan step, e.g., ”why
do you want to pick up the blue block first?”, the
robot answers ”I have to put the ball on the or-
ange block, and the blue block is on the orange
block”; when asked, after plan execution, ”why
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(a) Test scenario.

(b) Image from robot’s camera.

Fig. 1: (a) Motivating scenario of a Baxter robot
arranging objects on a tabletop; (b) Image from
the camera on the robot’s left gripper.

did you not pick up the pig?”, the robot responds
”Because the pig is not related to the goal”.

The motivating scenario described above poses
key knowledge representation, reasoning, learn-
ing, and control challenges. In this paper, we fo-
cus on enabling a robot to provide on-demand ex-
planations of its decisions and beliefs in the form
of descriptions comprising relations between rel-
evant domain objects, object attributes, actions,
and robot attributes. Such “explainability” will
help human designers improve the underlying al-
gorithms and establish accountability. Providing
these explanations is particularly challenging in
integrated robot systems that combine knowledge-
based reasoning methods (e.g., for planning) and
data-driven learning methods (e.g., for pattern
recognition). Inspired by research in cognitive sys-
tems that highlights the superior capabilities pro-
vided by coupling different representations, rea-
soning methods, and learning methods [20,43],
our architecture provides transparency in deci-
sion making by integrating the principles of data-
driven learning and knowledge-driven reasoning.
Building on our prior work that combined non-
monotonic logical reasoning and deep learning
for classification tasks in simulated images [31],
our architecture enables a robot to:

– Automatically learn axioms encoding previously
unknown state constraints, and action pre-
conditions and effects;

– Automatically trace the evolution of any given
belief or the non-selection of any given action
at a given time by inferring the relevant se-
quence of axioms and beliefs; and

– Exploit the interplay between representation,
reasoning, and learning to describe decisions
and beliefs related to computed or executed
plans and hypothetical situations.

Our recent conference paper provided proof of
concept evidence of our architecture’s ability to
learn previously unknown constraints and extract
relevant information to construct descriptions of
decisions and beliefs [33]. Here, we describe these
capabilities in more detail, and introduce the abil-
ity to acquire action preconditions and effects and
trace the evolution of beliefs. These capabilities
are evaluated in the context of performing plan-
ning tasks and scene understanding tasks in sim-
ulated scenes and on a physical robot manip-
ulating tabletop objects. Specifically, the robot:
(i) computes and executes plans to arrange ob-
jects in desired configurations; and (ii) estimates
occlusion of scene objects and stability of object
configurations. Experimental results indicate the
ability to (i) incrementally reduce uncertainty in
the scene by learning previously unknown state
constraints, and preconditions and effects of ac-
tions; and (ii) construct explanations reliably and
efficiently by automatically identifying and rea-
soning with the relevant knowledge despite noisy
sensing and actuation.

The remainder of this paper is organized as
follows. Section 2 discusses related work to moti-
vate the architecture described in Section 3. Ex-
perimental results and conclusions are discussed
in Section 4 and Section 5, respectively.

2 RELATED WORK

Early work in explanation generation drew on re-
search in cognition, psychology, and linguistics
to characterize explanations in terms of factors
such as generality, objectivity, connectivity, rele-
vance, and information content [11]. Subsequent
studies involving human subjects have also in-
dicated that the attributes of good explanations
include coherence, simplicity, generality, sound-
ness, and completeness [36]. In parallel, funda-
mental computational methods were developed
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for explaining unexpected outcomes by reason-
ing logically about potential causes [16].

With the increasing use of AI and machine
learning methods in different domains, there is
renewed interest in understanding the decisions
of these methods1. This understanding can be
used to improve the underlying algorithms, and
to make automated decision-making more accept-
able or trustworthy to humans [25]. Recent work
in explainable AI and explainable planning can be
broadly categorized into two groups [29]. Meth-
ods in one group modify or map learned mod-
els or reasoning systems to make their decisions
more interpretable, e.g., by mapping decisions to
input data [17], explaining the predictions of clas-
sifiers by learning equivalent interpretable mod-
els [37], or biasing a planning system towards
making decisions easier for humans to under-
stand [45]. Methods in the other group provide
descriptions that make a reasoning system’s de-
cisions more transparent, e.g., describing plan-
ning decisions [5], combining reasoning based on
classical first order logic with interface design to
help humans understand a plan [4,26], describ-
ing why a particular solution was obtained for a
given problem using non-monotonic logical rea-
soning [8], or using rules made of monotonic op-
erators to define proof trees that provide a declar-
ative view (i.e., explanation) of the trace of a com-
putation [9]. Researchers have also explored ex-
planations for non-monotonic rule-based systems
in semantic web applications [2,18]. Much of this
research is agnostic to how an explanation is struc-
tured or assumes comprehensive domain knowl-
edge. Also, they do not explore the interplay be-
tween learning, representation, and reasoning to
improve the quality of the explanations.

Given the use of deep networks and related
algorithms in different applications, methods are
being developed to understand the operation of
these networks, e.g., by computing the features
most relevant to a deep network’s outputs [3]. As
documented in a recent survey, these methods
compute gradients and decompositions in a net-
work’s layers to obtain heatmaps of the relevant
features [38]. There has also been work on rea-
soning with learned symbolic structure, or with a
learned graph encoding scene structure, in con-
junction with deep networks to answer questions
about images of scenes [35,44]. However, these

1 For an interesting debate on whether interpretabil-
ity is needed in machine learning, please see: https:
//www.youtube.com/watch?v=93Xv8vJ2acI

approaches do not (i) fully integrate reasoning
and learning to inform and guide each other; or
(ii) use the rich commonsense knowledge, which
is available in almost every domain, for reliable
and efficient reasoning, learning, and the gener-
ation of descriptions of the decisions and beliefs
of the system under consideration.

There is a well-established literature methods
in AI for learning logic-based representations of
domain knowledge. Examples include the incre-
mental revision of a first-order logic representa-
tion of action operators [14], the inductive learn-
ing of domain knowledge represented as an An-
swer Set Prolog program [15,23], and work in our
group on coupling of non-monotonic logical rea-
soning, inductive learning, and relational rein-
forcement learning to incrementally acquire ac-
tions and axioms [33,41]. Our approach for learn-
ing domain axioms is inspired by work in inter-
active task learning, a general framework for ac-
quiring domain knowledge using labeled exam-
ples or reinforcement signals obtained from do-
main observations, demonstrations, or human in-
structions [6,21]. However, unlike methods that
learn from many training examples, our approach
learns from limited training examples.

In this paper, we focus on integrated robot
systems that use knowledge-based methods and
data-driven methods to represent, reason with,
and learn from incomplete domain knowledge and
noisy observations. We enable such robots to gen-
erate relational descriptions of decisions and be-
liefs, including hypothetical or counterfactual sit-
uations that are often used by humans and com-
puter systems to infer causal relations [27]. Re-
cent surveys indicate that these capabilities are
not supported by existing systems [1,29]. Our
architecture builds on knowledge representation
tools, our prior work on integrating non-monotonic
logical reasoning and deep learning for classifica-
tion tasks in simulated images [31], and work in
our group on explainable agency [22] and a the-
ory of explanations [42] that has shown that the
non-monotonic logical reasoning paradigm used
in this paper can be used to present information
at the level of abstraction, verbosity, and speci-
ficity desired by the human participant [42].

