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Abstract

To truly assist humans in complex domains, robots need to ad-
dress the challenges posed by dynamically changing environments.
Reasoning with incomplete domain knowledge and uncertain data
from sensors and actuators leads to incorrect decisions. Incremental
learning and revision of this knowledge can help mitigate these prob-
lems. Deep networks represent the state of the art for many learning
problems in robotics and AI. However, these networks require large
training datasets, make it challenging to learn incrementally and in-
teractively, and their internal representation and reasoning mecha-
nisms are difficult to interpret. The architecture described in this
thesis seeks to address these challenges by drawing inspiration from
research in cognitive systems. It interleaves reasoning and learning,
and combines the complementary strengths of non-monotonic logi-
cal reasoning with incomplete commonsense domain knowledge, deep
learning, and decision-tree induction. As a motivating example, we
consider a robot reasoning about the stability and occlusion of scene
objects in images of particular scenes, and rearranging objects to re-
duce clutter. For any given scene, the architecture enables the robot
to incrementally learn the grounding of spatial relations between ob-
jects in an image of the scene. The robot then attempts to complete
the desired scene understanding task through non-monotonic logical
reasoning with the extracted spatial relations and incomplete com-
monsense domain knowledge. When non-monotonic logical reasoning
cannot complete the task, or provides an incorrect outcome, regions
of interest relevant to the task at hand are automatically identified
and used to train more targeted deep network models. Such regions
and the corresponding labels (e.g., occlusion and stability labels) are
also used to discover previously unknown domain axioms, which are
merged with the existing knowledge and used for subsequent reason-
ing. Furthermore, the architecture enables the robot to explain its
decisions and beliefs in the form of a description comprising relations
between relevant objects, actions, and domain attributes. Experimen-
tal results using simulated images and images from a physical robot
manipulating tabletop objects indicate the ability to: (i) improve the
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reliability of decision making, and reduce the sample complexity and
computational effort involved in training, in comparison with an archi-
tecture based just on deep networks; (ii) reliably acquire and merge
new information about the domain in the form of constraints; and
(iii) provide accurate relational descriptions as explanations in the
presence of noisy sensing and actuation.
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Chapter 1

Introduction

Agents 1 deployed to assist humans in complex environments need to reason
with and incrementally update their understanding of their surroundings.
The data acquired from sensors (e.g., images from a camera) are a good
source of information, but they are often unreliable in complex domains.
Reasoning with such uncertain and incomplete information may lead to in-
correct or sub-optimal decisions. Learning from interactions with humans
and the domain can partially offset these difficulties, enabling robots to use
current observations to update their existing knowledge. Images of scenes
obtained from the robot’s cameras are a rich source of information about
the domain, and understanding the content of these images and scenes is
a key focus of this thesis. State-of-the-art methods for scene understanding
are based on deep network architectures and related algorithms, which have
achieved high accuracy in pattern recognition tasks and in many applica-
tions in robotics and AI. However, these networks require a large number of
labeled training samples and substantial computational resources, which are
not readily available in many practical domains. Also, it is difficult to use
prior knowledge about the domain, understand the working of the networks,
or to reuse a trained network in related domains. In contrast, there are al-
gorithms that support efficient learning from a small number of samples
acquired interactively and incrementally. Also, research in non-monotonic
logical reasoning allows agents to efficiently reason with incomplete com-
monsense domain knowledge, elegantly revising previously held conclusions.

1We use the terms "Agent" and "Robot" interchangeably

16
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This thesis explores the complementary strengths of these methods in the
context of assistive robots performing visual scene understanding tasks.

Visual scene understanding tasks range from segmenting and recognizing
individual objects in an image of a scene to exploring the relations and inter-
actions between two or more objects in images of a scene. The latter might
include the relative spatial locations of objects, and physical interactions
between the objects. These relations and interactions provide information
that is essential to answer basic questions about the scene such as: is a
particular arrangement of objects stable? Which action can be successfully
executed in any given scenario? What will happen if a particular action is
performed? This thesis considers the estimation of spatial relations between
objects (in images of scenes) as a key capability for robots performing scene
understanding tasks. Spatial relations are often described using prepositional
words such as right, below, front, and in that refer to particular objects
in terms of other objects or events. To estimate spatial relations between
objects, the robot will need a vocabulary of such prepositional words and
a grounding of these words, e.g., a mapping of these words to 3D regions
or distances from reference points or objects. Existing groundings usually
rely on hand-encoded, fixed rules or on an offline, separate training phase
to learn these groundings. However, the grounding has to be revised over
time in dynamic domains to account for factors such as sensing errors and
changes in viewpoint. Since humans may not have the time or expertise to
provide comprehensive feedback, it would be useful for the robot to acquire
and revise this grounding over time. One contribution of this thesis is an
approach that initially estimates the spatial relations between objects using
a fixed hand-coded qualitative grounding, and then incrementally learns a
histogram-based quantitative grounding of these relations.

Spatial relations and other interactions between objects identified in an
image of a scene represent valuable information for the comprehension of
the domain. Despite that, deep networks designed for scene understanding
tasks do not explicitly consider this information. Instead, they try to capture
the desired aspect of a scene directly from its pixels, in a bottom-up man-
ner. The generalization ability of such networks is largely dependent on the
availability of a sufficiently large set of training data, which are not readily
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available in many practical domains, and these approaches are computa-
tionally expensive. Also, it is challenging to learn incrementally and inter-
actively, to reason with incomplete information, or to interpret the internal
representation and mechanisms they learn. Research in cognitive systems
could be used to address many of these limitations. For instance, there is
considerable research in non-monotonic logical reasoning with commonsense
knowledge. These approaches allow an agent to elegantly revise previously
held conclusions over time. There are also algorithms that support efficient
learning from data obtained incrementally and interactively. These devel-
opments have not been fully explored for scene understanding so far. This
research explores the complementary strengths of relational representation,
non-monotonic reasoning with incomplete commonsense knowledge, data-
driven learning, and incremental induction of knowledge to mitigate these
limitations.

Besides improving the understanding of their surroundings, a deep un-
derstanding of scenes may aid agents in providing comprehensive explana-
tions for their decisions and beliefs, which is a key requirement for effective
collaboration between robots and humans. Despite the effort employed in
recent years on explainable reasoning and learning, providing transparency
in decision-making systems continues to be an open problem. This is espe-
cially challenging in the case of systems that include modern data-driven
algorithms, e.g., those based on deep network models. In contrast, studies
in cognitive systems indicate that relational representations and reasoning
with commonsense domain knowledge help provide explainable descriptions
for agent’s decisions, beliefs and experiences. We explore the expressiveness
of the distributed relational representation of knowledge to provide these ex-
planations. Since our architecture learns such knowledge from the same data
used for constructing deep networks, the relational descriptions provided as
explanations may also be considered as descriptions of the observed behavior
of these networks, providing insights about their internal operation.
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1.1 Objectives and Contributions of Thesis

In summary, state of the art methods for visual scene understanding are
based on deep (neural) networks and related algorithms, which require many
labeled training examples and substantial computational resources. These
requirements are difficult to satisfy in many practical domains. Also, the de-
cisions of these networks are rather difficult to understand. To address these
challenges, this thesis seeks to combine the complementary strengths of a
relational representation, symbolic reasoning based on commonsense knowl-
edge, and learning from experience. More specifically, the objective of this
thesis is to address the following fundamental scientific question: how best
to combine commonsense symbolic reasoning and data-driven deep learning
such that they inform and guide each other to achieve reliable and efficient
visual scene understanding in robotics? Towards answering this question and
achieving the corresponding objective, this thesis describes an architecture
for robots that makes the following contributions:

1. The development of an incrementally and interactively learned model
based on 1D and 2D histograms that grounds (i.e., assigns meaning
in the physical world to) prepositional words representing the metric
spatial relations between scene objects. An approach is also provided
to combine this learned grounding with a fixed grounding of qualitative
spatial relations between scene objects.

2. The development of an approach that combines the complementary
strengths of deep learning and non-monotonic logical reasoning with
incomplete commonsense domain knowledge, resulting in reliable and
computationally efficient visual scene understanding. Reasoning is also
used to guide the incremental learning of previously unknown state
constraints that are used for subsequent reasoning.

3. The development of an approach that enables a robot to provide on-
demand explanations of its decisions, beliefs, and the outcomes of hy-
pothetical events, in the form of descriptions comprising the relations
between relevant objects, actions, and attributes of the domain. This
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approach is also able to automatically identify these objects, actions
and attributes.

The architecture’s capabilities are evaluated in the context of planning tasks
and scene understanding tasks in simulated scenes or on a physical robot
manipulating tabletop objects. Specifically, the robot (a) computes and ex-
ecutes actions to arrange objects in desired configurations; and (b) esti-
mates occlusion of objects and stability of object configurations in images
of scenes. Experimental results indicate the ability to (i) significantly im-
prove the accuracy and computational efficiency of estimation and planning
in comparison with an architecture that only uses deep networks; (ii) incre-
mentally reduce uncertainty about the scene by learning the grounding of
spatial relations and previously unknown state constraints; and (iii) reliably
and efficiently construct relational descriptions of decisions and beliefs by
automatically identifying and reasoning with the relevant knowledge despite
noisy sensing and actuation.

1.2 Thesis outline

The thesis is divided into six chapters. The current chapter provides an
overview of research problem of interest, and summarizes the research ob-
jective and contributions of this thesis.

Chapter 2 reviews the related work on scene understanding, knowledge
representation and reasoning, and explanation generation, highlighting the
limitations and gaps in the existing research that this thesis seeks to address.

Chapter 3 describes the first contribution of this thesis, a basic archi-
tecture comprising non-monotonic logical inference and an approach that
enables the robot to incrementally learn the grounding of prepositional
words representing the spatial relations between pairs of objects (e.g., front,
above, close) in simulated and real world scenes. This grounding combines a
manually-encoded qualitative spatial representation of the relations between
objects, and an incrementally learned metric spatial representation based on
histograms. The grounding is used to estimate spatial relations and used this
knowledge for subsequent reasoning.
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Chapter 4 presents the second contribution, which combines the comple-
mentary strengths of non-monotonic logical reasoning and statistical learn-
ing for visual scene understanding tasks. Specifically, the explicit knowledge
interactively learned and represented as declarative rules guides the effi-
cient construction of convolutional neural networks for scenes understand-
ing. Also, previously unknown constraints are automatically learned using
decision tree induction and merged with the existing knowledge.

Chapter 5 describes the third contribution of this thesis, which enables
the robot to provide on-demand explanations of its decisions and beliefs.
These explanations are provided in the form of relational descriptions be-
tween relevant domain objects, actions and attributes that are identified
automatically. The chapter also highlights the importance of the knowledge
acquired over time in an agent’s planning.

The connections between the elements described in Chapters 3 to 5 are
illustrated in Figure 1.1. The relational representation and non-monotonic
logical reasoning component plays the central role in the proposed architec-
ture. Although this module is not represented inside any particular chapter
box in the figure, it is described in each chapter. The relations between
modules are described in details in the relevant chapters.

Chapter 6 draws the conclusion, presents the lessons learned from this
research, and proposes some possible directions for future works.

Visual features
extraction

Relational Representation
and Non-monotonic
Logical Reasoning

Chapter 3

Grounding of Spatial Relations

Decision tree
induction

Image
classification

Chapter 4

Learning

Natural language
processing

Knowledge
base analyzer

Robot Baxter

Chapter 5

Explanations

Figure 1.1: Outline of the thesis



Chapter 2

Literature Review

In this research, we attempted to address some of the limitations of modern
data-driven algorithms by drawing inspiration from cognitive systems. We
explored visual scene understanding tasks (Section 2.1) as a particular case
to test the proposed architecture. In this context, the study of spatial rela-
tions between objects has played a relevant role for additional understanding
of a scene (Section 2.2). Likewise, works exploring the physical mechan-
ics governing interaction between objects in a scene has provided further
insights into an image (Sections 2.1 and 2.3). These approaches present a
number of limitations, such as the inability to deal with incomplete informa-
tion. We explore the use of knowledge representation and reasoning (KRR)
techniques (Section 2.4) to mitigate these limitations. Finally, we discuss
how the relational representation of knowledge aids in providing explana-
tions machines can provide to increase trust (Section 2.5), and summarize
the challenges identified in the literature (Section 2.6).

2.1 Visual Scene Understanding

Computer vision focuses on building computational models to analyze and
understand images and videos. A video contains a sequence of images, which
are composed of pixels. A subset of pixels grouped together may represent
one component of a scene, e.g., objects, animals, or backgrounds. The seg-
mentation of an image in its components and the detection of an object of
interest have been widely studied. Some approaches use features descriptors,
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such as scale-invariant feature transform (SIFT) (Lowe 1999), speeded up
robust features (SURF) (Bay et al. 2008) and histogram objects gradient
(HOG), to detect objects in a scene (Dalal and Triggs 2005; Felzenszwalb
et al. 2010; Jégou and Zisserman 2014; Shi, Avrithis, and Jégou 2015; J. Li
and Yimin Zhang 2013). Such descriptors consider the similarities between
blocks of pixels, such as color and texture, to determine if they belong to
the same object or not. Other works add the depth from 3D point clouds
to segment RGB-D images (Potapova et al. 2014; Kootstra, Bergström, and
Kragic 2010). More recent approaches apply deep learning to detect and lo-
calize objects in a scene (Sermanet et al. 2013; Redmon et al. 2016; Y. Chen
et al. 2020).

The segmented image can be analyzed in terms of its components. The
identification or classification of these components plays an important role
in computer vision. Even when individual classes cannot be identified, the
ability to perform accurate broad classification can be useful. For instance,
the classification of an object as toxic indicates that it must be kept far from
children even if the specific type of toxic material has not been recognized.
Approaches to accomplish these tasks are also currently based on Convolu-
tional Neural Network (CNN) (Wang et al. 2016; V. K. Singh et al. 2020),
some of which have reached results close to the human performance.

A CNN is a type of deep network designed to process images. CNNs have
many parameters based on size, number of layers, and activation functions,
but the basic building blocks are convolutional, pooling, and fully connected
layers. The convolutional and pooling layers are used in the initial or inter-
mediate stages of the network, whereas the fully connected layer is typically
one of the final layers. In a convolutional layer, a filter (or kernel) is con-
volved with the original input or the output of the previous layer. One or
more convolutional layers are usually followed by one pooling layer. Com-
mon pooling strategies such as max-pooling and average-pooling are used
to reduce the dimensions of the input data, limit the number of parameters,
and control overfitting. The fully connected layers are equivalent to feed-
forward neural networks in which all neurons between adjacent layers are
connected; they often provide the target outputs. In the context of images,
convolutional layers extract useful attributes to model the mapping from
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inputs to outputs, e.g., the initial layers may extract lines and arcs, whereas
the subsequent layers may compose complex shapes such as squares and
circles.

Deep learning, in particular CNN, has been successfully applied to com-
puter vision problems in recent years. It is enabling machines to perform
some vision tasks even better than humans. For example, He et al. (2015)
developed a CNN that surpassed human performance on the Imagenet 2012
dataset classification task.

Encouraged by the remarkable success CNN has achieved in computer
vision, recent works have applied it in scene evaluation involving high-level
physical reasoning. As an example, some studies have employed deep neu-
ral networks to predict the stability of a tower of blocks (W. Li, Fritz, and
Leonardis 2016; Lerer, Gross, and Fergus 2016). Due to the lack of labeled
data to train CNN in such tasks, they often rely on Intuitive Physical Engine
(IPE) to create simulated images along with correspondent ground truth.
As another example, Wu et al. (2015) trained a deep convolutional network
to predict the movement of an object sliding down an inclined surface and
possibly colliding with another object. Other works employ CNN to predict
the movement of objects caused by the application of external forces (Mot-
taghi et al. 2016; Fragkiadaki et al. 2015), or the trajectory of an object
after bouncing against a surface (Purushwalkam et al. 2019).

Despite the recent success of CNN and other deep network architectures
in computer vision tasks, these approaches have some important limitations:
(a) they usually require a large amount of training data; (b) they struggle to
generalize for samples different from the training set; (c) they are computa-
tionally expensive; (d) it is rather difficult to use them for incremental and
interactive learning; and (e) their internal representations and the mecha-
nisms they learn are difficult to interpret.

In order to mitigate some of the above listed limitations, researchers have
used prior (domain) knowledge during training (Sünderhauf et al. 2018). For
instance, a Recurrent Neural Network (RNN) architecture augmented by
arithmetic and logical operations has been used to answer questions using
information from semi-structured tables (Neelakantan, Le, and Sutskever
2015). This work used textual information instead of the more informative
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visual data, and did not support reasoning with commonsense knowledge.
Another example is the use of prior knowledge to encode state constraints
in the CNN loss function; this reduces the effort in labeling training images,
but it requires the constraints to be encoded manually as loss functions
for each task (Stewart and Ermon 2017). Similarly, the model proposed by
Yang, Ishay, and Lee (2020) uses the outcome of deep networks as input
for non-monotonic reasoning, and back-propagates the inferences made by
the reasoner to update the parameters of these networks. This approach
also reduces the amount of labeled training samples, but requires the prior
knowledge to be manually encoded. The structure of deep networks has also
been used to constrain learning, e.g., by using relational frameworks for
visual question answering (VQA) that consider pairs of objects and related
questions to learn the relations between objects (Santoro et al. 2017; Cadene
et al. 2019). This approach, however, only makes limited use of the available
knowledge, and does not revise the constraints over time. Lutter, Ritter, and
Peters (2019) impose Lagrangian mechanics as prior knowledge to a deep
network. This reduced the training effort and improved generalization for
controlling a robot’s trajectories, but they explored sensor data, whereas we
are interested in the more informative images as input.

The understanding of a scene can be improved by exploring the informa-
tion related to the interaction among its components. The spatial relation
between objects as well as their properties may reveal which actions are
afforded in different scenarios. For instance, imagining an apple surrounded
by a number of other fruits. In this situation, the relationship between apple
and other fruits indicates that it could not be grabbed without the previ-
ous execution of another action. Researchers have applied spatial relations in
different tasks, such as scenes description (Belz et al. 2015), objects localiza-
tion (Wong, Kaelbling, and Lozano-Perez 2013), and recognition of actions
in videos (Ziaeetabar et al. 2017). In contrast, approaches applying CNNs or
simulators have provided physical scenes explanation, such as the stability
of a tower of blocks, without explicit use of spatial relations. The former
presents a number of limitations as described above. Simulators, known as
Intuitive Physical Engine (IPE), also have important limitations (detailed in
Section 2.3). We expect the employment of spatial relations between objects
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can aid in mitigating these limitations.

2.2 Spatial Relations

Our first step towards a deeper scene understanding is grounding spatial
relations between objects, which are often described by prepositions. The
concept of words such as below, on, in, and behind, are largely used by hu-
mans in different contexts: describing the location of objects; playing with
blocks; or planning the actions required for grasping a mug occluded by
a pile of bowls. Studies in cognitive neuroscience reflect the importance
of spatial relations for humans. For instance, Laeng, Chabris, and S. M.
Kosslyn (2004) mapped the left-hemisphere parietal lobe of the brain as re-
sponsible for producing representations describing such relations. According
to the recognition-by-component model for object recognition, the human
brain may describe objects by their parts and the spatial relation among
them (Cave and S. M. Kosslyn 1993; Laeng, Shah, and S. Kosslyn 1999). In
the AI front, the international workshop on Spatial Language Understand-
ing (SpLU-2018/2019) has focused on how to express spatial relationships
between objects in natural language (Dobnik, Ghanimifard, and Kelleher
2018; Ulinski, Coyne, and Hirschberg 2019). However, it is difficult to equip
agents with a comprehensive knowledge of these prepositions.

Approaches found in the related literature for grounding and interpret-
ing the spatial relations between objects are broadly based on the use of
manually encoded rules, or the use of training or learning algorithms. When
rules are manually encoded, the construction of a spatial vocabulary is of-
ten based on Qualitative Spatial Representation (QSR) (Moratz, Nebel, and
Freksa 2003; Ye and Hua 2013; Zampogiannis et al. 2015; Elliott and Vries
2015). These approaches may not provide accurate estimates of the spa-
tial relations, as they often approximate objects as points or establish rigid
boundaries between spatial relations. Moreover, the spatial relations are en-
coded in advance, whereas the interpretations of these relations are likely to
change over time in robotics domains.

As described by J. Chen et al. (2015), qualitative formalisms for
representing spatial relations traditionally consider topological or posi-
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tional aspects. Topological approaches, such as Region Connection Cal-
culus (RCC) (Anthony G Cohn et al. 1997; Renz 2002), are well suited
for Geographic Information Systems (GIS), being also applied in robotic
tasks (Landsiedel et al. 2017) such as navigation. In contrast, since posi-
tional (or projective) relations are more accurate (Clementini 2019), they
can better describe the spatial configuration of objects in indoor environ-
ments. For this reason, we focus on positional representations of spatial
relations in this thesis.

Approaches that seek to train or learn the spatial relations or their
grounding do so based on Metric Spatial Representation (MSR), i.e., a set of
measures such as angles and distances between objects. Algorithms based on
MSR have been used in different applications in recent years. For example,
an approach based on MSR has been developed to predict the success of
a robot’s action in a previously unseen scenario (Fichtl et al. 2015), while
another approach enabled an agent to learn relations between objects and
generalize them to new objects (Mees et al. 2017). Other work has focused
on developing a system capable of choosing appropriate prepositions to de-
scribe an image (Belz et al. 2015). Gatsoulis et al. (2016) designed a software
to extract QSR relations from videos. In the context of human-robot interac-
tion, a system has been developed for executing a set of actions on objects
and answering queries about spatial positions (Guadarrama et al. 2013),
QSR and MSR have been compared for scene understanding (Thippur et al.
2015), and MSR and a kd-tree have been used to dynamically infer spa-
tial relations between objects (Ziaeetabar et al. 2017). However, most of
these approaches learn the representation of spatial relations offline or in a
separate training phase. In contrast, we propose an approach that initially
applies a hand-designed generic grounding, and incrementally and interac-
tively learns a histogram-based specialized grounding from new experiences
and feedback.

Different types of neural (or deep) network architectures have also been
used in recent years to infer objects and their spatial relationships from
images (Jund et al. 2018) and natural language expressions for tasks such
as manipulation (Paul et al. 2018), navigation (Pronobis and Rao 2017),
and human-robot interaction (Shridhar and Hsu 2017). These approaches
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require a large number of training examples of images and natural language
expressions, learn the grounding offline, and are computationally expen-
sive. The work proposed in this thesis seek to combine the complementary
strengths of different groundings of the spatial relations (QSR and MSR)
and to incrementally learn these groundings.

One way of addressing the unavailability of benchmark dataset with la-
beled spatial relations between objects is to use a Physical Engine (Bullet
physics library 1) to generate simulated scenes with labeled objects and re-
lations. We next look at approaches that use such simulated data.

2.3 Intuitive Physical Engines

During early childhood, humans start to construct an internal model of intu-
itive physics (Baillargeon 2002). Such a model could be seen as a simplified
version of Newtonian mechanics, which allows us to quickly draw conclusions
regarding the dynamics of objects. For instance, humans playing football do
not need to solve parabolic trajectory equations. Instead, they would use
a simplified physical model to estimate the movements of a ball which has
been kicked.

Inspired by the human approach, researchers have applied game simu-
lators to provide machines with further comprehension of a scene, e.g., the
stability of a tower of blocks. Also called Intuitive Physical Engine (IPE),
they present an incomplete, oversimplified, probabilistic and approximate
version of the interactions governing the physical world. Although the sim-
plifications allow their use in real time applications, simulators are still com-
putationally expensive, especially for complex domains.

As an example, Battaglia, Hamrick, and Tenenbaum (2013) applied an
IPE to predict if a tower of blocks would fall, and in which direction. Their
results indicate a high correlation between the proposed model and human
answers, suggesting that it was able to capture human physical intuition.
Bates et al. (2015) used probabilistic simulation to predict liquid dynamics,
and Sanborn, Mansinghka, and Griffiths (2013) studied the dynamics of

1http://bulletphysics.org
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colliding objects. Other works use IPE only for generating training data for
deep learning approaches, e.g., W. Li, Fritz, and Leonardis (2016), Lerer,
Gross, and Fergus (2016), and Wu et al. (2015).

The use of IPE in robots operating in complex dynamic domains presents
some limitations: each cycle of simulation is computationally expensive; the
ability to reason with incomplete knowledge is limited; and it is difficulty to
learn from previous experiences.

Current studies in understanding high-level physical interactions from
scenes often use CNN or IPE. A number of studies indicate the advantages
and drawbacks of both approaches. For example, R. Zhang et al. (2016)
compared the two methods in the stability prediction of a tower of blocks.
They concluded that although both achieve high accuracy, only the IPE can
generalize to unseen scenarios. In contrast, E. Davis and Marcus (2016) listed
a number of limitations of simulators in the context of AI tasks involving
high-level physical reasoning, such as the requirement of reasonably high-
quality domain theory and the availability of complete information. Other
works mention additional IPE limitations, e.g., that the role of the agent’s
previous experiences is unclear (Ullman et al. 2014), and the effects of the
strong priors encoded in the simulators (Lerer, Gross, and Fergus 2016).

Some of the limitations faced by CNN and IPE to deal with high-level
physics understanding of a scene may be mitigated by applying a suitable
Knowledge Representation and Reasoning (KRR) paradigm. To do so, these
paradigms should be able to represent existing knowledge, as well as incre-
mentally update such knowledge by exploring the information freely avail-
able in the domain. These requirements improve reasoning and simplify fur-
ther learning. Some relevant KRR techniques are discussed below.

2.4 Knowledge Representation and Reasoning

Knowledge Representation and Reasoning (KRR) is devoted to represent-
ing information about the world and reasoning with these representations
for different tasks. There is a large history of research in AI that has led
to the development of different paradigms for KRR. For instance, classi-
cal first-order logic has been extensively used in different applications, but
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it does not support key commonsense reasoning capabilities. There is also
considerable research in logic-based knowledge induction and its use in learn-
ing from experience. Furthermore, statistical learning algorithms and deep
architectures have also been used to represent and reason with knowledge.

2.4.1 First-Order Logic

First-Order Logic (FOL) is a symbolic representation that combines logical
and nonlogical constructs using the same rules as Boolean algebra.

The logical constructs include punctuation, connectives (”¬” = classical
negation; ”∧” = logical disjunction "and"; ”∨” = logical conjunction "or";
”∃” = "there exist ..."; ”∀” = "For all ..."; ” = ” is the logical equality;
” =⇒ ” = implication; ” ⇐⇒ ” = biconditional), and variables. The
nonlogical symbols include functions and predicates, which are described
in terms of their arguments. Logical symbols have fixed meaning in the
language, whereas the meaning of nonlogical symbols depends on the appli-
cation.

A Term in FOL is recursively defined as any variable or any function
f(t1, ..., tn) in which each ti argument is also a term; formulas are defined as
predicates of terms, and its combination using connectives. The knowledge
in FOL is represented by sentences, which correspond to formulas without
free variables. Each such sentence is either true or false, which makes it dif-
ficult to reason with incomplete knowledge. Languages have been developed
based on FOL for reasoning about dynamic domains, e.g., Planning Domain
Definition Language (PDDL) (McDermott et al. 1998), which has been used
in robotic applications (Cashmore et al. 2015; Kootbally et al. 2015; Krueger
et al. 2019).

Classical FOL is unable to reduce the amount of inferred consequences
as a result of the addition of new information; it is thus not suitable for
reasoning with commonsense knowledge.

2.4.2 Non-monotonic Logical Reasoning

There is a rich history of research in nonmonotonic logical reasoning; early
work include a logical system called circumscription (McCarthy 1980), and
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an extension of classical logic that allows defeasible rules (Raymond Reiter
1980). Here, we focus on Answer Set Prolog (ASP), a declarative language
used in the proposed architecture. ASP can represent recursive definitions,
defaults, causal relations, special forms of self-reference, and language con-
structs that occur frequently in non-mathematical domains and which are
difficult to express in classical logic formalisms. ASP is based on the stable
model (answer set) semantics of logic programs (Gelfond and Kahl 2014).

Many theories of action and change have been developed, producing a
number of action languages, and used in a variety of applications (W. Chen,
Swift, and Warren 1995; Tu et al. 2011). Action languages are often used in
robotics and AI to describe the effects of actions in the states of a system
over time. They are formal models of parts of natural language used for
specifying state transition systems. In this thesis we use the action language
AL to describe the domain and to translate this domain representation to
an ASP program for non-monotonic logical inference.

Action Language AL

The action language AL used in this thesis has sorted signature comprising
statics, fluents and actions. Statics are domain attributes whose values do
not change over time, whereas fluents can be changed. Inertial fluents can
be directly modified by actions and obey the laws of inertia, whereas defined
fluents do not. A domain literal is a domain attribute p or its negation ¬p.
AL allows three types of statements:

l if p0, . . . , pm State Constraints

a causes lin if p0, . . . , pm Causal Laws

impossible a0, . . . , ak if p0, . . . , pm Executability Conditions

where a is an action, l is a literal, lin is an inertial literal, and p0, . . . , pm are
domain literals.

We show throughout this thesis some examples of system description in
AL and the correspondent translation to ASP program. Please see Gelfond
and Kahl (2014) for more details and examples of these kinds of translation.
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Answer Set Prolog

In ASP-based representation of knowledge, the status unknown is added,
besides the traditional true and false, meaning that the agent does not have
to believe anything that it is not forced to believe. Also, unlike classical
first-order logic, ASP supports non-monotonic logical reasoning, i.e., adding
a statement can reduce the set of inferred consequences, aiding in the re-
covery from errors due to the incomplete knowledge. ASP can also draw
conclusions due to lack of evidence to the contrary, using concepts such
as default negation (negation by failure) and epistemic disjunction. For in-
stance, unlike “¬a”, which implies that “a is believed to be false”, “not a” only
implies that “a is not believed to be true”; and “a or ¬a” is not tautological.

The answer sets obtained by solving an ASP program represent the be-
liefs of an agent associated with the program. It is possible to reduce infer-
ence, planning and diagnostics to compute answer sets. Modern ASP solvers
support efficient reasoning in large knowledge bases, and architectures based
on ASP have been used in different applications (Erdem and Patoglu 2012)
by an international community, and also gaining industry attention (Erdem,
Gelfond, and Leone 2016; Falkner et al. 2018; Gençay, Schüller, and Erdem
2019).

Non-monotonic logical reasoning enable agents to elegantly recover from
errors caused by dealing with incomplete knowledge. This is a key require-
ment for agents deployed in complex environments. However, reasoning with
incomplete information may lead to sub-optimal or incorrect decisions. This
problem can be partially offset by using the information freely available in
the domain for incrementally inducting previously unknown knowledge.

2.4.3 Logic-based Knowledge Induction

One of the objectives of this research is to support learning and revision of
knowledge from experience. To this end, we employ logic-based knowledge
induction, which deals with the learning and revision of programs created
from incomplete specifications.

The induction of rules is well established in AI research. For instance,
Gil (1994) focused on augmenting the knowledge base encoded in first-order
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logic representation by considering the unexpected observations as the po-
tential outcomes of the actions executed. Such approaches have the known
limitations of FOL, e.g., inability to support non-monotonic logical reason-
ing. Other approaches based on non-monotonic logic support the revision of
theory of action and change (Balduccini 2007; Certicky 2012) but they are
computationally expensive and do not support interactive learning. One re-
cent promising approach is that of Sridharan and Meadows (2017), in which
any unexpected and unexplained observation triggers interactive learning to
discover new axioms and revise existing ones. In addition, Law, Russo, and
Broda (2018) have explored the generality aspect of inducted ASP-based
representations.