3 ARCHITECTURE

Figure 2 shows the overall architecture. Compo-
nents to the left of the dashed vertical line com-
bine non-monotonic logical reasoning and deep

https://www.youtube.com/watch?v=93Xv8vJ2acI
https://www.youtube.com/watch?v=93Xv8vJ2acI
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Fig. 2: Architecture combines strengths of non-
monotonic logical reasoning with incomplete
commonsense domain knowledge, deep learning,
and inductive learning. Components to the left
of the dashed vertical line establish this combi-
nation, and those to the right of the dashed line
support the desired explainability.

learning for classification tasks; an initial version
of these components were described in a context
of classification tasks in simulated images in our
conference paper [31]. Components to the right
of the dashed line expand reasoning capabilities
and answer questions about decisions and be-
liefs before, during, or after reasoning and learn-
ing. An initial version of some of these compo-
nents were introduced in our recent conference
paper [33]. Here, we describe all components, fo-
cusing primarily on the tracing of beliefs and con-
struction of explanations, and highlighting recent
changes and extensions in other components. We
do so using the following illustrative domain.

Example Domain 1 [Robot Assistant (RA) Domain]
A Baxter (see Figure 1a): (i) estimates occlusion of
scene objects and stability of object structures,
and arranges objects in desired configurations;
and (ii) provides relational descriptions of deci-
sions, beliefs, and hypothetical situations as re-
sponses to questions and commands. There is
uncertainty in the robot’s perception and actua-
tion, and the robot uses probabilistic algorithms
to visually recognize and move objects. The robot
has incomplete (and potentially imprecise) domain
knowledge, which includes object attributes such
as size (small, medium, large), surface (flat, irreg-
ular) and shape (cube, apple, duck); position and

distance-based spatial relations between objects
(above, below, front, behind, right, left, in); other
domain attributes; and some axioms governing
domain dynamics such as:

– Placing an object on top of an object with an
irregular surface results in an unstable object
configuration.

– For any given object, removing all other ob-
jects blocking its frontal face causes this ob-
ject to be not occluded.

– An object that is positioned below another ob-
ject cannot be picked up.

This knowledge may need to be revised, e.g., some
actions, axioms, and the values of some attributes
may be unknown, or the robot may observe that
placing certain objects on an object with an irreg-
ular surface results in a stable configuration.

3.1 Knowledge Representation, Reasoning, and
Learning

We first describe the knowledge representation,
reasoning, and learning capabilities, i.e., the com-
ponents to the left of the dashed vertical line in
Figure 2.

Feature extraction: In our architecture, the sen-
sor inputs are RGB images of simulated scenes,
or noisy top and front views of scenes from the
robot’s cameras; our prior work also considered
RGB-D images of simple simulated scenes [31].
From each image, the ”Feature extraction” com-
ponent in Figure 2 uses a probabilistic algorithm
to extract objects and their attributes. Also, the
spatial relations between objects in the image are
computed using our prior work that learned the
grounding, i.e., the meaning in the physical world,
for seven position-based prepositional words (in,
above, below, front, behind, right, left) and three
distance-based prepositional words (touching, non-
touching, far). This grounding is modeled in the
form of 2D and 1D histograms, which are learned
from labeled image data and revised over time
based on human feedback. Given an input im-
age, a measure of similarity computed between
the histograms extracted from this image and the
learned models is used to label the spatial rela-
tions between pairs of objects in the image. For
more details about this grounding, please see [30].

Non-monotonic logical reasoning: To represent
and reason with domain knowledge, the ”ASP pro-
gram” component in Figure 2 uses CR-Prolog, an
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extension to Answer Set Prolog (ASP) that intro-
duces consistency restoring (CR) rules; we use the
terms “CR-Prolog” and “ASP” interchangeably in
this paper. ASP is a declarative language that rep-
resents recursive definitions, defaults, causal re-
lations, and constructs that are difficult to ex-
press in classical logic formalisms. ASP is based
on the stable model semantics, and encodes de-
fault negation and epistemic disjunction, e.g., un-
like “¬a”, which implies that “a is believed to be
false”, “not a” only implies that “a is not believed
to be true” [13]. Each literal can hence be true,
false, or unknown, and the robot only believes
statements that it is forced to believe. ASP sup-
ports non-monotonic logical reasoning, i.e., adding
a statement can reduce the set of inferred conse-
quences, which helps recover from errors caused
by reasoning with incomplete domain knowledge.
This is an appealing capability for robotics do-
mains characterized by incomplete knowledge, dy-
namic changes, and noisy observations. ASP and
other knowledge-based reasoning paradigms are
often criticized for requiring comprehensive prior
knowledge, and for being unwieldy in large, com-
plex domains. However, ASP has been used by
an international research community to reason
with incomplete domain knowledge in many ap-
plications, and modern ASP solvers have demon-
strated the ability to reason efficiently with a large
knowledge base [7].

A domain’s description in ASP comprises a sys-
tem description D and a history H. D comprises
a sorted signature Σ and axioms encoding the
domain’s dynamics. In [31] we explored spatial
relations between objects in the image for clas-
sification tasks; the Σ included basic sorts, e.g.,
object, robot, location, size, relation, and surface;
statics, i.e., domain attributes that do not change
over time, e.g., obj size(object, size) for object size
and obj surface(obj, surface) for object surface;
and fluents, i.e., domain attributes whose values
can be changed, e.g., loc(object, location) implies
that a particular object is at a particular loca-
tion, and obj relation(above, object, object) implies
that a particular object is above another partic-
ular object. In [33] and this paper, the robot also
plans and executes actions that cause changes in
the domain. We model the corresponding domain
dynamics by first describing the expanded Σ and
transition diagram in action language ALd [12]
and then automatically translating this descrip-
tion to ASP statements. Action languages are for-
mal models of parts of natural language used for

specifying transition diagrams of dynamic domains.
ALd supports three types of statements: causal
law, state constraint, and executability condition,
which are encoded as:

a causes lin if p0, . . . ,pm

l if p0, . . . ,pm

impossible a0, . . . ,ak if p0, . . . ,pm

where a is an action, l is a literal, lin is an inertial
literal, and p0, . . . ,pm are domain literals. For the
RA domain, Σ now also includes the sort step for
temporal reasoning, fluents such as in hand(robot,
object), actions such as pickup(robot, object) and
putdown(robot, object, location), and the relation
holds(fluent, step) implying that a particular flu-
ent holds true at a particular time step.

Given a signature, axioms in the system de-
scription capture the domain’s dynamics. For the
RA domain, the axioms would include ALd state-
ments such as:

putdown(rob1, Ob1,Ob2) causes

obj relation(on,Ob1, Ob2) (1a)

obj relation(above,Ob1, Ob2) if

obj relation(below,Ob2, Ob1) (1b)

impossible pickup(rob1, Ob1) if

obj relation(below,Ob1, Ob2) (1c)

where Statement 1(a) is a causal law implying
that putting an object down on another object
causes the first object to be on the second one;
Statement 1(b) is a state constraint linking the
spatial relations above and below between two
objects; and Statement 1(c) is an executability
condition implying that the robot cannot try to
pick up an object that is below another object.
The domain axioms also encode constraints that
hold unless there is evidence to the contrary, e.g.,
“larger objects placed on smaller objects are un-
stable unless stated otherwise” is encoded as:

¬stable(A) if obj relation(above,A,B), (2)

size(A, large), size(B, small), not stable(A)

where “not” denotes default negation. In addi-
tion to these axioms, information extracted from
the input images (e.g., spatial relations, object at-
tributes) with sufficiently high probability is con-
verted to ASP statements.

TheH of a dynamic domain typically comprises
records of the form obs(fluent, boolean, step), i.e.,
fluents observed to be true or false at a particu-
lar time step, and hpd(action, step), i.e., an action’s
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execution at a particular time step. In [40], other
work in our group expanded this notion to repre-
sent defaults describing the values of fluents in
the initial state, e.g., “it is initially believed that
a book is in the library”, and exceptions, e.g., “a
cookbook is in the kitchen”.

To reason with domain knowledge, our archi-
tecture constructs the CR-Prolog program Π(D,H),
which includes Σ and axioms of D, inertia ax-
ioms, reality checks, closed world assumptions
for actions, and observations, actions, and de-
faults from H. For instance, Statements 1(a-c)
would be translated into ASP statements such as:

holds(obj relation(on,Ob1, Ob2), I + 1) ← (3a)

occurs(putdown(rob1, Ob1, Ob2), I)

holds(obj relation(above,Ob1, Ob2), I)← (3b)

holds(obj relation(below,Ob2, Ob1), I)

¬occurs(pickup(rob1, Ob1), I) ← (3c)

holds(obj relation(below,Ob1, Ob2), I)

In addition, every default also has a CR rule to let
the robot assume the default’s conclusion is false
to restore consistency under exceptional circum-
stances. For instance, the ASP statement:

¬loc(X, library) +← book(X) (4)

is a CR rule that is only triggered under excep-
tional circumstances to assume a book is not in
the library, e.g., as an explanation for an unex-
pected observation of a book outside the library.
CR rules can also be used for diagnostics, i.e., to
explore the reasons for any unexpected outcomes
and to trigger the learning and revision of axioms.
We do not discuss it here to avoid confusion with
our axiom induction approach described below;
see [13,41] for complete details.

Once Π is constructed, planning, diagnostics,
and inference can be reduced to computing an-
swer sets of Π after introducing some helper rela-
tions and axioms [13]. Any answer set represents
the beliefs of the robot associated with Π; it is
a description of a possible world and the set of
literals of domain fluents and statics at any par-
ticular time step represents the domain state at
that time step. The program for our RA domain is
available in the ”Explanations” folder of our open-
source online repository [34].

Note that incorrect inferences can be drawn
due to incomplete knowledge, noisy sensor input,
or when probabilistic information is elevated to
statements in the ASP program. Non-monotonic

logical reasoning enables the robot to recover from
such errors, and not be very sensitive to the choice
of heuristic thresholds. Also, although we do not
describe it here, our architecture supports the
modeling of non-determinism (e.g., in action out-
comes). In addition, work by others in our group
has combined such logical reasoning at a coarse
resolution with probabilistic reasoning over the
relevant part of a finer resolution representation
of the domain [40]. For ease of understanding
and to focus on the interplay between reasoning
and learning in the context of constructing expla-
nations, we limit ourselves to logical reasoning at
one resolution in this paper.

Classification: Similar to our prior work [31], the
”Classification block” in Figure 2 first tries to es-
timate the occlusion of objects and the stabil-
ity of object configurations in any given image
using ASP-based reasoning. If an answer is not
found, or an incorrect answer is found for la-
beled training examples, the robot automatically
extracts relevant regions of interest (ROIs) from
the corresponding image. Parameters of existing
Convolutional Neural Network (CNN) architectures
(e.g., Lenet [24], AlexNet [19]) are tuned to map
information from each such ROI to the correspond-
ing classification labels. An innovation of our prior
work was to reason with knowledge of the task
(e.g., estimating occlusion) to automatically iden-
tify and ground only the relevant axioms and re-
lations in the image under consideration to de-
termine the ROIs to be analyzed further [31]. In
this paper, we build on this notion of relevance
and reason over a sequence of steps to provide
explanations, as described in Section 3.2.

Axiom induction: Images used to train the CNNs
are considered to contain information about miss-
ing or incorrect constraints related to occlusion
and stability. In the ”Decision tree induction” com-
ponent in Figure 2, image features and spatial re-
lations extracted from ROIs in each such image,
along with the known labels for occlusion and
stability (during training), are used to incremen-
tally learn a decision tree summarizing the corre-
sponding state transitions. The learning process
repeatedly splits a node based on an unused at-
tribute likely to provide the highest reduction in
entropy. Next, branches of the tree that satisfy
minimal thresholds on purity at the leaf (≥ 95%

samples in one class) and on the level of sup-
port from labeled examples (≥ 5%) are used to
construct candidate axioms. Candidates are val-
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idated and those with less than a minimal level
of support (i.e., < 5%) on a separate set of un-
seen examples are removed. These thresholds are
set to identify a small number of highly likely ax-
ioms, and small changes to thresholds do not af-
fect performance. The thresholds can be revised
to achieve other outcomes, e.g., they can be low-
ered significantly to identify default constraints.

Unlike our prior work [31,33], we introduce
new strategies to process noisy images of more
complex scenes. First, we use a homogeneous en-
semble learning approach, retaining only axioms
that are identified over a number of cycles of ap-
plying the decision tree induction approach for
learning and validation on different subsets of
data. Second, different versions of the same ax-
iom are merged to remove over-specifications. As
an example, consider the statements:

¬stable(A) ← obj relation(above,A,B), (5a)

obj surface(B, irregular)

¬stable(A) ← obj relation(above,A,B), (5b)

obj surface(B, irregular),

obj size(B, large)

where Statement 5(b) can be removed because
the size of the object at the bottom of a stack does
not provide any additional information about in-
stability given that it has an irregular surface. If
the robot later observes that a large object, even
with an irregular surface, can support a small
object, the axiom will be revised suitably. Specif-
ically, axioms with the same head and at least
one common literal in the body are grouped. Each
combination of one axiom from each group is en-
coded in an ASP program along with axioms that
are not in any group. Each such ASP program is
used to classify ten labeled scenes, retaining the
axioms in the program that provides the highest
accuracy on these scenes. Third, to filter axioms
that cease to be useful, the robot associates each
axiom with a strength that decays exponentially
over time if it is not reinforced, i.e., not used or
learned again. Any axiom whose strength falls be-
low a threshold is eventually removed.