Interactive task learning is a general framework for acquiring domain
knowledge using labeled examples or reinforcement signals obtained from
domain observations, demonstrations, or human instructions (Chai et al.
2018; John E. Laird et al. 2017; Kirk and John E Laird 2019). It can be
viewed as building on early work on searching through the space of hy-
potheses and observations (Simon and Lea 1974), but such methods have
rarely been explored for scene understanding. In this research, we are inter-
ested in learning in the context of deep neural architectures applied to visual
scene understanding tasks. We present below some approaches that explore
knowledge representation and reasoning combined with deep architecture
models.

2.4.4 Knowledge Representation and Reasoning with

Deep learning

Deep Neural Networks (DNN) have also been used to represent and reason
with knowledge extracted directly from data. Sukhbaatar, Weston, Fergus,
et al. (2015) proposed the Memory Networks, which apply Recurrent Neu-
ral Network (RNN) to deal with the question answering (QA) task based
on previously informed description of facts. Similarly, Graves, Wayne, and
Danihelka (2014) have employed Long Short-Term Memory (LSTM) — an
improvement on RNNs to deal with the "vanishing and exploding gradient"
problem — to learn simple algorithms applied to a data stream. Both ap-



Knowledge Representation and Reasoning 34

proaches address the problem of learning from a data sequence, but they
still suffer from the known limitations of DNN, e.g., high sample and com-
putational complexity.

The difficulty in learning even basic arithmetic and logic operations
makes it challenging to use deep networks for knowledge representation and
reasoning. For instance, Joulin and Mikolov (2015) demonstrate that RNNs
fail in adding two binary numbers. To overcome this challenge, Neelakantan,
Le, and Sutskever (2015) created the Neural Programmer : an RNN aug-
mented by a set of arithmetic and logic operations able to answer questions
using table information, and a program inducted from training examples.
This work is close in spirit to our proposed research since the knowledge
extracted from experience induces a program for future reasoning. However,
their program is implicitly represented by RNN parameters, whilst we pro-
pose to use a logic-based formalism. Also, they deal with textual information,
in which RNNs have been successfully applied, whereas we are concerned
with more complex visual information.

Studies in neural-symbolic learning and reasoning have highlighted the
advantages and limitations of combining statistical learning with logical rea-
soning (Besold et al. 2017; A. d. Garcez et al. 2019). According to these
studies, a purely symbolic approach would lack the parallelism and kinds of
adaptive learning usually seen in machine learning techniques (Valiant 2008),
whereas machine learning algorithms lack the expressiveness required for in-
terpretation and validation of their internal representations (Smith and S.
Kosslyn 2006). These methods typically rely on FOL (Guillame-Bert, Broda,
and A. d. Garcez 2010; Evans and Grefenstette 2018), which suffers from
the already described limitations, or simplify the neural architectures corre-
sponding to specific symbolic representations (A. S. d. Garcez, Lamb, and
Gabbay 2007; Penning et al. 2011). They also rarely support the automatic
detection and correction of errors in the learned knowledge.

The widespread use of reasoning agents to assist humans depends on
their ability to explain decisions. The implicit representation of knowledge
learned by deep architectures is a significant challenge for such comprehen-
sion. Modern DNNs base their decisions on millions of parameters, which
makes it difficult to understand why a particular choice was made. For this
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reason, studies have been conducted to improve the explainability of deep
networks. For instance, Hendricks et al. (2016) developed an approach to
classify different species of birds and associate the image description with
class definition. It searches for parts of the image that significantly influence
its classification performance, e.g., it determines the more prominent char-
acteristics of each specie. This approach may shed some light on the network
choices in the specific task of classifying birds, but it is difficult to be ap-
plied to other domains or tasks. We seek to design a model that provides
explanatory descriptions for the agent’s decision and beliefs, which can be
transferred across multiple domains and tasks. Such descriptions are in the
form of relations between objects, actions, and domain attributes, and are
obtained from a relational description of knowledge.

2.5 Explainable Reasoning and Learning

The interaction between humans and robots is highly dependent on trust.
Agents are more likely to be trusted if they can explain their reasoning
systems. Besides improving trust in robots, explanations are valuable in
aiding debugging for the system designer (Southwick 1991).

Early work on explanation generation was based on research in cogni-
tion, psychology, and linguistics (Friedman 1974; Grice 1975). For instance,
Friedman (1974) presented a theory of explanation in terms of generality,
objectivity, and connectivity, and Grice (1975) characterized cooperative
response as being valid, informative, relevant, and unambiguous. Funda-
mental computational models were also developed for generation of explana-
tions (Kleer, Mackworth, and R. Reiter 1992; Raymond Reiter 1987). Subse-
quent studies of human subjects have indicated the importance of coherence,
simplicity, and generality (Read and Marcus-Newhall 1993), soundness and
completeness (Kulesza et al. 2013), and other attributes of good explana-
tions (Grice 1975). These findings have inspired computational models for
explanations (Cawsey 1993; Moore and Paris 1993).

With the increasing use of AI and machine learning methods in differ-
ent domains, there is much interest in academia, industry, and the mili-
tary in understanding the decisions made within these methods as a means
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to establish accountability. Research indicates that this understanding aids
in making the use of machines more acceptable to humans (Bonnie 1996;
Lewandowsky, Mundy, and Tan 2000), and in enabling humans to trust the
operation of agent-based reasoning or learning systems (Lewis 1998; Sycara
et al. 1998).

Recent work in explainable AI and explainable planning can be broadly
categorized into two groups (T. Miller 2019). Methods in one group modify
or map learned models or reasoning systems to make their decisions more in-
terpretable. Examples include explaining the predictions of any learned clas-
sifier by learning equivalent models that are interpretable (Koh and Liang
2017; Ribeiro, S. Singh, and Guestrin 2016), or biasing a planning system
towards making decisions that are easier for humans to understand (Yu
Zhang et al. 2017). Methods in the other group provide descriptive expla-
nations of the decisions of reasoning systems in an attempt to make the de-
cisions more transparent. Examples include methods that explain goal/plan
changes (Dannenhauer et al. 2018), alternative plans (Borgo, Cashmore, and
Magazzeni 2018), or causal and temporal relations (Seegebarth et al. 2012).
Much of this research is agnostic to how an explanation is structured and
presented (Borgo, Cashmore, and Magazzeni 2018; Chakraborti et al. 2017),
or assumes complete domain knowledge (Chakraborti et al. 2017). Since the
state of the art techniques for many pattern recognition and decision making
problems in robotics, computer vision, and AI are based on deep (neural)
networks and related algorithms, there has also been a lot of work recently on
interpreting the representation and reasoning mechanisms of these networks
and algorithms (Hendricks et al. 2016; Samek, Wiegand, and Müller 2017;
Liu et al. 2019). However, understanding the representation and reasoning
behavior of deep networks continues to be an open problem.

In this thesis, we consider robots as integrated systems that represent,
reason with, and learn from incomplete domain knowledge and noisy ob-
servations. We are interested in the ability to answer explanatory questions
about the decisions, and the underlying beliefs and choices. We are also
interested in answering questions about hypothetical or counterfactual sit-
uations (T. Miller 2019); humans often ask about events that did not occur
or options that were not pursued to infer causal relations (David and Tom



Challenges in the literature 37

2000). Such answers are based on the distributed relational representation
of knowledge, and are presented in the form of relations between objects,
actions and domain attributes. Recent surveys state that these important
capabilities are not supported by existing systems (Anjomshoae et al. 2019;
T. Miller 2019).

2.6 Challenges in the literature

Based on the literature review presented in this chapter, the specific gaps
we attempt to address are:

1. The spatial relations between objects play a key role in scene under-
standing tasks, but existing approaches for grounding spatial relations
either rely on human input or require a separate offline training phase.
These groundings thus can not be updated based on new experiences.

2. Existing approaches for scene understanding that use domain knowl-
edge predominantly require such knowledge to be provided a priori.
The requirement limits the ability to learn from new experience. These
approaches are computationally expensive, require many training ex-
amples, and do not support the key desired capability for incremental
and interactive learning.

3. The complex internal representation and mechanisms deep architec-
tures learn make it difficult to understand their decisions; this conse-
quently limits the trust humans place in such networks.

In the next chapters we try to address the gaps identified above. Specif-
ically, each chapter will tackle one of the gaps presented above as follows:

• Chapter 3 presents an incrementally and interactively learned model
that grounds prepositional words representing the metric spatial rela-
tions between scene objects. This learned grounding is combined with
a manually encoded grounding to address the gap 1.
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• Chapter 4 combines the complementary strengths of non-monotonic
logical reasoning with incomplete commonsense domain knowledge,
data-driven models, inductive learning to bridge the gap 2.

• Chapter 5 explores the relational representation of knowledge as a key
for enabling agents to provide on-demand explanations of its decisions,
beliefs, and the outcomes of hypothetical events for mitigating the gap
3.



Chapter 3

Learning the Ground of Spatial
Relations between Objects

As discussed in Section 2.2, the understanding of scenes requires the cor-
rect interpretation of the interactions among objects, including their spatial
relations. As a result, robots have to reason with incomplete knowledge of
domain objects and their relations in order to assist humans in complex
domains. This chapter focuses on reasoning with spatial relations between
objects, and on incrementally acquiring the grounding (i.e., meaning in the
physical world) of words that describe these relations.

3.1 Introduction

The components of the architecture described in this chapter seek to provide
robots with the grounding of spatial relations between scene objects, and
have the following characteristics:

• Spatial relations between objects initially based on a generic grounding
of prepositions in the 3D regions around objects are included in ASP,
representing the incomplete domain knowledge.

• Both non-monotonic logical inference with the existing knowledge and
human input (when available) are used to infer spatial relations be-
tween point clouds in new scenes, incrementally learning a specialized,
histogram-based grounding of prepositions.

39
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• Human input (when available) is also used to incrementally compute
the relative accuracy of spatial relations inferred by the generic and
specialized groundings, using the more reliable grounding for subse-
quent scenes.

(a) (b)

Figure 3.1: (a) Illustrative image of scene with objects; and (b) segmented
version with 3D point clouds of objects in different colors.

The input comprises 3D point clouds of objects in a scene, e.g., Fig-
ure 3.1b, and a generic grounding of prepositions for seven position-based
and three distance-based relations. Learning corresponds to the incremen-
tal acquisition and revision of histograms as specialized grounding of these
relations. We do not explicitly represent the uncertainty in processing vi-
sual input; any conclusion drawn with high probability is elevated to a logic
statement with complete certainty. The designed architecture enables robots
to (a) infer spatial relations using a generic, manually-encoded grounding;
(b) incrementally acquire a specialized grounding of spatial relations from a
small number of examples; and (c) determine the relative confidence in each
grounding and use the more reliable grounding for subsequent inference.
These capabilities are evaluated on a benchmark dataset of tabletop objects
and simulated scenes of furniture. This chapter is based on a conference
paper published by Mota and Sridharan (2018).
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3.2 Architecture description

The architecture focuses on seven position-based prepositions (in, above, be-
low, front, behind, right, left) and three distance-based prepositions (touch-
ing, not-touching, far). These prepositions are used to encode spatial rela-
tions between specific scene objects as logic statements in Answer Set Prolog
(ASP). The Qualitative Spatial Representation (QSR) module provides an
initial, manually-encoded, generic grounding of spatial relations, which is
used to extract spatial relations between pairs of 3D point clouds of each in-
put scene. Human feedback, when available, is also used to label the spatial
relations between any pair of point clouds in a scene. Both the QSR-based
output and human feedback are transmitted by the control node to the Met-
ric Spatial Representation (MSR) module, which incrementally acquires and
revises the MSR-based grounding of prepositions in the form of histograms.
The control node computes the relative trust in the QSR and MSR ground-
ings based on the human feedback, which is assumed to be accurate. The
more reliable grounding is used to extract logic statements representing spa-
tial relations between scene objects in subsequent images; these are added
to the ASP program. The key components of the architecture are depicted
in Figure 3.2 and described below.

QSR Control Node MSR

RGB-D image

ASP program

Update

Feedback

Prepositions

Figure 3.2: Proposed architecture.

The architecture includes other modules, e.g., the 3D point cloud of
a scene is sub-sampled and the Euclidean cluster extraction segmentation
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algorithm (Rusu 2010)1 is used to segment the point cloud into objects.

3.2.1 Domain Representation in ASP

As explained in Section 2.4.2, the domain is initially described in the action
language AL, and then translated to an ASP program for non-monotonic
logical inference.

The domain description in AL has a sorted signature Σ and axioms. Σ

includes sorts such as object, location, color, shape, and step (for temporal
reasoning); statics, i.e., domain attributes that do not change over time; and
fluents, i.e., domain attributes whose values can be changed. In our case, the
spatial relations are fluents such as:

obj_relation(relation, object, object). (3.1)

which are described in terms of their arguments’ sorts. The argument
relation represents a spatial relation, such as in, above, touching, left. We
choose the second object of each such relation as the reference object. The
domain axioms encode some rules to infer relations based on the spatial
relations whose grounding is acquired:

obj_relation(above, A,B) if obj_relation(below,B,A).

obj_relation(under, A,B) if obj_relation(touch,A,B),

obj_relation(below,A,B). (3.2)

where the two axioms describe state constraints, and the second axiom
says that any object A that is below object B and touching it is considered
to be under it.

To reason with incomplete domain knowledge we construct the ASP
program (Π), in which the statements of 3.2 are translated to:

1Available at www.pointclouds.org for download.
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holds(obj_relation(above, A,B), I)←holds(obj_relation(below,B,A), I).

holds(obj_relation(under, A,B), I)←holds(obj_relation(touch,A,B), I),

holds(obj_relation(below,A,B), I).

(3.3)

where the predicate holds(fluent, step) implies that a particular fluent
holds true at a particular timestep. When action effects are to be modeled,
the signature and axioms include actions with their preconditions and ef-
fects; a history of observations and executed actions is also considered. The
ground literals in an answer set obtained by solving Π represent beliefs of
an agent associated with Π. All reasoning (e.g., planning and inference) can
be reduced to computing answer sets of Π (Gelfond and Kahl 2014). We use
the SPARC system (Balai, Gelfond, and Yuanlin Zhang 2013) to compute
answer set(s) of ASP programs.

3.2.2 Qualitative Spatial Representation

We implement a QSR model similar to that proposed by Zampogiannis
et al. (2015). For any given 3D point cloud representing the reference ob-
ject, a bounding box containing it (i.e., convex cuboid around the object)
is created—see Figure 3.3a. The space around this object is divided into
six non-overlapping pyramids representing the relations left, right, front, be-
hind, above and below—see Figure 3.3b. In our implementation, the spatial
relation of an object with respect to a reference object is determined by the
non-overlapping pyramid around the reference that has most of the point
cloud of the object. Also, any object with most of its point cloud located
inside the bounding box of the reference object is said to be in the reference
object. This definition of in can lead to errors, especially in domains with
non-convex objects, e.g., a book that is actually under a large table may
be classified (incorrectly) as being in the table because the bounding box of
the table envelopes most of the point cloud of the book.

For ease of representation, our approach differs from Zampogiannis et al.
(2015) in the definition of the distance-related prepositions: touching, not-
touching and far. For a pair of point cloud clusters, the 10% closest distances
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(a) (b)

Figure 3.3: (a) Bounding box for point cloud of a particular object; and (b)
Pyramids delimiting space around the bounding box.

between pairs of points drawn from the point clouds are computed, and the
following criteria determine if the two objects are touching, not touching, or
distinctly separated (i.e., far) from each other:

touching ⇒ distance(10%) ≤ 0.01 (3.4)

not-touching ⇒ 0.01 < distance(10%) < 1.0

far ⇒ distance(10%) ≥ 1.0

where distances are measured in meters, i.e., two objects are touching if the
10% closest distances are less than or equal to 0.01m. Although the generic,
manually-encoded grounding based on the QSR model does not change over
time, it is initially used by the robot to identify spatial relations between
objects. This is based on the reasonable assumption that the robot has an
initial idea of its camera’s pose with respect to the scene. Next, we describe
a specialized grounding of spatial relations that can be acquired over time.