Unlike our prior work that only learned state
constraints [33], the robot now also learns pre-
viously unknown causal laws and executability
conditions if there is any mismatch between the
expected and observed state after an action is ex-
ecuted. Any expected but unobserved fluent lit-
eral indicates missing executability condition(s),
and any observed unexpected fluent literal indi-

cates missing causal law(s). Given the distributed
representation of axioms in our architecture, ax-
ioms of any particular type (e.g., causal law) are
learned by constructing decision trees in a suit-
able format for each candidate action. The learn-
ing is based on the following methodology:

1. To explore missing executability conditions, the
robot simulates the execution of the action (that
caused the inconsistency) in different initial
states and stores: (a) the relevant information
from the initial state; (b) the executed action;
and (c) a label indicating the presence or ab-
sence of inconsistency, which is used as the
output label for the sample in the decision
tree. Any fluent literal that exists in the an-
swer set or initial state, and has an object
constant that occurs in the action under con-
sideration, is considered to be relevant; it is
stored with variables replacing ground terms.
These simulations correspond to the execu-
tion of the action in some initial state based
on the model provided by the ASP program.

2. To explore a missing causal law, training sam-
ples are collected as in Step 1, but the output
label is the observed, unexpected fluent literal
from the resultant state.

3. Separate decision trees are created with the
relevant information from the initial state as
the attributes (i.e., nodes); the output label is
the presence or the absence of inconsistency
for any executability conditions, and the un-
expected fluent for any causal law. The root
node of the tree is the executed action.

Figure 3 shows part of a decision tree obtained
using the method described above when the exe-
cutability condition in Statement 3(c) is missing;
the learned axiom is along the path shaded grey.
The label consistent (inconsistent) implies that for
≥ 50% of the examples at the leaf, observations
match (do not match) the expected outcomes. It
is possible for the robot to observe a transition to
an unexpected state due to hardware problems
(e.g., mechanical failure), but such failures are
assumed to be infrequent and are considered to
be exceptions that do not trigger or influence the
axiom learning approach. When such failures oc-
cur, the robot is expected to create a new plan to
achieve the goal once the failure has been fixed.
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Below(O1, O3)?¬ pickup(R1, O1) In hand(R1, O3)?

Inconsistent (100% of 6 samples)

Above(O1, O2)?

Consistent (100% of 14 samples)

Inconsistent (50% of 4 samples)

Inconsistent (100% of 26 samples)

False True

False

True

True

False

Fig. 3: Example illustrating part of the decision tree created for the missing executability condition
encoded by Statement 3(c).

3.2 Relational Descriptions as Explanations

The components of our architecture on the right
side of the dashed line in Figure 2 exploit the
interplay between representation, reasoning, and
learning to provide the desired on-demand rela-
tional descriptions of decisions and beliefs.

Interaction interface and control loop: Human
interaction with our architecture through speech
or text input is handled by the ”Text/audio pro-
cessing” component in Figure 2. Existing soft-
ware implementations and a controlled (domain-
specific) vocabulary are used to parse human ver-
bal input. Specifically, verbal input from a hu-
man is transcribed into text drawn from the con-
trolled vocabulary. This (or the input) text is la-
beled using a part-of-speech (POS) tagger, and
normalized with the lemma list [39] and related
synonyms and antonyms from WordNet [28]. The
processed text helps identify the type of request,
which may correspond to a desired goal or a ques-
tion/command about decisions and beliefs. In the
former case, the goal is sent to the ASP program
for planning. The robot computes and executes
the plan, replanning when unexpected action out-
comes cannot be explained, until the desired goal
is achieved or learning is triggered. In the latter
case, i.e., when given a question about the de-
cisions and beliefs, the “Program Analyzer” con-
siders the current knowledge (including inferred
beliefs) and parsed human input to automatically
identify relevant axioms and literals. These liter-
als are inserted into generic response templates
based on the controlled vocabulary, resulting in
human-understandable (textual) descriptions that
are converted to synthetic speech if needed.

Tracing beliefs/axioms: A key capability of our
architecture is to infer the sequence of axioms
and beliefs that explain the evolution of any given
belief or the non-selection of any given ground
action at a given time. This tracing of beliefs and
axioms is done by the “Program Analyzer” com-

ponent in Figure 2, which uses the inferred se-
quence of axioms and beliefs for building expla-
nations. Others have constructed such proof trees
in the context of monotonic (i.e., classical first
order) logic statements used to explain observa-
tions [9]. We adapt this method to our domain
representation based on non-monotonic logic, and
use the following methodology to explain the evo-
lution of any given belief and the non-selection of
any given action.

1. Select axioms whose head matches the belief
or action of interest.

2. Ground the literals in the body of each se-
lected axiom and check whether these are sup-
ported by the answer set under consideration.

3. Create a new branch in a proof tree (with the
target belief or action as the root node) for
each selected axiom supported by the answer
set, and store the axiom and the related sup-
porting ground literals in suitable nodes.

4. Repeats Steps 1-3 with the supporting ground
literals in Step 3 as target beliefs in Step 1,
until all branches reach a leaf node without
further supporting axioms.

The paths from the root to the leaves in these
proof trees help construct the desired explana-
tions. If multiple such supporting branches ex-
ist, they are not compared with each other for
choosing the one that best explains a target be-
lief. Instead, the algorithm randomly selects any
branch to compose the required answers, leav-
ing a comparison of the available options as a
direction for future work. As an example, con-
sider the initial scenario in Figure 1b with the
goal of having the yellow ball on the orange cube.
The robot computes a plan that has in it move
the blue cube on top of the purple cube (behind
the pig) and then move the ball on top of the or-
ange cube. If the robot is asked (after plan exe-
cution) why it did not pick up the purple block at
time step 3, part of the corresponding proof tree
would be as shown in Figure 4; the path high-
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lighted in green contains the information needed
for the answer; in this example, the purple cube
could not be picked up because the blue cube
had just been placed on top of it. As another ex-
ample consider the goal of having the pig on the
red cube. The plan is to move the blue cube to the
table and then the orange cube on top of the pur-
ple cube before moving the pig on top of the red
cube. Now, if the robot is asked to explain why it
believed that the purple cube was below the or-
ange cube at time step 5, part of the correspond-
ing proof tree would be as shown in Figure 5, with
the path highlighted in green providing the infor-
mation needed to construct the answer.

Program analyzer: Algorithm 1 describes the ap-
proach for automatically identifying and reason-
ing with the relevant information to construct re-
lational descriptions in response to questions or
requests. It does so in the context of four types of
explanatory requests or questions. The first three
were introduced in prior work as questions to
be considered by any explainable planning sys-
tem [10]; in addition, we consider a question about
the robot’s beliefs at any given point in time.

1. Plan description When asked to describe a
particular plan, the robot parses the related
answer set(s) to extract a sequence of actions
occurs(action1, step1), . . ., occurs(actionN , stepN )

(line 3, Algorithm 1). These actions are used
to construct the response.

2. Action justification: Why action X at step
I? To justify the execution of any particular
action at a particular time step, the robot con-
siders the actions or states that this action en-
ables, and proceeds as follows:
(a) For each action that occurred after step I,

the robot examines relevant axioms (e.g.,
executability conditions, causal laws) and
identifies literal(s) that would prevent this
action’s execution (lines 5-7, Algorithm 1).
For example, assume that for the goal of
placing the orange block on the table in Fig-
ure 1b, the following plan is executed:

occurs(pickup(robot, blue block), 0),

occurs(putdown(robot, blue block, table), 1),

occurs(pickup(robot, orange block), 2).

If asked to justify the execution of the first
pickup action in this plan, i.e., if posed the
question “Why did you pick up the blue
block at time step 0?”, one of the relevant

Algorithm 1: (Program Analyzer) Construct
answer to input question

Input : Question literal; Π(D,H); answer
templates.

Output: Answer to questions.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve actions from answer set

3 answer literals = Retrieve(AS, actions)
4 else if question = ”why action X at step I?”

then
// Extract actions after step I

5 next actions = Retrieve(AS, actions for
step > I)
// Extract axioms influencing actions

6 relevant axioms = Retrieve(Π, head =
¬next actions)
// Extract relevant literals

7 relevant literals = Retrieve(AS,
Body(relevant axioms) ∈ I∧ /∈ I + 1)
// Output literals

8 answer literals = pair(relevant literals,
next actions)

9 else if
question = ”why not action X at step I?” then

// Extract axioms relevant to action

10 relevant axioms = Retrieve(Π, head =
¬occurs(X))
// Extract relevant literals

11 answer literals = Retrieve(AS,
Body(relevant axioms) ∈ I∧ /∈ I + 1)

12 else if question = ”why belief Y at step I?”
then

// Extract relevant axioms

13 relevant axioms = Retrieve(Π, head = Y)
// Examine body of axioms

14 answer literals = Recursive Examine(AS,
Body(relevant axioms))

15 Construct Answer(answer literals,
answer templates)

axioms is the following executability condi-
tion related to the second pickup action in
the plan (line 6):

¬occurs(pickup(robot, A), I) ←
holds(obj relation(below,A,B), I)

which is ground in the image or scene un-
der consideration to obtain obj relation(below,
orange block, blue block) as a literal of in-
terest in this example.
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Support axiom

¬occurs(pickup(R,O1), I) ←
holds(relation(below,O1, O2), I).

Target belief

¬occurs(pickup(rob1, purple cube), 3).

Support axiom

¬occurs(pickup(R,O1), I) ←
holds(in hand(R,O2), I).

Extended belief

holds(relation(below, purple cube, blue cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief

holds(relation(above, blue cube, purple cube), 3),
complement(above, below)

Support axiom

holds(relation(above,O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, blue cube, purple cube), 3)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief

holds(relation(below, purple cube, blue cube), 3),
complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, blue cube, purple cube), 2)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above,O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, blue cube, purple cube), 3)

Fig. 4: Example of belief tracing to explain non-selection of a particular action.

(b) If any such identified literal is in the an-
swer set at the time step of interest (0 in
the current example), and is absent (or its
negation is present) in the next time step,
it is taken to be a reason for executing the
action under consideration (line 7).

(c) The identified reason is paired with the sub-
sequent action to construct the answer to
the question (line 8). In the current exam-
ple, the robot’s answer includes “I had to
pick up the orange block, and the orange
block was located below the blue block”.

A similar approach is used to justify any par-
ticular action in any particular plan that has
been computed but not yet executed.

3. Hypothetical actions: Why not action X at
step I? For questions about a particular ac-
tion not included in the plan and not consid-
ered for execution at a particular time step,
the robot proceeds as follows to identify con-
ditions that would have prevented it from con-
sidering the action:
(a) The robot identifies executability conditions

with the hypothetical action in the head,
i.e., conditions that would prevent the ac-
tion from being selected during planning
(line 10 in Algorithm 1).

(b) For each identified executability condition,
the robot examines whether literals in the
body are satisfied in the corresponding an-
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Target belief

holds(relation(below, purple cube, orange cube), 5)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).

Extended belief

holds(relation(above, orange cube, purple cube), 5),
complement(above, below)

Support axiom

holds(relation(above,O1, O2), I) ←
holds(relation(on,O1, O2), I).
complement(above, below).

Extended belief

holds(relation(on, orange cube, purple cube), 5)

Support axiom

holds(relation(S1, O1, O2), I) ←
holds(relation(S2, O2, O1), I),

complement(S2, S1).
complement(above, below).

Extended belief

holds(relation(below, purple cube, orange cube), 5),
complement(below, above)

Support axiom

holds(relation(on,O1, O2), I + 1) ←
occurs(putdown(R,O1, O2), I), O1! = O2.

Grounded action

occurs(putdown(rob1, orange cube, purple cube), 4)

Support axiom

holds(relation(on,O1, O2), I) ←
holds(relation(above,O1, O2), I),
holds(relation(touch,O1, O2), I).

Extended belief

holds(relation(above, orange cube, purple cube), 5)

Fig. 5: Example of belief tracing to explain a particular belief.

swer set (line 11). If so, these literals are
used to construct the answer.

In the plan described above for the goal of
having the orange block on the table in Fig-
ure 1b, action putdown(robot, blue block, ta-
ble) occurred at step 1. For the question “Why
did you not put the blue cube on the tennis
ball at time step 1?”, the following executabil-
ity condition is identified as being relevant:

¬occurs(putdown(robot, A, B), I) ←
has surface(B, irregular)

which implies that an object cannot be placed
on another object with an irregular surface.
The answer set indicates that the tennis ball
has an irregular surface. The robot provides
the answer “Because the tennis ball has an
irregular surface”. Note that to answer to this
question, the robot has to use the approach
described earlier to trace a sequence of related
axioms and beliefs.

4. Belief query: Why belief Y at step I? To ex-
plain any particular belief held at a particular
time step, the robot uses the belief tracing ap-
proach described earlier to trace the sequence
of axioms that were activated. These support-
ing axioms and relevant literals are used to
construct the answer. For instance, if the robot
is asked the question “why do you believe ob-
ject ob1 is unstable at step I?”, it finds the fol-
lowing support axiom:

¬holds(stable(ob1), I) ← holds(small base(ob1), I)

Assume that the robot’s beliefs includes a state-
ment about ob1 having a small base. Search-
ing for why ob1 is believed to have a small base
identifies the following relevant axiom:

holds(small base(ob1), I) ←
holds(relation(below, ob2, ob1), I),

has size(ob2, small), has size(ob1, big)
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As a result, the robot provides the following
answer “Because object ob2 is below object ob1,
ob2 is small, and ob1 is big”.

Robot platform: As stated earlier, in addition to
images of simulated scenes, this paper considers
a physical robot that plans and executes actions
to achieve the desired goals. For the robot exper-
iments, we use a Baxter robot that manipulates
objects on a tabletop; this is the ”Baxter” com-
ponent in Figure 2. The Baxter uses probabilistic
algorithms to process inputs from its cameras,
e.g., to extract information about the presence of
objects, their attributes, and the spatial relations
between objects, from images such as Figure 1b.
The Baxter also uses built-in probabilistic motion
planning algorithms to execute primitive manip-
ulation actions, e.g., to grasp, pick up, and move
objects. Observations obtained with a high prob-
ability (e.g., ≥ 0.9) are elevated to literals associ-
ated with complete certainty in the ASP program.