3.2.3 Metric Spatial Representation

An MSR-based grounding of the spatial relations is also used to identify
spatial relations between objects. Unlike the QSR-based grounding, the MSR
model supports incremental updates from observations and human feedback.

Assume that the MSR module receives a pair of point cloud clusters
corresponding to two objects, and the prepositions of the spatial relations
between the objects, e.g., from QSR or humans. The MSR module grounds
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each preposition using histograms, also referred to as “visual words”, which
are created by considering the point cloud data in a spherical coordinate
system—each point is represented by its distance to a reference point and
two angles (i) θ ∈ [0◦, 180◦]; and (ii) ϕ ∈ [−180◦, 180◦]. On a robot, the coor-
dinate frame for grounding is defined with respect to the robot’s coordinate
frame, its camera, and/or reference objects; information in one coordinate
frame can be transformed to other coordinate frames. Also, sensor input
processing introduces noise, but the non-monotonic logical reasoning and
incremental learning modules of our architecture enable elegant recovery
from errors due to noise.

Each of the seven position-based prepositions (in, left, right, front, be-
hind, above, below) are grounded as 2D histograms of angles θ and ϕ, whereas
each of the three distance-based prepositions (touching, not-touching, far)
are grounded using 1D histograms of the 10% closest distances between
points in pairs of objects. Figures 3.4a and 3.4b show a distance and po-
sition histogram respectively. All histograms are normalized to ensure that
large objects with many points do not have any undue influence on the
grounding of relations.

(a) (b)

Figure 3.4: (a) Example of 1D histogram grounding “not-touching”; (b) Ex-
ample of 2D position histogram grounding “left”.

Any learned MSR-based grounding(s) are used on new scenes. For any
given pair of point cloud clusters in a new scene, the corresponding 2D
and 1D histograms (i.e., visual words) are constructed. The existing vi-
sual words that are most similar to the extracted visual words are used to
assign the distance-based and position-based spatial relations between the



Architecture description 46

corresponding scene objects, e.g., “object1 is above object2 and touching
it”. These inferred spatial relations are automatically translated to state-
ments added to the ASP program, e.g., obj_relation(above, obj1, obj2) and
obj_relation(touch, obj1, obj2).

The similarity between visual words is computed using the intersection
measure for 1D (distance) histograms. For the 2D (position) histograms, we
use the χ2 measure, e.g., for any two histograms H and G:

Dχ2(H,G) =
∑
i

|hi − gi|2
2(hi + gi)

(3.5)

where hi and gi are bins in H and G respectively; smaller values denote
greater similarity. We use this measure for 2D histograms because the bound-
aries between the position-based relations are more difficult to define than
those between distance-based relations. For implementation reasons, the in-
verse of Dχ2(H,G) was used in the experiments.

Once the spatial relations between a pair of point cloud clusters have
been determined in a new scene, this information updates the learned vi-
sual words using a standard normalized histogram merging approach, which
means that the MSR-based grounding is continuously updated. For merg-
ing, the weight of the current scene for updating the existing visual word
depends on whether the label is provided by humans or QSR-based ground-
ing, according to the following equation:

Hk+1 ← Hk +
β√
k

(HCurrent −Hk)

β =
√
k
2
for human input

β = 1 for QSR grounding
(3.6)

where k corresponds to the number of examples that have updated a
specific histogram so far, Hk is the existing histogram after k updates, and
HCurrent is the histogram constructed from the current image. In the cases
where the label is provided by humans, β cancels out the decremental effect
of k, resulting in the updated histogram (Hk+1) being the result of the
average of existing and current histograms:

Hk+1 ←
(Hk +HCurrent)

2
(3.7)
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Equation 3.7 reflects the importance of human feedback in any stage,
and enables our system to recover from errors and adapt to different en-
vironments, as discussed in the results section. If human feedback is not
available, the influence of a new input on the existing visual word depends
on the number of scenes that has updated it so far. This effect is caused by
the term

√
k in the denominator of equation 3.6.

3.2.4 Combined Model and Other Relations

In addition to ASP-based inference using QSR and MSR groundings, spa-
tial relations between point cloud clusters can also be determined by hu-
man feedback. While the QSR-based grounding remains unchanged and the
MSR-based grounding changes as new scenes are processed, human input is
assumed to be accurate, i.e., each human participant providing feedback is
expected to be able to interpret spatial relations correctly. Since the QSR-
based and MSR-based groundings may disagree on the relation between
some pairs of objects, the control node initially assigns high (low) confi-
dence to the QSR-based (MSR-based) grounding. The relative confidence
in each grounding is then updated based on the number of times the out-
put from the grounding matches human input. The more reliable grounding
is used for subsequent scenes. Incorrect human annotation can thus affect
the confidence in a grounding only if the number of such annotations is
comparable to the number of correct annotations.

Object shapes and sizes may also influence spatial relations depending
on the viewpoint. However, since the MSR-based grounding is based on his-
tograms of relative distances and angles, it can be used to infer spatial rela-
tions over a range of viewpoints. Also, the architecture has two mechanisms
to limit and recover from errors. If the QSR-based grounding is applicable,
e.g., viewpoint has not changed substantially, the system can use it to ob-
tain an initial estimate of spatial relations and incrementally acquire the
MSR-based grounding. If the QSR-based grounding is not applicable, it is
still possible to acquire an MSR-based grounding from human input and
use it for subsequent inference. Furthermore, the MSR-based grounding is
obtained from a small number of images and is transferable.
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There are some important caveats related to the proposed approach.
First, the QSR-based grounding is assumed to be reasonably accurate ini-
tially; if this assumption does not hold and no human input is available,
an inaccurate MSR-based grounding may be acquired, resulting in incorrect
estimates of spatial relations. A case of incorrectly learned visual words, and
how this can be fixed by using human feedback, is presented in the results
section. Second, human feedback improves the specialized grounding (MSR)
and overall accuracy, but it is not essential for estimating spatial relations.
Third, the encoded prepositions (with learned groundings) are translated to
logic statements (i.e., observation literals) in an ASP program. These ob-
servations and the commonsense knowledge encoded in the ASP program
limit possible relations between scene objects and help infer composite rela-
tions (e.g., on, close to, next to, etc). As showed in Table 3.1, many of these
prepositions can be expressed as a combination of the seven position-based
and three distance-based primitive relations considered in our architecture.
For instance, the spatial relation on may be defined by the axiom:

holds(obj_relation(on,O1, O2), I) ← holds(obj_relation(above,O1, O2), I),

holds(obj_relation(touch,O1, O2), I).

(3.8)

which states that if object O1 is above O2 and touching it, then O1 is on
O2. Finally, we currently assume that each pair of objects is related through
one position-based and one distance-based spatial relation, but not all the
prepositions are (or need to be) mutually exclusive.

3.3 Experimental Setup

Recall that the architecture presented in this chapter aims to overcome the
first gap identified in Section 2.6, which is the difficulty in updating the
existing groundings from interaction. To demonstrate the incremental and
interactive learning ability of the proposed architecture, the experiments
were designed to test two hypotheses: H1, in which the proposed approach
enables more effective use of human feedback; andH2, in which the combina-
tion of the manually-encoded QSR grounding and the automatically-learned
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√ √

left
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right
√ √ √ √ √

above
√ √ √ √ √ √ √

below
√ √ √ √ √

front
√ √ √ √ √

behind
√ √ √ √ √

touching
√ √ √ √ √ √ √ √ √

not-touching
√ √ √

far

Table 3.1: Map of commonly used spatial prepositions – extracted by Belz et
al. (2015) from VOC’08 1K – in primitives. VOC’08 1K contains descriptions
of 1,000 images of Pascal VOC 2008 Shared Task Competition collected by
Rashtchian et al. (2010), using Mechanical Turk.

MSR grounding performs better than each grounding used individually. The
experiments seek to test the role of interactive learning in the efficient use
of human feedback and the accuracy in grounding spatial relations between
scene objects.

For experimental evaluation, we used the Table Object Scene Database
(TOSD)2 and simulated scenes. TOSD contains 111 scenes for training and
131 scenes for testing. Many of these scenes include complex object configu-
rations (Figure 3.1a), while some scenes have only two objects (Figure 3.6a).
Since TOSD includes segmentation labels but not spatial relation labels, we
manually labeled 200 pairs of objects from the testing set. In addition, simu-
lation scenes were generated with a real-time physics engine (Bullet physics
library) by manually encoding the grounding of spatial relations. Different
subsets of 21 household objects from the Yale-CMU-Berkeley dataset (Calli
et al. 2015), along with a table and a shelf, were used to create 1400 simu-
lated scenes (200 for each preposition). An additional 25 labeled scenes for
each preposition (175 total) were used for training.

2https://repo.acin.tuwien.ac.at/tmp/permanent/TOSD.zip
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The performance measure was the accuracy of the labels assigned to
spatial relations. We also qualitatively evaluated the ability to identify and
correct errors. Below, all claims are statistically significant at the 95% sig-
nificance level.

3.4 Results and discussion

The first set of experiments was designed as follows, with the results sum-
marized in Table 3.2:

1. Pairs of objects extracted from the TOSD training set were randomly
divided into 10 subsets.

2. Seven pairs of objects from each subset were used to train the MSR-
based grounding with human feedback. Each pair represents one of
the position-based spatial relations (in, left, right, front, behind, above,
below).

3. Seven pairs of objects from each subset labeled with human feedback,
and 200 pairs with relations labeled using the QSR-based grounding,
were used to train the MSR-based grounding.

4. The control node chose between QSR-based grounding and the MSR-
based grounding trained using the QSR-based grounding and human
feedback.

The three schemes (#2,#3,#4 above) were evaluated on 200 object pairs in
test scenes of varying complexity. Table 3.2 indicates that the MSR-based
grounding acquired using the QSR-based grounding (Scheme #3) makes
better use of human feedback than that acquired not using the QSR-based
grounding (Scheme #2), which supports H1. Note that the same amount
of human feedback is provided with Schemes #2 and #3. The difference is
that the latter scheme bootstraps off the generic knowledge encoded in the
QSR-based grounding. These results indicate that using prior knowledge, an
appropriate representation for knowledge, experience, and human feedback,
improves performance. Also, the control node-based combination of the two
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Accuracy of labels over test set
of 200 object pairs

Training
sets

MSR
(feed-
back)

MSR
(QSR +
feedback)

Combined
model

Sets 1 65% 77% 84%

Sets 2 82% 80% 94%

Sets 3 68% 80% 85%

Sets 4 66% 83% 87%

Sets 5 65% 74% 82%

Sets 6 68% 77% 86%

Sets 7 64% 87% 90%

Sets 8 64% 84% 91%

Sets 9 62% 82% 87%

Sets 10 52% 72% 81%

Mean 65% 79% 87%

Std Dev 7.2% 4.6% 8.3%

Table 3.2: Comparison of (a) MSR grounding trained with just human feed-
back; (b) MSR grounding trained with 200 pairs labeled by the QSR ground-
ing and seven pairs labeled with human feedback; and (c) the combination
of MSR grounding, trained as in (b), and QSR-based grounding with the
choice made by the control node.

groundings provides better accuracy than just using the MSR-based ground-
ing.

The second set of experiments was designed as follows, with the results
summarized in Table 3.3:

1. Pairs of objects extracted from the training set of the TOSD were
randomly divided into five subsets.

2. An MSR-based grounding was acquired using QSR-based labels for
four out of the five subsets (≈ 2000 pairs) in each run.
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Accuracy of labels over test
set of 200 object pairs

Training sets QSR
only

MSR
trained
by QSR

Combined
model

Sets 1+2+3+4 70% 62% 96%

Sets 1+2+3+5 70% 62% 96%

Sets 1+2+4+5 70% 60% 95%

Sets 1+3+4+5 70% 60% 96%

Sets 2+3+4+5 70% 60% 96%

Mean 70% 61% 96%

Std Dev 0 1.1% 0.5%

Table 3.3: Comparison of (a) QSR-based grounding; (b) MSR-based ground-
ing from ≈ 2000 pairs labeled with QSR-based grounding (no human feed-
back); and (c) using the control node to combine MSR-based grounding, as
trained in (b), and QSR-based grounding.

3. The use of the control node to choose between the MSR-based ground-
ing (trained as in Scheme #2 above) and the QSR-based grounding
was also considered.

The two different schemes (#2,#3) were evaluated on a set of 200 object
pairs in scenes of varying complexity. Ground truth, once again, was ob-
tained manually. Table 3.3 indicates that the control-node based combina-
tion of the groundings estimates spatial relations more accurately than using
either grounding individually, which supports hypothesis H2.

Next, the MSR-based groundings were acquired from different amounts
of human feedback (with no QSR)—one, 15, and 25 training sets, each set
with seven object pairs from simulated scenes. These groundings were tested
on 1400 object pairs from simulated (test) scenes of varying complexity.
Examples of simulated scenes are showed in Figure 3.5. Table 3.4 shows
that spatial relations are estimated accurately even when a small number of
labeled samples are used to acquire the grounding.
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(a)

(b)

Figure 3.5: Examples of simulated scenes used in experiments.

Model QSR
MSR after
1 training
set

MSR after
15 training
sets

MSR after
25 training
sets

Accuracy of labels
over test set of 1400
object pairs

61.9% 96.1% 98.5% 98.6%

Table 3.4: QSR-based grounding compared with MSR-based groundings ob-
tained using different amounts of human feedback.

The next experiments were similar to those for Table 3.2, but with a
larger number of simulated scenes. The MSR-based grounding acquired using
just human input had accuracy of 95.9%, whereas the grounding obtained
using human input and the QSR-based grounding had accuracy of 97.2%.
These results are similar to those with the TOSD showed in Table 3.2.

Further analysis indicates that most errors from the control node-based
combination of the groundings correspond to truly ambiguous spatial rela-
tions, e.g., a scene in which object A can be considered to be to the “left” or
“behind” object B. Multiple labels are acceptable in such cases, and we just
need to let the inference system allow multiple answers. In other cases, e.g.,
when each grounding is used individually, errors are due to the grounding
being (or becoming) inaccurate—even in these cases, results do not depend
on the order in which the training and test data are provided.
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(a) (b)

Figure 3.6: (a) Image from TOSD dataset; (b) Histogram generated from
the image using the smaller box as the reference object.

(a) (b)

Figure 3.7: Histograms representing learned MSR groundings for: (a) above;
and (b) behind.

We also evaluated the ability to identify and correct errors. For the
TOSD image in Figure 3.6a, the MSR-based grounding incorrectly stated
that the larger box was above the smaller one. We compared the learned
visual words for this label and correct label (“behind”)—Figures 3.7a and
3.7b respectively—with the histogram extracted from the object pair in the
image—Figure 3.6b. The inverse of the χ2 measure between the learned and
observed visual words was 0.325 for above and 0.319 for behind. Even the
QSR-based grounding detected 349 points in the above region and 23 in the
behind region. The error was thus due to the incorrect input provided by
the QSR-based grounding to the MSR-based grounding. We then visually
compared the 2D histograms between the two objects (Figure 3.6b) with the
MSR-based grounding for above and behind (Figure 3.7). The extracted his-
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(a) (b)

Figure 3.8: (a) Image with one object above another; and (b) revised 2D
histogram for above.

togram was more similar to the grounding for above—under standard view-
points and orientations, θ > 90◦ for above, but many points corresponded to
θ ≈ 60◦ in this case. To correct this error, we processed an image that actu-
ally contained an instance of the above relation, Figure 3.8a. The θ values in
the revised histogram for above were mostly ∈ [90◦, 120◦]—Figure 3.8b. The
MSR-based grounding then provided the correct spatial relation between
the objects in Figure 3.6a—the inverse of the χ2 similarity scores were 0.319

for behind and 0.088 for above after the correction.