Recall that non-monotonic logical reasoning
enables the robot to identify and recover from
errors caused by incomplete or incorrect infor-
mation. For instance, consider the situation in
which robot rob1 has been asked to move book
book2 from the library to the office. Since the sen-
sor in the robot’s arm is unreliable in detecting
when an object is in its grip, the value of the flu-
ent in hand(rob1, book2) is unknown after the robot
has executed pickup(rob1, book2) and book2 is actu-
ally in the robot’s hand. This outcome does not
match the expected outcome and would create an
inconsistency. Even if the sensor in the robot’s
arm provides an incorrect observation when the
robot is about to put book2 down in the office, it
would be prevented from doing so by the follow-
ing executability condition:

¬occurs(putdown(robot, object, location), I) ←
not holds(in hand(robot, object), I)

which uses default negation (i.e., not) in the body
to encode a stronger constraint than the use of
classical negation (i.e., ¬); it implies that it is im-
possible for the robot to put a particular object
down in a particular location if it does not know
whether the object is in its hand or not, and not
just when it is sure that it is not in its hand. In
such situations, the robot can perform diagnos-
tics to figure out the cause for the observed in-
consistency by reasoning or executing actions to
gather more information.

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we discuss the results of evalu-
ating our architecture’s ability to reason with in-
complete knowledge, learn previously unknown
axioms, and construct relational descriptions of
decisions and beliefs. Specifically, Section 4.1 de-
scribes the setup for different experiments, Sec-
tion 4.2 describes some execution traces, and Sec-
tion 4.3 discusses quantitative results.

4.1 Experimental Setup

We evaluated the following hypotheses:

H1 : our architecture enables the robot to accu-
rately learn previously unknown axioms;

H2 : reasoning with incrementally learned axioms
improves the quality of plans generated;

H3 : the beliefs tracing approach accurately re-
trieves the supporting axioms and beliefs; and

H4 : exploiting the links between reasoning and
learning improves the accuracy of the explana-
tory descriptions.

These hypotheses and the underlying capabilities
were evaluated considering the four types of ex-
planatory requests and questions described ear-
lier: (i) describing the plan; (ii) justifying the exe-
cution of an action at a given time step; (iii) justi-
fying not choosing an action at a given time step;
and (iv) justifying any given belief. As stated ear-
lier, the same methodology can also be adapted
to address other types of requests and questions.
The quality of a plan was measured in terms of
the ability to compute minimal plans, i.e., plans
with the least number of actions to achieve the
desired goals. The quality of an explanation was
measured in terms of precision and recall of the
literals in the answer provided by our architec-
ture in comparison with the expected (i.e., “ground
truth”) response provided in a semi-supervised
manner based on manual input and automatic
selection of relevant literals.

Experimental trials considered images from the
robot’s camera and simulated images. Real world
images contained 5− 7 objects of different colors,
textures, shapes, and sizes in the RA domain of
Example 1. The objects included cubes, a pig, a
capsicum, a tennis ball, an apple, an orange, and
a pot. These objects were either stacked on each
other or spread on the table—see Figure 1b. A to-
tal of 40 configurations were created, each with
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five different goals for planning and four differ-
ent questions for each plan, resulting in a total of
200 plans and 800 questions. For real scenarios,
the states were measured using the robot’s cam-
eras before and after the execution of its actions.
Since evaluating applicability to a wide range of
objects and scenes is difficult on robots, we also
used a real-time physics engine (Bullet) to create
40 simulated images, each with 7−9 objects (3−5

stacked and the remaining on a flat surface). Ob-
jects included cylinders, spheres, cubes, a duck,
and five household objects from the Yale-CMU-
Berkeley dataset (apple, pitcher, mustard bottle,
mug, and box of crackers). We once again con-
sidered five different goals for planning and four
different questions for each plan, resulting in the
same number of plans (200) and questions (800)
as with the real world data.

To explore the interplay between reasoning and
learning, we focused on the effect of learned knowl-
edge on planning and constructing explanations.
Specifically, we ran experiments with and with-
out providing the robot knowledge of some do-
main constraints. The robot equipped with our
architecture learned and revised the missing con-
straints over time as described in Section 3.1,
whereas the missing constraints were not used
by the baselines for planning and explanation gen-
eration. During planning, we measured the num-
ber of optimal, sub-optimal, and incorrect plans,
and the planning time. An optimal plan is a min-
imal plan that achieves the goal; a sub-optimal
plan requires more than the minimum number
of steps and/or has to assume an unnecessary
exception to default knowledge; and an incorrect
plan fails to achieve the desired goal.

To test hypothesis H1 we removed five axioms
(three executability conditions and two causal laws)
from the agent’s knowledge, and ran the learning
algorithm 20 times. One of these axioms is the
executability condition encoded by Statement 3c,
and the rest by the following statements:

¬occurs(pickup(rob1, Ob1), I) ← (6a)

holds(in hand(rob1, Ob2), I)

¬occurs(putdown(rob1, Ob1, Ob2), I) ← (6b)

¬holds(in hand(rob1, Ob1), I)
holds(in hand(rob1, Ob1), I + 1) ← (6c)

occurs(pickup(rob1, Ob1), I)

¬holds(in hand(rob1, Ob1), I + 1) ← (6d)

occurs(putdown(rob1, Ob1, Ob2), I)

The robot executed actions to learn all the miss-
ing axioms each time. Each run was terminated
if the robot executed a number of actions with-
out detecting any inconsistency, or if a maximum
number of decision trees were constructed. The
overall precision and recall of learning the miss-
ing axioms were then computed. Before we de-
scribe the details of other experiments and dis-
cuss the quantitative results of these experimen-
tal trials, we first describe some execution traces
illustrating our architecture’s operation.

4.2 Execution Trace

The following execution traces illustrate our ar-
chitecture’s ability to construct relational descrip-
tions of its decisions and beliefs during reasoning
and learning.

Execution Example 1 [Plans, actions, and beliefs]
Consider a robot that starts with objects as shown
in Figure 1b. The robot is assigned the goal of
achieving a state in which the red cube is on top
of the orange cube, i.e., holds(relation(on, red cube,
orange cube), I). The following interaction takes
place after the robot has executed a plan and
successfully achieved the assigned goal.

– Human: ”Please describe the plan.”
Baxter: ”I picked up the blue cube. I put the
blue cube on the table. I picked up the or-
ange cube. I put the orange cube on the table.
I picked up the red cube. I put the red cube
on the orange cube.”

– The human may ask the robot to justify a par-
ticular action in the executed plan.
Human: ”Why did you pick up the blue cube
at step 0?”
Baxter: ”Because I had to pick up the red cube,
and it was below the blue cube.”
The answer constructed in response to the ques-
tion is also used to automatically highlight the
relevant image regions that influenced this an-
swer, as illustrated in Figure 6a.

– The human now may ask about particular ac-
tions that were not considered.
Human: ”Why did you not put down the or-
ange cube on the blue cube?”
Baxter: ”Because the blue cube is small.” In
the absence of any reference to a particular
time step, the robot answers the question based
on the single instance (in the executed plan)
of putting the orange cube on another cube or
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(a) Execution Example 1.

(b) Execution Example 3.

(c) Additional example.