3.5 Conclusion

The correct interpretation of spatial relations between objects is a basic skill
that robots should master to assist humans in complex domains. The archi-
tecture described in this chapter uses Answer Set Prolog (ASP) to represent
and reason with incomplete domain knowledge, which includes spatial rela-
tions. The relations provided by a generic qualitative grounding (QSR) and
human input (if available) are used to incrementally acquire a more spe-
cialized quantitative grounding of spatial relations (MSR). Also, a relative
measure of confidence in the two groundings is computed to enable the use
of the more reliable grounding for inferring spatial relations in the subse-
quent scenes. Experimental evaluation demonstrates the ability to reliably
estimate spatial relations in a benchmark dataset of complex tabletop im-
ages and simulated scenes of furniture, even with a small number of labeled
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training samples. In the next chapter, we include modules for scene under-
standing that use these spatial relations and explore the interplay between
reasoning and learning on the context of simulated scenes understanding.



Chapter 4

Commonsense Reasoning and
Knowledge Acquisition to Guide
Deep Learning

In Chapter 3, we presented an approach to incrementally and interactively
learn the grounding of spatial relations between scene objects. Here, these
groundings are used as input to an architecture that embeds non-monotonic
logical reasoning with incomplete commonsense domain knowledge, and in-
cremental inductive learning of constraints governing domain states, to guide
the learning of deep network architectures. This architecture is tested in the
tasks of estimating the partial occlusion of objects and the stability of ob-
ject configurations, based on limited training examples, in the context of
an assistive robot clearing away toys that children have spread in different
rooms, as showed in Figure 4.1.

4.1 Introduction

In this chapter we describe how the architecture does the following:

• Attempts to perform the estimation tasks based on non-monotonic
logical reasoning with incomplete commonsense domain knowledge and
the extracted geometric relationships between scene objects.

57
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Figure 4.1: A simulated scene with toys. The robot has to reason about
occlusion and stability of structures to reduce clutter.

• Automatically identifies relevant regions of the images not processed
by non-monotonic logical reasoning; these regions guide the training
of deep networks and are processed by the learned networks during
testing.

• Uses the labeled examples, i.e., images with occlusion labels for ob-
jects and stability labels for object structures, to train decision trees
for incremental learning of previously unknown constraints governing
domain states.

This chapter is based on the conference paper published in Mota and
Sridharan (2019a).

4.2 Proposed Architecture

The proposed architecture takes RGB-D images of scenes with different ob-
ject configurations as input. The key components are showed in Figure 4.2.
During training, the inputs include the occlusion labels of objects and the
stability labels of object configurations in the images. The components pre-
sented in Chapter 3 are used to ground the spatial relations between objects.
An object is considered to be occluded if the view of any minimal fraction of
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Inputs:

RGB-D images

Labels
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Grounding
of spatial
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Attention
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Answer set

New axioms
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Figure 4.2: Architecture combines the complementary strengths of non-
monotonic logical reasoning, deep learning, and decision tree induction, in
order to perform the scene understanding tasks reliably and efficiently.

its frontal face is hidden by another object, and a structure is unstable if any
object in the structure is unstable. A decision tree induction algorithm maps
object attributes and spatial relations to the target classes. Branches in the
tree that have sufficient support among the training examples are used to
construct axioms representing state constraints. The learned constraints are
encoded in an ASP program along with the commonsense domain knowl-
edge and the computed spatial relations. If ASP-based reasoning provides
the desired labels, no further analysis of this image is performed. Otherwise,
an attention mechanism uses domain knowledge to identify the image’s Re-
gions of Interest (ROI), with each ROI containing one or more objects. A
CNN is trained to map these ROIs to the desired labels. During testing, any
input RGB-D image is assigned the desired class labels either by ASP-based
reasoning or by processing the image ROIs using the learned CNN (i.e., de-
cision trees are not used). We describe these components using the following
illustrative domain.

Example 1. [Robot Assistant (RA)] A simulated robot analyzes images of
scenes containing toys in different configurations. The goal is to: (i) estimate
occlusion of objects and stability of object structures; and (ii) rearrange ob-
ject structures so as to minimize clutter. Domain knowledge includes object
attributes such as size (small, medium, large), surface (flat, irregular) and
shape (cube, cylinder, duck), and the relation between objects (above, be-
low, front, behind, right, left, close). The robot can move objects to achieve
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the desired goals. Knowledge also includes axioms governing domain dynam-
ics, but some axioms may be unknown, e.g.:

• Placing an object on top of an object with an irregular surface causes
instability;

• Removing all objects in front of an object causes this object to be not
occluded.

Inducted decision trees can provide the unknown axioms to be automat-
ically encoded in the ASP program.

4.2.1 Knowledge Representation with ASP

As in Chapter 3, the domain is initially described in action language AL,
and then translated to an ASP program for non-monotonic logical infer-
ence. The domain description in AL comprises a system description D
and a history H. D comprises a sorted signature Σ and axioms. In ad-
dition to the domain described in Chapter 3, Σ also includes the sorts
robot, size, and surface. Statics include some object attributes such as
obj_size(object, size) and obj_surface(obj, surface). Again, the fluents
obj_relation(relation, object, object) model relations between objects in
terms of their arguments’ sorts, e.g., obj_relation(above, A,B) implies ob-
ject A is above object B—the last argument in these relations is the reference
object. Fluents also describe other aspects of the domain, e.g.:

in_hand(robot, object), stable(object) (4.1)

which describe if a robot has an object in hand, and whether a particular
object is stable. Actions in the RA domain include pickup(robot, object) and
putdown(robot, object). A state of the domain is then a collection of ground
literals, i.e., statics, fluents, actions and relations with values assigned to
their arguments.

The axioms of D are defined in terms of the signature and govern do-
main dynamics. These axioms include a distributed representation of the
constraints related to domain actions, i.e., causal laws and executability
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conditions that define the preconditions and effects of actions, and state
constraints. The axioms of the RA domain include statements such as:

pickup(robot, object) causes in_hand(robot, object) (4.2a)

obj_relation(below,B,A) if obj_relation(above, A,B) (4.2b)

obj_relation(behind,B,A) if obj_relation(infront, A,B) (4.2c)

impossible pickup(robot, object) if in_hand(robot, object) (4.2d)

where Statement 4.2(a) is a causal law which states that if the robot exe-
cutes the pickup action on an object, it ends up holding the object. State-
ments 4.2(b-c) describe state constraints regarding some spatial relations
between two objects. Statement 4.2(d) describes an executability condition
which indicates that a robot cannot pick up an object that it is already
holding.

A history H of a dynamic domain typically includes records
of observations of fluents received at a particular time step, i.e.,
obs(fluent, boolean, step) and actions actually executed by the robot at a
particular time step, i.e., hpd(action, step).

To reason with the incomplete domain knowledge, we construct the CR-
Prolog/ASP program Π(D,H) from the system description D in AL and the
history H—please see our code repository (Mota and Sridharan 2019b). The
program Π includes the signature and axioms of D, inertia axioms, reality
checks, closed world assumptions for defined fluents and actions, and obser-
vations, actions, and defaults from H. Planning, diagnostics and inference
tasks can then be reduced to computing answer sets of Π, which represent
the beliefs of the robot associated with Π (Gelfond and Kahl 2014). We use
SPARC (Balai, Gelfond, and Yuanlin Zhang 2013) to compute answer set(s)
of ASP programs.

For instance, Statements 4.2(a-d) of AL are translated to:
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holds(in_hand(robot, object), I + 1) ← (4.3a)

occurs(pickup(robot, object), I).

holds(obj_relation(above, A,B), I) ← (4.3b)

holds(obj_relation(below,B,A), I).

holds(obj_relation(infront, A,B), I) ← (4.3c)

holds(obj_relation(behind,B,A), I).

¬occurs(pickup(robot, object), I) ← (4.3d)

holds(in_hand(robot, object), I).

where the predicate holds(fluent, step) implies that a particular fluent
holds true, and the predicate occurs(action, step) implies that a particular
action is to be executed at a particular timestep.

The spatial relations extracted from RGB-D images are converted to
statements in ASP program. The program also includes axioms that encode
default knowledge, e.g., statements such as “larger objects on smaller objects
are typically unstable”.

¬holds(stable(A), I)← holds(obj_relation(above, A,B), I),

size(A, large), size(B, small), (4.4)

not holds(stable(A), I)

Since the robot only believes that which it is forced to believe, the inabil-
ity to compute an answer set indicates an unresolved inconsistency due to
incomplete knowledge or an error in the encoding that needs to be probed
further. In the context of the scene understanding tasks, the robot would
either be unable to make a decision regarding occlusion and stability, or pro-
vide an incorrect estimate (when ground truth is available). This situation
is addressed in our architecture using the attention mechanism and deep
networks as described below.

4.2.2 Attention Mechanism

The attention mechanism module is used when ASP-based reasoning cannot
assign labels to objects in the input image, or the assigned label is incorrect
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(during the training phase). In each such image, this module identifies and
directs attention to regions of interest (ROIs) that contain information rele-
vant to the task at hand. To do so, it first identifies each axiom in the ASP
program whose head corresponds to a relation/fluent of interest. The rela-
tions in the body of each selected axiom are used to identify ROIs that are
considered for further processing; the remaining image regions are unlikely
to provide relevant information and are not analyzed further.

(a) (b)

Figure 4.3: Examples of ROIs highlighted by the attention mechanism for:
(a) balance of structure; (b) occlusion of objects.

For instance, consider the task of estimating the stability of object con-
figurations in Figure 4.3a. The head of Statement 4.5(a), which implies that
a particular object is stable, holds true in any state in which all the re-
lations in the body of the axiom are satisfied. Statement 4.6 defines some
conditions under which an object is considered to be unstable. Both these
statements will be considered by the attention mechanism for this task. As
the body of these two axioms contains the spatial relation above, when an-
alyzing stability in Figure 4.3a, the attention mechanism will consider the
stack comprising the duck, the red can and the white cube (indicated by the
red rectangle), since they satisfy this relation – the mug and the pitcher can
be disregarded.

In a similar manner, the Statement 4.5(b) will only be explored further
when the task is to examine the occlusion of objects. As this equation con-
tains the relation behind in its body, when analyzing occlusion in Figure
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4.3b the attention mechanism will only consider pairs of objects for which
such relation holds true. The red rectangle in the figure indicates that the
region containing the mug, the red can and the white cube are examined,
whereas the other two objects (duck and pitcher) and the rest of the picture
are disregarded.

The identified ROIs are then used for constructing CNN as described
below.

4.2.3 Convolutional Neural Networks

The ROIs identified by the attention mechanism serve as input to a deep
network. Recall that ROIs are only extracted from images that could not be
classified using ASP-based reasoning, and that pixels of any such ROI are
considered to provide information relevant to the task at hand. We explore
two variants of a CNN. The training dataset comprises ROIs and the target
labels to be assigned to objects (and structures) in the ROIs. The CNN
learns the mapping between the image pixels and target labels, and then
assigns these labels to ROIs in previously unseen test images that ASP-
based reasoning is unable to process.

As discussed in Chapter 2, a CNN is usually composed of a number of
layers, each layer representing a different level of abstraction. For instance,
while estimating the stability of object configurations, the CNN’s layers may
represent attributes such as whether: (i) a tower of blocks is aligned; (ii) a
round object is under another object; or (iii) a tower has a small base.

Figure 4.4: Lenet architecture.

In this chapter, we report the results obtained for two well-known CNN
architectures: (i) Lenet (LeCun et al. 1998), initially proposed for recognizing
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hand-written digits; and (ii) Alexnet (Krizhevsky, Sutskever, and Hinton
2012), which has been widely used since it provided the best results on the
Imagenet benchmark dataset.

The Lenet has two convolutional layers, each one followed by a max-
pooling layer and an activation layer. Two fully connected layers are placed
at the end. Unlike the 28 × 28 gray-scale input images and the ten-class
softmax output layer used in the original implementation, we consider 56×56

RGB images as input and an output vector representing the occlusion and
stability of each object in the image. Figure 4.4 is a pictorial representation
of this network. As described later in Section 4.3, we consider ROIs with
up to five objects, and the network outputs estimate the occlusion of each
object and the stability of the structure in the ROI.

The Alexnet architecture, on the other hand, contains five convolutional
layers, each followed by max-pooling and activation layers, along with three
fully connected layers at the end. In our experiments, 227×227 RGB images
were used as input and the output classes determined the target variables
estimating occlusion and stability. The number of outputs is the same as
with the Lenet architecture.

Due to the multi-class labeling problem, the sigmoid activation function
was used in both networks. We used the Adam optimizer (Kingma and Ba
2014) in TensorFlow (Abadi et al. 2016), with a learning rate of 0.0001 for
the Alexnet network and 0.0002 for the Lenet network, and the weights were
initialized randomly. The number of training iterations varied depending on
the network and the number of training examples. For example, Lenet, using
100 and 5, 000 image samples, was trained for 10, 000 and 40, 000 iterations
respectively, whereas the Alexnet, with 100 and 5, 000 samples, was trained
for 8, 000 and 20, 000 iterations respectively. The learning rate and number
of iterations were chosen experimentally using validation sets. The number
of epochs was chosen as the stopping criteria, instead of the training error, in
order to allow the comparison between networks learned with and without
the attention mechanism. The code for training the deep networks is in our
open source repository (Mota and Sridharan 2019b).

The CNN is only trained on regions of images for which ASP-based rea-
soning provides an incorrect outcome or is unable to provide an outcome.
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We consider any such trained CNN to represent previously unknown knowl-
edge not encoded in the ASP program, i.e., the observed incorrect outcome
or lack of any outcome is due to reasoning with incomplete or incorrect
knowledge. To revise the knowledge encoded in the ASP program, and to
better understand the behavior of the trained deep networks, we used deci-
sion tree induction for incrementally learning the previously unknown state
constraints from the same images and labels used to train the deep networks.

4.2.4 Decision Tree Induction and Axiom Merging

The proposed architecture builds on the relational representation to incre-
mentally learn previously unknown knowledge in the form of axioms that
represent state constraints, and to merge them with the existing knowl-
edge. Specifically, separate decision trees are constructed in the RA domain
for estimating stability and occlusion, using the spatial relations between
pairs of objects (and the attributes of these objects) identified in the ROIs
used for training the CNNs. The labels assigned to the leaf nodes are sta-
ble/unstable or occluded/not occluded. Some examples of decision trees are
shown in Figures 4.5 and 4.6.

Above(A, B)? Irregular(B)?

Not-stable(A) (100% of 33 samples)

Tower S < 5?

Not-stable(A) (92% of 13 samples)

Tower S < 4?

Not-stable(A)(67% of 15 samples)

Not-stable(A) (57% of 7 samples)
Below(A, B)?

Front(A, B)?
Stable(A) (60% of 5 samples)

Stable(A) (67% of 6 samples)
Irregular(A)?

Tower S < 2?

Stable(A) (100% of 9 samples)

Not-stable(A) (100% of 4 samples)

Stable(A) (100% of 45 samples)

True True

False

True

False

False

True
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TrueFalse False

TrueTrue
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Figure 4.5: Example of a decision tree constructed for stability estimation
using some labeled examples. Highlighted branches are used to construct
previously unknown axioms.

We use an existing algorithm that constructs decision trees by comput-
ing the potential change in entropy (i.e., information gain) caused by a split
based on each attribute. One half of the available examples are used for
training. Once a tree is constructed, any branch of the tree in which the leaf
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Behind(A, B)? Above(A, C)?