Fig. 6: (a) Relation between blue cube and red
cube is important for the explanation in Execu-
tion Example 1; (b) The rubber duck is the focus
of attention in Execution Example 3; and (c) Ex-
ample of a trial (not described in this paper) in
which a tennis ball plays an important role in the
explanation constructed.

surface. The answer is also based on learned
default knowledge that any large object with
a small base, i.e., when placed on a small ob-
ject, is typically unstable.

– The human may also ask the robot to justify
particular beliefs.
Human: ”Why did you believe that the red cube
was below the blue cube in the initial state?”
Baxter: ”Because I observed the red cube be-
low the blue cube in step zero.”

Execution Example 2 [Reasoning and explana-
tion generation]
Continuing with the previous example, the sub-
sequent interactions are as follows:

– Human: ”Put the tennis ball on the blue cube.”

The goal holds(relation(on, ball, blue cube), I) is
encoded in the ASP program for planning. The
default axiom about configurations with small
bases being unstable acts as a constraint that
prevents the robot from placing objects on the
blue cube. At the same time, the robot has to
compute plans to achieve the assigned goal.
This causes an inconsistency that is resolved
by invoking the corresponding CR rule and
planning to place the ball on the blue cube.
The following interaction takes place after this
plan is executed.

– Human: ”Please describe the plan that you ex-
ecuted.”
Robot: ”I picked up the ball. I put the ball on
the blue cube.”

– The human may now explore the robot’s belief
related to the exception to default knowledge
that the robot had to invoke:
Human: ”Why do you believe that the ball is
on the blue cube?”
Robot: ”Because I observed the ball on the
blue cube in step 2.”

Combining reasoning with the approach for con-
structing explanations thus allows the robot to
adapt to unforeseen exceptions.

Execution Example 3 [Learning and explanation]
In some situations, the robot may be unable to
execute the human request because a learned
constraint makes it impossible to achieve the de-
sired object configuration or belief. Even in such
cases, our architecture enables the robot to an-
swer questions about the decisions. For instance,
consider the simulated scene in Figure 6b, with
the following interaction:

– Human: ”Please put the pitcher on the duck.”
This action is not executed because a con-
straint learned earlier implies that any object
configuration with an object on another with
an irregular surface is unstable.

– The robot can justify not executing the action.
Human: ”Why did you not put the pitcher on
the duck?”.
Robot: ”Because the duck has an irregular
surface.”
The image region(s) relevant to the construc-
tion of the robot’s answer to the human query
is (are) automatically highlighted in the corre-
sponding image, as illustrated by Figure 6b for
the current example. This example also illus-
trates how integrating reasoning and learning
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helps justify the decision to not execute a re-
quested action because it will have an unfa-
vorable outcome.

Continuing with the scenario illustrated in the
Figure 6b, the robot is now asked to move the
duck on top of the red cube. A possible plan to
achieve this goal would be: pick up the green
cylinder, put it on the table, pick up the white
cube, put it on the top of the green cylinder, pick
up the duck, and put it down on the top of the red
cube. Considering that each action is executed in
one time step, this plan contains six time steps.
Consider the following interaction after the exe-
cution of such a plan:

– Human: ”Why did you not pick up green cylin-
der at step 5?”
Since this question is about a hypothetical ac-
tion not actually executed by the robot, it ex-
plores the related scenario by creating a proof
tree, as described in Section 3.2, and provides
the following answer:
Robot: ”Because the white cube was on the
green cylinder.”
The human may ask for further details:
Human: ”Why did you believe the white cube
was on the green cylinder?”
To answer this question the robot has to know
the causal relationship between the action put-
down and the spatial relation on—see State-
ment 3(a). Since the robot has learned this
causal law, it constructs the correct answer:
Robot: ”Because I put the white cube on the
green cylinder at time step 4.”

This example illustrates the benefit of exploiting
the interplay between reasoning and learning to
justify particular beliefs.

Execution Example 4 [Belief tracing and expla-
nation generation]
We continue with our previous example:

– Human: ”Why did you not pick up the white
cube at step 0?”
The robot uses belief tracing to construct a
proof tree with the relation ¬ occurs(pickup(rob1,
white cube), 0) as the root. For each axiom in
which this ground literal matches the head,
it checks if its body is supported by the an-
swer set. If yes, ground literals in the body are
used to expand the tree. Based on the axiom
encoded by Statement 3(c), one of the beliefs
identified as being relevant is holds(obj rel(below,
white cube, green cylinder), 0). These steps are

Table 1: Precision and recall of learning previ-
ously unknown axioms using decision tree induc-
tion, as described in Section 3.2

.
Missing Axioms Precision Recall

Strict 69.2% 78.3%
Relaxed 96% 95.1%

repeated until no further supporting axioms
are found. The ground literal holds(relation(on,
white cube, green cylinder), 0) is output as the
leaf of the proof tree, and the robot answers
the query.

– Robot: ”Because I observed the green cylinder
on the white cube at step 0.”

Overall, these examples illustrate the ability to
focus on relevant knowledge, incrementally learn
and revise axioms, trace relevant beliefs, and iden-
tify attributes and actions relevant to a given sce-
nario. They also support hypothesis H3. Since
the same samples are used to learn axioms and
train the deep networks, our approach also helps
understand the behavior of the deep networks.

4.3 Experimental Results

The first set of experiments evaluated H1. We re-
moved five axioms (two causal laws and three ex-
ecutability conditions, as described above) from
the robot’s knowledge, and ran the learning al-
gorithm 20 times. We measured the precision and
recall of learning the missing axioms in each run,
and Table 1 summarizes the results. The row la-
beled ”Strict” provides results when any varia-
tion in the target axiom is considered an error.
In this case, even over-specified axioms, i.e., ax-
ioms that have some additional irrelevant literals,
are considered to be incorrect. The following is an
example axiom in which the second literal in the
body is irrelevant.

¬holds(in hand(R1, O1), I + 1) ←
occurs(putdown(R1, O1, O2), I),

¬holds(in hand(R1, O5), I). (7)

The row labeled ”Relaxed” reports results when
over-specifications are not considered errors; the
high precision and recall support H1.

The second set of experiments was designed to
evaluate hypothesis H2.

1. As stated earlier, 40 initial object configura-
tions were created. The Baxter automatically
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extracted information (e.g., attributes, spatial
relations) from images corresponding to top
and frontal views (i.e., images from cameras
on the left and right grippers), and encoded it
in the ASP program as the initial state.

2. For each initial state, five goals were chosen
randomly. The robot reasoned with the exist-
ing knowledge to create plans for these 200

combinations (40 initial states, five goals).
3. The computed plans were evaluated to deter-

mine the number of optimal, sub-optimal, and
incorrect plans, and planning time.

4. Trials were repeated with and without includ-
ing the learned axioms for reasoning.

Since the number of plans and planning time
vary depending on the initial conditions and the
goal, we conducted paired trials with and with-
out the learned axioms being included in the ASP
program used for reasoning. The initial condi-
tions and goal were identical in each paired trial,
but differed between paired trials. Then, we ex-
pressed the number of plans and the planning
time with the learned axioms included for rea-
soning as a fraction of the corresponding values
obtained by not using the learned axioms for rea-
soning. The average of these fractions over all tri-
als is reported in Table 2. We also computed the
number of optimal, sub-optimal, and incorrect
plans in each trial as a fraction of the total num-
ber of plans; this too was done with and without
using the learned axioms for reasoning, and the
average over all trials is summarized in Table 3.