Not-occluded(A) (75% of 8 samples)

Tower S ≤ 1?

Not-occluded(A) (56% of 9 samples)

Front(A, B)?
Occluded(A) (75% of 8 samples)

Occluded(A) (69% of 13 samples)Not-occluded(A) (100% of 99 samples)

True True

False

True

False

False

True

False

Figure 4.6: Example of a decision tree constructed for occlusion estimation
using some labeled examples. Highlighted branch is used to construct pre-
viously unknown axiom.

represents a precision higher than 95%, i.e., most examples corresponding
to a particular class, is used to construct candidate axioms that are vali-
dated using the other half of the labeled examples. The validation process:
(i) removes axioms without a minimum level of support from the training
examples; and (ii) compares the discovered axioms to only retain the most
general version of each axiom. Since the number of labeled examples is small,
we reduce the effect of noise through an ensemble learning approach, i.e., we
repeat the learning and validation steps a number of times (e.g., 100) and
only the axioms voted more than a minimum number of times (e.g., 40%)
are encoded in the ASP program for subsequent reasoning.

Consider the branches highlighted in gray in Figures 4.5 and 4.6, which
can be translated into the following axioms:

stable(A)← ¬obj_relation(above, A,B), ¬obj_surface(A, irregular)
(4.5a)

¬occluded(A)← ¬obj_relation(behind,A,B) (4.5b)

where Statement 4.5(a) implies that any object without an irregular
surface that is not above another object is stable, whereas Statement 4.5(b)
says that an object is not occluded if it is not located behind another object.
As another example, the branch highlighted in gray and blue in Figure 4.5
translates to:

¬stable(A) ← obj_relation(above, A,B), obj_surface(B, irregular)
(4.6)
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which states that an object is unstable if it is located above another object
with an irregular surface.

Our architecture is also able to discover default knowledge that holds
in all but a few exceptional circumstances. To find these axioms while still
allowing for some exceptions, we reduced the threshold for selecting a branch
of a tree to construct candidate axioms (e.g., from 95% to 70%). As an
example of default knowledge, the branch highlighted in gray and orange in
Figure 4.5 could translate to:

¬stable(A) ← tower_height(A,N), N > 4, not stable(A). (4.7)

which says that an object placed on a tower taller than 4 objects is
typically unstable. The term "typically" is expressed in the axiom by the
default negation of the negated head (not stable(A)). This is included in
the body of any default axiom learned (i.e., any axiom learned when the
threshold for selecting a branch is reduced).

Algorithm 1 describes the algorithm for learning axioms and merging
them with the existing knowledge (Lines 1-14). If labeled training samples
(i.e., image ROIs with stability and occlusion labels of objects) are available,
they are used to induce new state constraints (Lines 2-11). A training set
is created by randomly selecting 50% of the labeled examples, with the
remaining examples making up the validation set (Line 4). The training
set is used to construct the decision tree(s) based on each attribute that
has not yet been used (Line 5); the attribute that is likely to provide the
highest reduction in entropy is selected. Next, the branches of the tree (from
root to leaves) that satisfy certain minimum requirements are selected to
construct candidate axioms (Line 6). These minimum requirements include
thresholds on purity of samples at any given leaf, and on the support from
the labeled examples, e.g., ≥ 95% samples at the leaf belong to a particular
(correct) label, a branch under consideration has support from ≥ 5% of the
training samples, etc. The selected branches of the learned decision trees
represent previously unknown candidate constraints, and the thresholds are
set to construct such candidate axioms cautiously. Small changes in the value
of these thresholds do not cause any significant change in the branches of
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Algorithm 1: Learning and merging axioms
Input : Relational domain attributes from image ROIs; occlusion

and stability labels of objects in ROIs; thresholds th1
(95%, purity threshold), th2 (5%, support threshold), th3
(40%, tree support threshold), th4 (10%, axiom strength
threshold); ensemble_count (100).

Output: Learned axioms.
1 while true do
2 if labeled_samples then
3 for j = 1 : ensemble_count do

// Split training samples for learning and
validation

4 training_set, validation_set =
random_split(labeled_samples)

// Decision tree induction
5 learned_tree = tree_induction(training_set)

// Create candidate axioms
6 candidate_axioms = select(learned_tree, th1, th2)

// Validate axioms
7 validated_axioms = validate(candidate_axioms,

validation_set, th2)
8 end

// Choose validated axioms with sufficient support
9 axioms = select(validated_axioms, th3)

// Add validated axioms and merge similar axioms
10 add_merge(axioms)
11 end

// Update strength of axioms
12 update_strength(axioms)

// Remove axioms with low strength
13 remove(axioms, th4)
14 end

the tree selected to construct axioms. The values of these thresholds can
be revised to achieve different desired behavior. For instance, to identify
default constraints that hold in all but a few exceptional circumstances (see
Section 4.2.1), we lowered the threshold for selecting a branch of a tree to
construct candidate axioms (from 95% to 70%). As we will discuss later,
lowering the thresholds results in the discovery of additional axioms, but
also introduces noise.
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Once the candidate axioms are constructed, each one is validated using
the other (so far unseen) half of the labeled examples (Line 7). The valida-
tion process removes axioms without a minimum level of support (e.g., 5%)
from the labeled examples. Since the number of labeled examples available
for training is often small, we reduce the effect of noise through an ensemble
learning approach (loop in lines 3-8), i.e., we repeat the learning and vali-
dation steps a number of times (e.g., 100) and only the axioms identified in
more than a minimum number of iterations (e.g., 40%, Line 9) are retained.
Adding all retained axioms can lead to the ASP program including different
versions of the same axiom over time. For instance, two axioms may have
identical heads with one axiom’s body containing all the literals of the other,
or two ground axioms may include sorts that are subsorts of a more general
sort. To address this issue, similar axioms are grouped together. Each pos-
sible combination of axioms from different groups (one from each group at
a time) is then encoded in an ASP program along with the axioms that do
not belong to any such group. The resulting program is used to classify ten
labeled scenes chosen randomly. Axioms in the program that results in the
highest accuracy are retained whereas the other axioms in each group are
discarded (Line 10).

The axiom learning approach described so far is based on a small num-
ber of labeled examples in a dynamic domain. The learned axioms may be
incorrect (e.g., incorrect negation in the head, or incorrect literals in the
body), incomplete (e.g., one or more missing literals in the body), or over-
specified (e.g., one or more irrelevant literals in the body). Reasoning with
these axioms can lead to sub-optimal or incorrect behavior. To address this
issue, we incorporated a heuristic approach inspired by the human forgetting
mechanism. This approach associates a strength to each axiom. An axiom’s
strength is revised over time based on a decay factor using an exponential
relation: axiom_relevance = e−α.n, where α represents the decay factor
(initially 1), and n is the number of time steps since the axiom was learned.
In each time step, irrespective of whether any new axioms are learned, the
strength of all learned axioms are updated (line 12). If an axiom is rein-
forced, i.e., learned again or used, its strength is elevated to the maximum
value (i.e., 1) again, and its decay factor is divided by n

√
2, a value chosen
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experimentally such that it varies between 2 (for n = 1) and 1 (for n→∞).
Any axiom whose strength value falls below a threshold (e.g., 0.1) is removed
from further consideration (line 13).

4.3 Experimental setup

Since the proposed architecture attempts to mitigate the gap 2 identified
in Section 2.6, which is the large amount of training data required by deep
networks and their difficulty in learning incrementally, the experiments were
designed to test the following hypotheses:

H1 Reasoning with commonsense domain knowledge and the attention
mechanism improves the accuracy of deep networks.

H2 Reasoning with commonsense domain knowledge and the attention
mechanism reduces sample complexity and time complexity of training
deep networks.

H3 The architecture is able to incrementally learn previously unknown
axioms, and use these axioms to improve the accuracy of decision
making.

H4 Our approach for revising the strength of axioms and merging the
learned with the existing knowledge is able to identify and remove
incorrect axioms.

To simulate experiments in a dynamic domain for which a large number
of training samples are not available, we used a real-time physics engine (bul-
let physics library) to generate 6000 labeled images for estimating occlusion
and stability of objects. The dataset containing these images and correspon-
dent point cloud files are available in an open source repository (Mota and
Sridharan 2020a). Each image had ROIs with up to five objects with different
colors, textures and shapes. The objects included cylinders, spheres, cubes,
a duck, and five household objects from the Yale-CMU-Berkeley dataset
(apple, pitcher, mustard bottle, mug, and cracker box) (Calli et al. 2015).
We considered three different arrangements of these objects:
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• Towers: images containing two to five objects stacked on top of each
other;

• Spread: images with five objects placed on the flat surface (i.e., the
ground); and

• Intersection: images with two to four objects stacked on each other,
with the rest (one to three) spread on the flat surface.

The vertical alignment of stacked objects is randomized, creating either a
stable or an unstable arrangement. The horizontal distance between spread
objects is also randomized, which can create scenes with complex, partial or
no occlusion. Lighting, orientation, camera distance, camera orientation, and
background, were also randomized. Also, for the experimental trials summa-
rized below, the ASP program was initially missing three state constraints
each, which were related to stability estimation and occlusion estimation.

A second dataset was derived from the dataset described above to simu-
late the effect of the attention mechanism. Recall that this module extracts
ROIs from images in the original dataset that could not be classified using
ASP-based reasoning. This is carried out by identifying relevant axioms and
relations in the ASP program. Only pixels in these ROIs were considered for
analysis. CNNs trained using these two datasets were compared as a function
of the amount of training data and the complexity of the networks. Occlusion
is estimated for each object (i.e., five outputs) and stability is estimated for
the structure (i.e., one output). An additional 600 labeled simulated scenes
were also created and used for evaluation, e.g., for the approach to update
the strength of the learned axioms (more details later).

The main performance measure was the accuracy of the labels assigned to
objects and structures in images. Below, all claims are statistically significant
at the 95% significance level. As the baseline for comparison, we trained the
Lenet and Alexnet architectures without the commonsense reasoning and
attention mechanism modules, i.e., directly on the RGB-D input images,
and evaluated them on the test dataset.
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4.4 Results and discussion

The first set of experiments evaluated the architecture ability to label objects
and structures in images with respect to stability and occlusion. It was
designed as follows, with results summarized in Figure 4.7:

1. Training datasets of different sizes (100, 200, 1000, and 5000 images)
were used to train the Lenet and Alexnet networks. The remaining
images were used to test the learned models. The baseline CNNs –
with results plotted as "Lenet" and "Alexnet" in Figure 4.7 – do not
use the attention mechanism and commonsense reasoning.

2. The datasets after the application of the attention mechanism were
derived from the original datasets in Step 1. The selection of images
as well as the pixels from each image was based on the target task and
relations of interest.

3. The datasets created in Step 2 were used to train and test the Lenet
and Alexnet networks, with the results plotted as “Lenet(Att)” and
“Alexnet(Att)” in Figure 4.7.

Figure 4.7 indicates that integrating commonsense reasoning with deep
learning improves the accuracy of the deep networks for the estimation of
stability and occlusion. Training and testing the deep networks with only
relevant ROIs of images that cannot be processed by commonsense reasoning
simplifies the learning process, making it easier to learn accurate mapping
between inputs and outputs and resulting in higher accuracy than the base-
lines for any given number of training images. The improvement is more
pronounced when the training set is smaller, but there is improvement at all
training dataset sizes considered in our experiments. These results support
hypothesis H1.

Figure 4.8 shows two examples of the improvement provided by the at-
tention mechanism. In Figure 4.8a, both Lenet and Lenet(Att) were able to
recognize the occlusion of the red cube caused by the green mug, but only the
latter, which uses the attention mechanism and commonsense reasoning, was
able to estimate the instability of the tower. In Figure 4.8b, both networks
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Figure 4.7: Accuracy of Lenet and Alexnet with and without commonsense
reasoning and the attention mechanism. The number of background images
was fixed at 100. Our architecture improves accuracy in comparison with
the baselines.

correctly predicted the instability of the tower. However, only Lenet(Att)
was able to identify the occlusion of the green cube by the yellow can. The
classification errors are most probably because a similar example had not
been observed during training This is a common limitation of deep architec-
tures. The attention mechanism eliminates the analysis of unnecessary parts
of images and focuses only on the relevant parts, resulting in a more targeted
network that provides better classification accuracy. For these experiments,
the CNNs were trained with 1000 images.

The number of different backgrounds (selected randomly) was fixed at
100 for the experimental results in Figure 4.7. The effect of the background
on the observed performance varies depending on the number of training
examples. For instance, we had (on average) one image that used each back-
ground image when the training data had 100 training samples, and we
had 50 images per background for the training dataset with 5000 training
examples. However, in real scenarios, it is unlikely that we will get a uni-
form distribution of backgrounds; other factors such as lighting, viewpoint,
and orientation will be different in different images. To analyze the effect of
different backgrounds, we explored the use of the Lenet architecture with
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(a) (b)

Figure 4.8: Examples of test images for Lenet and Lenet(Att): (a) both de-
tected the occlusion of the red cube by the green mug, but only the latter
correctly estimated the tower’s instability; and (b) both predicted the in-
stability of the tower, but only Lenet(Att) detected the obstruction of the
green cube by the yellow can.

different number of training examples (100 and 5000) and different number
of backgrounds (30, 50, and 100). As shown in Figure 4.9, varying the back-
ground does have an impact on accuracy, which degraded from ≈ 65% for
one background per 10 images to ≈ 62% when we have one background per
image (i.e., 100 backgrounds for 100 images). The degradation is smaller,
i.e., ≈ 1%, for 5000 training examples with number of backgrounds vary-
ing from 10− 100; however, for 1000 backgrounds (one background per five
training images) the accuracy was reduced in ≈ 2%. These results indicate
that a network trained with a larger number of images is less sensitive to
variations in background, and that the inclusion of different backgrounds has
a negative effect on performance for the baseline (e.g., Lenet) architecture.
On the other hand, Figure 4.9 shows that the Lenet(Att) presents similar
accuracy regardless of variations in the background, which indicates that the
inclusion of commonsense reasoning and attention mechanism minimizes the
effect of background on classification performance.

The second set of experiments was designed as follows to evaluate the
effect of the proposed architecture on the computational effort for training
deep networks, with results summarized in Figure 4.10:

1. The Lenet and Alexnet networks were trained with training datasets
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Figure 4.9: Effect of changing the number of backgrounds on the accuracy
of the Lenet and Lenet(Att) networks for 100 and 5000 training images.
Without the attention mechanism and commonsense reasoning, increasing
the number of backgrounds reduces the classification accuracy.

containing between 100 − 1000 images, in step-sizes of 100. Separate
datasets were created for testing. As in the previous experiment, the
baseline CNNs did not use the attention mechanism and commonsense
reasoning;

2. Datasets were derived from the original datasets from Step 1 after
applying the attention mechanism. The selection of images as well as
the pixels from each image was based on the target task, and the
axioms and spatial relations of interest; and

3. The datasets created in Step 2 were used to train and test deep net-
works, wiht the results plotted as “Lenet(Att)” and “Alexnet(Att)” in
Figure 4.10.

Figure 4.10 shows that using the attention mechanism and reasoning
with commonsense knowledge helps achieve any desired level of accuracy
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Figure 4.10: Accuracy with and without the attention mechanism and com-
monsense reasoning of: (a) Lenet; (b) Alexnet. The number of background
images was fixed at 100. Any desired accuracy is achieved with a smaller
training set when commonsense reasoning and attention mechanism are
used.

with much fewer training examples. The purple dashed line in Figure 4.10(a)
indicates that the baseline Lenet needs ≈ 1000 images to reach an accuracy
of 77%, whereas our architecture reduces this number to ≈ 600. The exper-
iments indicate a similar difference between the Alexnet and Alexnet(Att)
for 79.5% accuracy—see the dark green dash-dotted line in Figure 4.10(b).
These results indicate that the use of commonsense knowledge helps train
deep networks with fewer examples, reducing both the computational re-
quirements and storage requirements, an outcome which supports hypothe-
sis H2.

The third set of experiments was designed as follows to evaluate the
ability of learning previously unknown axioms, with results summarized in
Table 4.1:

1. Ten sets of 50 labeled images were created, as described in Section 4.3;

2. The axiom learning algorithm was trained with each set three times,
using thresholds of 95% and 70% at the leaf nodes of the decision
trees. These are the values assigned to the threshold th1 described in
Algorithm 1 in Section 4.2.4;



Results and discussion 78

3. The precision and recall for the unknown axioms, e.g., State-
ments 4.5(a), 4.5(b), and 4.6, but excluding defaults (i.e., with the
threshold th1 = 95%), are summarized as “unknown (normal)” in Ta-
ble 4.1;

4. The precision and recall for the unknown default statements, e.g.,
Statement 4.4, (i.e., with the threshold th1 = 70%) are summarized as
“unknown (default)” in Table 4.1;

Axiom
type Precision Recall

Unknown
(normal) 98% 100%

Unknown
(default) 78% 62%

Table 4.1: Precision and recall for previously unknown axioms (normal, de-
fault) using decision tree induction.

Table 4.1 demonstrates the ability to learn previously unknown axioms.
Errors are predominantly variants of the target axioms that are not in the
most generic form, i.e., they have irrelevant literals but are not actually
wrong. The lower precision and recall with defaults are understandable be-
cause it is challenging to distinguish between defaults and their exceptions.
These results support hypothesis H3.

The fourth set of experiments were designed as follows to evaluate hy-
pothesis H4 on revising and merging axioms, with results plotted in Figures
4.11 and 4.12, for normal and default axioms respectively:

1. Ten sets of 60 labeled scenes were created, as described in Section 4.3.
Each set was used in one run of ensemble learning (see Algorithm 1).

2. In each cycle, 50 images were used for decision tree induction and
axioms extraction (Section 4.2.4). The choice of the best version of
similar axioms was based on the other 10 images.

3. The forgetting parameters (decay factor and axiom strengths) were
updated, and the axioms with strength bellow 10% eliminated (orange
dashed line in the figures).
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4. Steps 2 and 3 were repeated for 10 learning cycles.
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Figure 4.11: Normal axioms evolution over time.

Table 4.2: Normal axioms legend.

Color Axiom

—— holds(partially_stable(A, B), I) :- -holds(relation(above, A, B), I), -
has_surface(A, irregular).

—— -holds(partially_occluded(A, B), I) :- -holds(relation(behind, A, B), I).
—— -holds(stable(A), I) :- holds(irregular_below(A), I).
—— -holds(partially_occluded(A, B), I) :- holds(relation(above, A, B), I).

—— -holds(partially_stable(A, B), I) :- holds(relation(above, A, B), I),
holds(tower_height(A, N), I), N>4.

—— -holds(stable(A), I) :- holds(small_base(A), I), holds(tower_height(A,
N), I), N>4.

—— holds(partially_stable(A, B), I) :- -holds(relation(above, A, B), I),
holds(relation(behind, A, C), I).

—— holds(stable(A), I) :- holds(tower_height(A, N), I), N<=1.

Figure 4.11 shows how the eight axioms in Table 4.2 behaved over 10
cycles. The top three axioms, shown in green, red and blue, are learned
or reinforced in almost every cycle. Although the axioms corresponding to
the green-colored plot were not re-learned in cycles 7 and 8, it was able to
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maintain a high level of strength. This is because it was reinforced in all
previous cycles, resulting in a small decay factor. In contrast, the other five
axioms from Table 4.2 were not re-learned or frequently used, so that they
were quickly removed.

Figure 4.12 shows the equivalent plot for 10 default axioms included
in Table 4.3. Note that the axioms included on lines 4 and 5 in Table 4.3
(represented by the brown and lime green-colored plots in Figure 4.12) are
different versions of the same axiom; the axiom on line 4 contains an extra
(unnecessary) literal (holds(obj_relation(front, A, D), I)). The algorithm
then identified the similarity, keeping the more general version of the axiom
(line 5 in Table 4.3) and removing the other version (line 4 in Table 4.3)
in cycle 5; this is where the brown-colored plot stops in Figure 4.12. These
results support hypothesis H4.
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Figure 4.12: Default axioms evolution over time.

Finally, we ran experiments in which the robot computed minimal plans
to pick up and clear particular objects. We observed that the number of
plans computed when the learned axioms are included in the ASP program
are much smaller than when the axioms are not included—this makes sense
because the learned axioms are constraints that eliminate possible paths in
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Table 4.3: Default axioms legend.

Color Axioms
—— -holds(stable(A), I) :- holds(small_base(A), I).
—— -holds(partially_stable(A, B), I) :- holds(relation(above, A, B), I).
—— -holds(stable(A), I) :- holds(tower_height(A, N), I), N>4.

—— holds(partially_occluded(A, B), I) :- holds(relation(behind, A, B), I),
-holds(relation(above, A, C), I), -holds(relation(front, A, D), I).

—— holds(partially_occluded(A, B), I) :- holds(relation(behind, A, B), I),
-holds(relation(above, A, C), I).

—— -holds(partially_occluded(A, B), I) :- holds(relation(above, A, B), I).
—— holds(partially_stable(A, B), I) :- -holds(relation(above, A, B), I).
—— holds(partially_stable(A, B), I) :- holds(relation(behind, A, B), I).
—— holds(partially_stable(A, B), I) :- holds(relation(front, A, B), I).
—— holds(stable(A), I) :- -holds(small_base(A), I).

the transition diagram. For instance, the goal in one set of experiments was
to clear the large red box partially hidden behind the white box and the
duck in Figure 4.13. With all the axioms the robot found eight plans (all of
which were correct); however, with some axioms missing, the robot found as
many as 90 plans, many of which were incorrect. A plan was considered to
be correct if executing it (in simulation) resulted in the corresponding goal
being achieved. All these results support hypothesis H3.

Figure 4.13: Illustrative image used for planning experiments with and with-
out the learned axioms.
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4.5 Conclusion

Deep network architectures and algorithms represent state-of-the-art tech-
nique for many tasks in robotics and AI. However, they require large training
datasets and considerable computational resources, and the complex internal
representations they learn make it difficult to understand their operation.
The architecture described in this chapter draws inspiration from research
in cognitive systems to address these limitations. It integrates the princi-
ples of non-monotonic logical reasoning with commonsense knowledge, and
decision tree induction of knowledge, with deep learning. The underlying
intuition is that commonsense knowledge is available in almost every ap-
plication domain—in fact, some such knowledge is often necessary to opti-
mize the parameters of deep networks. Our architecture, on the other hand,
explores a sophisticated approach for fully exploiting this knowledge. Rea-
soning with domain knowledge simplifies learning—the robot only needs
to learn about aspects of the domain not already encoded by the existing
knowledge. A more accurate mapping is thus learned between the desired
inputs and outputs using a smaller set of labeled examples. We have exper-
imentally validated our intuition in the context of estimating the occlusion
of objects and the stability of object structures in simulated images. Our
architecture improves accuracy, and reduces storage and computation re-
quirements, especially when large labeled training datasets are not readily
available.

In the next chapter, we explore the use of this architecture on a robot
manipulating tabletop objects and providing explanations for its decisions
and beliefs.



Chapter 5

Reasoning with Incomplete
Commonsense Knowledge for
Transparent Decision Making on
Robots

In this chapter, we seek to expand the architecture, described in Chap-
ter 4, that tightly couples the complementary strengths of knowledge-based
and data-driven algorithms in order to provide on-demand explanations of
agent’s decisions, beliefs, and the outcomes of hypothetical events.

5.1 Introduction

We describe changes to the architecture presented in Chapter 4 and focus
primarily on the new methodology for generating explanations. We explore
how the implementation of this methodology builds on the interplay between
the representational choices, reasoning mechanisms, and learning algorithms
in our architecture.

As a motivating example, we consider a scene understanding and manip-
ulation task, as shown in Figure 5.1. The robot has to extract information
from images captured by the on-board cameras, e.g., Figures 5.2a and b,
arrange objects in different spatial configurations, and answer explanatory

83
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questions about its plans, the decisions and choices related to these plans,
and the beliefs that informed these decisions. In this context, we describe
an approach to automatically extract relevant information and construct
answers to such questions.

Figure 5.1: Motivating scenario of a manipulator arranging objects in desired
configurations on a tabletop.

(a) (b)

Figure 5.2: Camera’s view extracted from Baxter’s grippers: (a) left; (b)
right.

This chapter is based on the conference paper accepted for publication
at the 17th European Conference on Multi-agent Systems (EUMAS 2020).
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5.2 Architecture

The overall architecture for representation of, explainable reasoning with,
and learning from incomplete domain knowledge and noisy observations is
shown in Figure 5.3. The components to the left of the dotted vertical line
represent the architecture presented in Chapter 4, which used non-monotonic
logical reasoning to guide deep learning for visual classification tasks. The
components to the right of the dotted line are introduced in this chapter
for answering explanatory questions from a human about decisions, beliefs,
and hypothetical situations. These answers are constructed by automatically
identifying, extracting, and analyzing relevant information. The new compo-
nents (for explanatory descriptions) are described in the following domain,
in which the robot Baxter executes plans as required by humans, and then
provides the required explanations.

Inputs: Simulated scenes

Outputs:

Labels
(training phase)

Human query

Features
extraction

Decision tree
induction

Text/Audio
processingASP

program

Classification
block

Program
Analyzer

Baxter

Explanations
Output labels

(occlusion, stability)

Relevant
axioms

Current state

Answer set

New axioms

Answer set,
Domain
knowledge

Plan

POS

Goal

Real scenes

Figure 5.3: Architecture combines strengths of deep learning, non-monotonic
logical reasoning with incomplete knowledge, and inductive learning. New
components to the right of the dotted line support desired explainability.
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Example 2. [Robot Assistant (RA)] A Baxter robot (see Fig. 5.1) analyzes
scenes containing toys in different configurations. The goal is to: (i) estimate
the occlusion of scene objects and the stability of structures, and rearrange
the objects according to human requirements; and (ii) explain its actions
and beliefs as required by humans. The domain knowledge includes object
attributes such as size (small, medium, large), surface (flat, irregular) and
shape (cube, apple, duck), and the relation between objects (above, below,
front, behind, right, left, close). The robot can move objects to achieve the
desired goals. Knowledge also includes axioms governing domain dynamics,
but some axioms may be unknown, e.g.:

• Placing an object on top of an object with an irregular surface causes
instability.

• Removing all objects in front of an object causes this object to be not
occluded.

The unknown axioms can be incrementally learned using decision tree
induction, encoded in the robot’s knowledge base, and then used for expla-
nations and subsequent reasoning and learning. This domain differs from
Example 1, described in Chapter 4, due to the use of real images extracted
from the robot’s cameras, instead of simulated scenes, and the inclusion of
the agent’s ability to explain its decisions and beliefs.

Since the components to the left of the dashed line in Figure 5.3 were
presented in Chapters 3 and 4, we only describe below the new components
(to the right of the line) that extend the baseline architecture to provide
explanatory descriptions of decisions and beliefs. These new components
enable the robot to process human verbal input and (a) extract goals that
are achieved by planning and plan execution; or (b) answer explanatory
questions about decisions, beliefs, or actions (executed or hypothetical). For
that, the architecture follows the steps bellow:

• The human speech is converted into text using the speech transcription
tool (A. Zhang 2017).
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• Relevant information is extracted from the transcribed text using a
part-of-speech tagger, the lemma list (Someya 1998) and their syn-
onyms and antonyms from WordNet (G. A. Miller 1995). This infor-
mation is used to determine the nature of the human request (e.g.,
achieve goal, or construct explanation).

• If the execution of a task is required, the relevant part-of-speech is
mapped to facts from the knowledge base for setting up goals for
planning. The ASP program computes a plan, which is transmitted
to Baxter for execution, and the computed answer set is stored for
future explanations.

• If an explanatory question is asked, the relevant information is ex-
tracted from the ASP program and answer sets (algorithm in Ta-
ble 5.1). This information is used with suitable templates to provide
human understandable responses that are converted to speech (Bhat
2018).

The new components are described in more details below.

5.2.1 Interaction interface and control loop

To answer explanatory questions, the robot first needs to interpret the ques-
tions correctly. A human’s verbal input (of such a question) is processed
using existing software. Specifically, verbal input is transcribed using speech
recognition software (A. Zhang 2017), labeled using a part-of-speech tag-
ger, normalized with the lemma list (Someya 1998), and the synonyms and
antonyms for the words retrieved from WordNet (G. A. Miller 1995). The
processed text helps identify the type of request, which may be the execution
of a task or an explanation. In the former case, the related goal is passed to
the ASP program for planning. In the latter case, the “Program Analyzer”
component (described below) automatically infers and extracts the relevant
literals to compose a suitable answer. These literals are placed in appropriate
locations in associated generic templates for sentences, resulting in human-
understandable (textual) explanations. Finally, the response is converted to
synthetic speech (Bhat 2018).
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Table 5.1: (Program Analyzer) Construct answer to input ques-
tion
Input : Literal of input question; Π(D,H); answer templates.
Output: Answer and answer Literals.
// Compute answer set

1 AS = AnswerSet(Π)
2 if question = plan description then

// Retrieve all actions from answer set
3 answer_literals = Retrieve(AS, actions)
4 else if question = ”why action X at step I?” then

// Extract actions after step I
5 next_actions = Retrieve(AS, actions for step > I)

// Extract axioms influencing these actions
6 relevant_axioms = Retrieve(Π, head = ¬ next_actions)

// Extract relevant literals from Answer Set
7 relevant_literals = Retrieve(AS, Body(relevant_axioms)

∈ I∧ /∈ I + 1)
// Output literals

8 answer_literals = pair(relevant_literals, next_actions)
9 else if question = ”why not action X at step I?” then

// Extract axioms relevant to action
10 relevant_axioms = Retrieve(Π, head = ¬ occurs(X))

// Extract relevant literals from Answer Set
11 answer_literals = Retrieve(AS, Body(relevant_axioms) ∈ I∧ /∈ I + 1)
12 else if question = ”why belief Y at step I?” then

// Extract axioms influencing this belief
13 relevant_axioms = Retrieve(Π, head = Y)

// Extract body of axioms
14 answer_literals = Recursive_Examine(AS, Body(relevant_axioms))
15 Construct_Answer(answer_literals, answer_templates)

5.2.2 Program Analyzer

The key component of the explanation generation system has to extract the
relevant knowledge to address the human request or question. This is ac-
complished by automatically mapping human verbal input to related axioms,
facts, and answer sets, which are used to construct explanatory descriptions.

The algorithm in Table 5.1 describes the approach for automatically
identifying the axioms and facts related to the query from the ASP program
and the corresponding answer sets. In the algorithm and description below,
the questions are assumed to have been posed at time step I unless stated
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otherwise. The specific steps to be followed depends on the kind of query
posed:

1. Answers to plan description queries are obtained directly from the
corresponding answer sets (lines 1 - 3, Table 5.1). For any given goal,
ASP-based reasoning provides a sequence of actions of the form oc-
curs(action1, step1), ..., occurs(actionN, stepN). These actions are
used to construct the answer describing the plan.

2. To answer questions of the form why action X at step I? about ac-
tion choices made at time step I, the following steps are used (lines 4
- 10, Table 5.1):

• For each action that occurred after time step I, the robot ex-
amines relevant executability condition(s) that would prevent its
execution at step I (lines 5 - 6). For instance, in Figure 5.2a, con-
sider the execution of actions occurs(pickup(robot, blue_block), 0)
and occurs(pickup(robot, orange_block), 2) at time steps 0 and
2, respectively. An executability condition related to the second
pickup action would be:

¬occurs(pickup(robot, A), I) ←
holds(obj_relation(below,A,B), I)

which says that a robot can not pickup an object A located below
an object B. Grounding the axiom for the specific blocks in the
scene, we obtained the literal obj_relation(below, orange_block,
blue_block).