These results indicate that for images of real
scenes, using the learned axioms for reasoning
significantly reduced the search space, resulting
in a much smaller number of plans and a reduc-
tion in the planning time. The use of the learned
axioms does not seem to make any significant dif-
ference with the simulated scenes. This is under-
standable because simulated images have more
objects with several of them being small objects.
This increases the number of possible plans to
achieve any given goal. In addition, when the robot
used the learned axioms for reasoning, it reduced
the number of sub-optimal plans and eliminated
all incorrect plans. Also, almost every sub-optimal
plan was created when the corresponding goal
could not be achieved without creating an ex-
ception to a default. Without the learned axioms,
a larger fraction of the plans are sub-optimal or
incorrect. Note that the number of sub-optimal
plans is higher for simulated scenes that have
more objects to consider. These results support

Table 2: Number of plans and planning time with
the learned axioms used for reasoning expressed
as a fraction of the values without using the
learned axioms for reasoning.

Ratio (with/without)
Measures Real scenes Simulated scenes

Number of steps 1.15 1.23
Number of plans 0.81 1.08

Planning time 0.96 1.02

Table 3: Number of optimal, sub-optimal, and in-
correct plans expressed as a fraction of the total
number of plans. Reasoning with the learned ax-
ioms improves performance.

Real Scenes Simulated Scenes
Plans Without With Without With

Optimal 0.4 0.9 0.14 0.3
Sub-optimal 0.11 0.1 0.46 0.7

Incorrect 0.49 0 0.4 0

hypothesis H2 but also indicate the need to ex-
plore complex scenes further.

The third set of experiments was designed as fol-
lows to evaluate hypothesis H4:

1. For each of the 200 combinations (40 config-
urations, five goals) from the first set of ex-
periments with real-world data, we considered
knowledge bases with and without the learned
axioms and had the robot compute plans to
achieve the goals.

2. The robot had to describe the plan and justify
the choice of a particular action (chosen ran-
domly) in the plan. Then, one parameter of the
chosen action was changed randomly to pose
a question about why this new action could
not be applied. Finally, a belief related to the
previous two questions had to be justified.

3. The literals present in the answers were com-
pared with the expected literals in the ”ground
truth” response, with the average precision and
recall scores shown in Table 4.

4. Similar experiments were performed with sim-
ulated images; results are in Table 5.

Tables 4, 5 show that when the learned axioms
were used for reasoning, the precision and recall
of relevant literals (for constructing the explana-
tion) were higher than when the learned axioms
were not included. The improvement in perfor-
mance is particularly pronounced when the robot
has to answer questions about actions that it has
not actually executed. The precision and recall
rates were reasonable even when the learned ax-
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Table 4: (Real scenes) Precision and recall of re-
trieving relevant literals for constructing answers
to questions with and without using the learned
axioms for reasoning. Using the learned axioms
significantly improves the ability to provide accu-
rate explanations.

Precision Recall
Query Type Without With Without With

Plan description 78.54% 100% 67.52% 100%
Why X? 76.29% 95.25% 66.75% 95.25%

Why not X? 96.61% 96.55% 64.04% 100%
Belief 96.67% 99.02% 95.6% 100%

Table 5: (Simulated scenes) Precision and recall
of retrieving relevant literals for constructing an-
swers to questions with and without reasoning
with the learned axioms. Learned axioms signifi-
cantly improve the accuracy of the explanations.

Precision Recall
Query Type Without With Without With

Plan description 70.78% 100% 57.98% 100%
Why X? 65.63% 93.0% 57.75% 93.0%

Why not X? 90.53% 96.38% 65.15% 100%
Belief 92.73% 98.44% 90.27% 99.21%

ioms were not included; this is because not all
the learned axioms are needed to accurately an-
swer each question. When the learned axioms
were used for reasoning, errors were very rare
and corresponded to some additional literals be-
ing included in the answer (i.e., over-specified ex-
planations). In addition, when we specifically re-
moved axioms related to the goal under consid-
eration, precision and recall values were much
lower. Furthermore, there was noise in both sens-
ing and actuation, especially in the robot exper-
iments. For instance, recognition of spatial re-
lations, learning of constraints, and manipula-
tion have approximate error rates of 15%, 5−10%,
and 15% respectively. The experimental results
summarized above thus indicate the ability of our
architecture to provide good performance in the
presence of noise in sensing and actuation on
physical robots. These results also indicate that
reasoning and learning inform and guide each
other to provide accurate relational descriptions
of decisions, beliefs, and the outcomes of hypo-
thetical actions. Overall, these results provide ev-
idence in support of hypothesis H4. For addi-
tional examples of images, and experimental re-
sults of classification and explanation generation,
please see our open source repository [34].

5 Conclusions

This paper described an approach inspired by
cognitive systems research for an integrated robot
system to explain its decisions and beliefs, in-
cluding the outcomes of hypothetical actions. The
explanations are constructed on-demand before,
during, or after reasoning or learning, in the form
of descriptions of relations between relevant ob-
jects, actions, and attributes of the domain. We
implemented this approach in an architecture that
combines the complementary strengths of non-
monotonic logical reasoning with incomplete com-
monsense domain knowledge, deep learning, and
inductive learning. In the context of some scene
understanding and planning tasks performed in
simulation and a physical robot, we have demon-
strated that our architecture exploits the inter-
play between knowledge-based reasoning and data-
driven learning. It automatically identifies and rea-
sons with the information relevant to the tasks
at hand to efficiently construct the desired ex-
planations. Also, both the planning and expla-
nation generation performance improves signif-
icantly when the robot incrementally learns and
uses previously unknown axioms for reasoning.

Our architecture opens up multiple avenues
for further research. First, we will extend the abil-
ity to learn other kinds of axioms and consider
actions with delayed rewards. We will do so by
building on the architecture developed by others
in our group by combining non-monotonic logi-
cal reasoning and relational reinforcement learn-
ing [41]. Second, we will explore more complex
domains, tasks, and explanations, reasoning with
logic-based and probabilistic representations of
relevant knowledge at different tightly-coupled res-
olutions for scalability [40]. We are specifically
interested in exploring scenarios in which there
is ambiguity in the questions (e.g., it is unclear
which of two occurrences of the pickup action the
human is referring to), and scenarios in which
the human user wants the explanation at a dif-
ferent level of abstraction, specificity, or verbosity.
We will do so by building on our proof of concept
work on disambiguation [32], and work in our
group on a related theory of explanations [42].
Third, we will use our architecture to better un-
derstand the behavior of deep networks. The key
advantage of our architecture is that it uses rea-
soning to guide learning; unlike “end-to-end” data-
driven methods based on deep networks, our ar-
chitecture uses reasoning to trigger learning only
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when existing knowledge is insufficient to per-
form the desired task(s). The long-term objective
is to develop an architecture that exploits the com-
plementary strengths of knowledge-based reason-
ing and data-driven learning for reliable and effi-
cient operation in complex, dynamic domains.
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