• If the condition obtained above is present in the answer set at
the time step of interest (0 in this example), and it is not present
(or its negation is present) in the next step, it is considered to be
the reason for executing the action (X) under consideration (line
8 in Table 5.1).

• The desired answer then contains the future action and the con-
dition that was modified with the execution of the action at the
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time step under consideration (line 9). In the illustrative example
considered here, the question could be “Why did you pick up the
blue block?”, with the answer being “I had to pick up the orange
block, and it was located below the blue block".

3. For questions about hypothetical actions that have not been se-
lected for execution, the algorithm in Table 5.1 (lines 11 - 16):

• Searches for executability conditions in the ASP program that
have the hypothetical action in the head, i.e., prevent the action
from being selected for execution.

• For each executability condition, examines whether the literals
in the body are satisfied in the corresponding answer set. If yes,
uses them to construct the answer.

For instance, in the scenario in Figure 5.2a, suppose that action put-
down(robot, blue_block, table) occurred at step 1. For the question
“Why did you not put down the blue cube on the tennis ball?”, a
related executability condition is:

¬occurs(putdown(robot, A, B), I) ← has_surface(B, irregular)

which says that an object cannot be placed on another object with an
irregular surface. The answer set indicates that the tennis ball has an
irregular surface. The response constructed is “Because the tennis ball
has an irregular surface”.

4. To explain beliefs the algorithm (lines 17 -25) searches for support
axioms, in which the belief is the head and the corresponding body is
satisfied in the current state. For the literals in the body, the search
is repeated until no more axioms are found (lines 20 - 23), and the
relevant literals are facts, statics, or actions applied in previous steps.
For instance, to explain the belief that the object ob1 to be unstable
in step I, the robot finds the support axioms:

¬holds(stable(ob1), I) ← holds(small_base(ob1), I)



Experimental setup and results 91

and the current belief may include that object ob1 is believed to have
a small base. Searching for why the object ob1 is believed to have a
small base, the follow axiom is identified:

holds(small_base(A), I) ← holds(relation(below, B, A), I),

has_size(B, small), has_size(A, big)

Asking “why do you believe object ob1 is unstable?”, would provide the
answer “Because object ob2 is below object ob1 and ob2 is small”.

5.2.3 Baxter platform

The component interfacing with the physical robot (Baxter) obtains sen-
sor inputs and executes the actions from a computed plan to accomplish a
required task. Unlike the Chapter 4, which only looked at scene understand-
ing tasks (occlusion, stability), the robot now plans and executes actions to
achieve desired goals. Observations with high probability, i.e., images such as
Figures 5.2a and 5.2b from the cameras on the robot’s grippers, are elevated
to facts in the ASP program. This may result in incorrect information being
added to the program, but the non-monotonic logical reasoning capability
allows for elegant recovery from such errors.

5.3 Experimental setup and results

In this section, we describe the experimental setup, execution traces and
the qualitative results of experimental evaluation. We focus primarily on
the ability to construct appropriate answers for explanatory questions about
images captured by Baxter’s cameras in scenarios corresponding to the RA
domain in Example 2.

5.3.1 Experimental setup

Considering that the approach proposed in this chapter attempts to address
the gap 3 identified in Chapter 2, the experiments were design to test the
following hypotheses:
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H1 : Reasoning with incrementally learned and merged state constraints
improves the quality of plans generated.

H2 : Exploiting the links between representation, reasoning, and learning
provides accurate explanations of decisions and beliefs.

In our experiments, we considered four types of explanations: describing the
plan; justifying the execution of an action at a given time step; justifying
not choosing a hypothetical action; and explaining particular beliefs. The
quality of the explanations was measured in terms of precision and recall
of the literals included in the provided answer when compared with the
expected response.

Experimental trials considered images from the robot’s cameras and sim-
ulated scenes. Real world images contained five to seven objects character-
ized by different colors, textures, shapes, and sizes. The objects included
cubes, a pig, a capsicum, a tennis ball, an apple, an orange, and a pot.
These objects were either stacked on each other or spread on the table,
as shown in Figure 5.2a. A total of 40 configurations were created, each
with five different goals for planning, and four questions for each plan, re-
sulting in a total of 200 plans and 800 questions. We also used a real-time
physics engine to create 40 simulated images, each with seven to nine objects
(three to five stacked and the remaining on a flat surface). Objects included
cylinders, spheres, cubes, a duck, and five household objects from the Yale-
CMU-Berkeley dataset (apple, pitcher, mustard bottle, mug, cracker box).
Five different goals were considered for planning, with four questions for
each plan, resulting in the same number of plans and questions as with
real-world data.

To simulate different types of situations, we randomized the initial con-
figuration of objects in the scene and the content of the requests from the
human participant. Axioms are learned from simulated images in a training
phase as described in Chapter 4. To explore the effect of the learned knowl-
edge on constructing explanations, we ran experiments with and without
some learned axioms in the knowledge base, measuring the corresponding
number of optimal, sub-optimal, and incorrect plans, and the planning time.
An optimal plan achieves the desired goal in the minimum number of steps; a
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sub-optimal plan requires more than the minimum number of steps and/or
includes an exception to default knowledge (e.g., stacking an object on a
smaller object); and a wrong plan leads to undesirable states or results in
the goal not being achieved; this occurs, for example, when a related axiom
is not applied because it is not known to the robot.

5.3.2 Execution Trace

Recall that the kind of literals extracted to construct explanations depends
on the question posed. For instance, the description of a plan includes all
the actions in the plan; the justification for an action choice examines future
actions in the corresponding plan being executed, whereas questions about
actions that were not executed are answered by examining beliefs that pre-
vented these actions from being considered. Below, we examine some exe-
cution traces of constructing explanations in the context of the RA domain.
The first three execution examples consider a real-world scene captured from
the robot’s gripper—see Figure 5.2a. The other three examples refer to an
image created by the physics simulator and are shown in Figure 5.6.

Execution Example 1. [Plans, actions, and beliefs]
Consider a robot that faces the object configuration shown in Figure 5.2a.
It has to move the red block on top of the orange block. The robot answers
the following questions after executing a plan for this goal:

• Human: "Please describe your plan."

Baxter: " I picked up the blue block. I put the blue block on the
table. I picked up the orange block. I put the orange block down on
the table. I picked up the red block. I put the red block on the orange
block."

• The human may ask the robot to justify a particular action.

Human: "Why did you pick up the blue block?"

Baxter: "Because I had to pick up the red block, and the red block
was below the blue block."
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The constructed answer can also be used to highlight the relevant im-
age regions that influenced this answer, as shown in Figure 5.4, aiding
in better comprehension of the explanation and the corresponding de-
cision.

• The human now may ask about particular actions that were not con-
sidered.

Human: "Why did you not put down the orange block on the blue
block?"

Baxter: "Because the blue block is small."

• The human may also ask about particular beliefs.

Human: "Why did you believe that the red block was below the blue
block?"

Baxter: "Because I observed the red block below the blue block in
step zero."

Figure 5.4: Highlighted relation between blue and red cubes, used in the
explanation constructed in Execution Example 1.

Note that the answer to the question about the hypothetical action the
robot did not execute considers the default knowledge learned from simu-
lated scenes, which states that objects placed on a small base are typically
unstable. The non-monotonic logical reasoning capability enables the robot
to reason about exceptions to this default and recover from errors.
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Execution Example 2. [Reasoning and explanation]
Continuing with our example and the scenario in Figure 5.2a, the subsequent
interactions are as follows:

• Human: "Put the tennis ball on the blue cube."

The goal holds(relation(on, ball, blue_block), I) is then encoded in
the ASP program for planning. Since not trying to accomplish a goal
is not an option, and the default rule about not stacking objects on
small bases prevents placing objects on the blue block, the apparent
inconsistency is solved by invoking an exception to the default and
planning to place the ball on the top of the blue block. Then, for the
following question after plan execution:

• Human: "Please describe the plan you executed."

Robot: "I picked up the ball. I put down the ball on the blue block."

• The human may now explore the belief of the agent that requires it to
consider exceptions to the default knowledge:

Human: "Why do you believe the ball is on the blue block?"

Robot: "Because I observed the ball on the blue block in step one."

Combining reasoning with constructing explanations thus allows the robot
to adapt to unforeseen exceptions elegantly.

Execution Example 3. [Learning and explanation]
In some situations, the robot may be unable to accomplish the human com-
mand because it conflicts with its internal representation of the world. Even
in such cases, the robot is able to answer explanatory questions. For instance,
consider the scenario in Figure 5.2a, with the following interaction:

• Human: "Please put the pig on the ball."

The robot does not execute this action because an incrementally
learned axiom states that any object placed on another with an ir-
regular surface will be unstable.



Experimental setup and results 96

• However, our architecture allows an agent to provide explanations for
the not execution of an action, so that:

Human: "Why can’t you put the pig on the top of the ball?"

Robot: "Because the ball has an irregular surface."

Once again, the answer can be used to highlight ROIs in Figure 5.5
relevant to constructing this answer.

Figure 5.5: Highlighted tennis ball to be considered in the explanation pro-
vided in Execution Example 3.

This example illustrates that integrating learning with reasoning and expla-
nation generation enables the robot to explain the newly acquired knowledge
and the reason for not acting according to the human command.

For the next examples, the interactions considered the simulated scene
depicted in Figure 5.6.

Execution Example 4. [Plans, actions, and beliefs]
Now the robot starts with objects as shown in Figure 5.6. It has to move the
pitcher on top of the red block. The robot answers the following questions
after executing a plan for this goal:

• Human: "Please describe your plan."

Baxter: " I picked up the green can. I put the green can on the table.
I picked up the white block. I put the white block down on the table.
I picked up the pitcher. I put the pitcher on the red block."
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Figure 5.6: Example of scene created in simulator.

• The human may ask the robot to justify a particular action.

Human: "Why did you pick up the white block?"

Baxter: "Because I had to put down the pitcher on the red block, and
the red block was below the white block."

As for the real-world scene, the constructed answer can also be used
to highlight the relevant image regions that influenced this answer, as
shown in Figure 5.7, aiding in better comprehension of the explanation
and the corresponding decision.

• The human now may ask about particular actions that were not con-
sidered.

Human: "Why did you not put down the pitcher on the green can?"

Baxter: "Because the green can is small."

• The human may also ask about particular beliefs.

Human: "Why did you believe that the red block was below the white
block?"
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Baxter: "Because I observed the red block below the white block in
step zero."

Figure 5.7: Highlighted relation between white and red cubes, used in the
explanation constructed in Execution Example 4.

Once again, the answer to the question about the hypothetical action the
robot did not execute considers the default knowledge learned from simu-
lated scenes, which states that objects placed on a small base are typically
unstable. The non-monotonic logical reasoning capability enables the robot
to reason about exceptions to this default and recover from errors.

Execution Example 5. [Reasoning and explanation]
Continuing with the example using the scenario in Figure 5.6, the subsequent
interactions are:

• Human: "Put the mug on the green can."

The goal holds(relation(on, mug, green_can), I) is then encoded in
the ASP program for planning. Since not trying to accomplish a goal
is not an option, and the default rule about not stacking objects on
small bases prevents placing objects on the green can, the apparent
inconsistency is solved by invoking an exception to the default and
planning to place the mug on the top of the green can. Then, for the
following question after plan execution:

• Human: "Please describe the plan you executed."

Robot: "I picked up the mug. I put down the mug on the green can."

• The human may now explore the belief of the agent that requires it to
consider exceptions to the default knowledge:
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Human: "Why do you believe the mug is on the green can?"

Robot: "Because I observed the mug on the green can in step one."

The construction of explanations combined with non-monotonic reasoning
thus allows the robot to adapt to unforeseen exceptions elegantly.

Execution Example 6. [Learning and explanation]
In some situations, the robot may be unable to accomplish the human com-
mand because it conflicts with its internal representation of the world. Even
in such cases, the robot is able to answer explanatory questions. For instance,
consider the scenario in Figure 5.6, with the following interaction:

• Human: "Please put the pitcher on the duck."

The robot does not execute this action because an incrementally
learned axiom states that any object placed on another with an ir-
regular surface will be unstable.

• However, our architecture allows an agent to provide explanations for
the not execution of an action, so that:

Human: "Why can’t you put the pitcher on the top of the duck?"

Robot: "Because the duck has an irregular surface."

Once again, the architecture is able to use the answer to highlight
ROIs in Figure 5.8 relevant to constructing this answer.

Figure 5.8: Highlighted duck to be considered in the explanation provided
in Execution Example 6.

This is another example of how integrating learning with reasoning and ex-
planation generation enables the robot to explain the newly acquired knowl-
edge.
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Table 5.2: Values of planning measures with the learned axioms expressed
as a fraction of the values of these measures without the learned axioms in
each paired trial.

Ratio (with/without)
Measures Real scenes Simulated scenes

Number of plans 0.36 0.33
Optimal 1 1

Sub-optimal 0.43 0.55
Incorrect 0 0
Time 0.66 0.89

5.3.3 Experimental results

The first set of experiments was designed as follows with results summarized
in Table 5.2:

1. Forty initial object configurations were arranged (similar to that in
Figure 5.1). The robot (Baxter) automatically extracted information
(attributes, spatial relations) from images corresponding to top and
frontal views (using the cameras on the left and right grippers) and
encoded it in the ASP program as the initial state.

2. For each initial state, five goals were randomly chosen to be encoded in
the ASP program. The robot reasoned with the existing knowledge to
create plans for these 200 combinations (40 initial states, five goals).

3. The plans were evaluated in terms of the number of optimal, sub-
optimal and incorrect plans, and planning time.

4. Experiments were repeated with and without the learned axioms, with
the results for the former computed as a fraction of those for the latter.

5. Steps 1 to 4 were repeated for simulated scenes. Table 5.2 summarizes
the average results.

Since the quality measure of each plan depends on the initial condi-
tions and the goal, we conducted paired trials with and without the learned
constraints included in reasoning. The initial conditions and goals/tasks
were identical within each paired trial, and differed between different paired
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trials. We computed the value of each planning measure with the learned
constraints as a fraction of the value without the learned constraints. The
average of these ratios over all the trials is in Table 5.2.

Incorrect

69.28%

Optimal

21.29%

Suboptimal

9.43%

(a) Without learning.

Optimal

84.86%

Suboptimal

15.14%

(b) With learning

Figure 5.9: Percentage distribution of optimal, sub-optimal and incorrect
plans created for real scenes when (a) no axioms are learned and (b) new
axioms are learned.

Incorrect

61.56%

Optimal

9.66%

Suboptimal

28.78%

(a) Without learning.

Optimal

34.8%

Suboptimal

65.2%

(b) With learning

Figure 5.10: Percentage distribution of optimal, sub-optimal and incorrect
plans created for simulated scenes when (a) no axioms are learned and
(b) new axioms are learned.

Computing plans by reasoning with the learned axioms significantly re-
duces the total number of plans (to 36% for real scenes and 33% for simu-
lated scenes), and the number of sub-optimal plans (to 43% and 55% for real
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and simulated scenes respectively), removing all incorrect plans and keep-
ing all the optimal ones. When the learned axioms are used for reasoning,
sub-optimal plans were created only when the assigned goal could only be
achieved by creating an exception to a default, e.g., stacking an object on
a small base. Also, the inclusion of extra axioms reduced the computation
time (for planning) by 35% for real images and 11% using simulations; the
ASP program without the learned axioms computed almost three times the
number of plans computed with the learned axioms.

In addition, among the plans computed for different real-world scenes,
≈ 85% were optimal and ≈ 15% were suboptimal when the robot reasoned
with the learned constraints; without the learned constraints, ≈ 21%, ≈ 9%

and ≈ 70% of the computed plans were optimal, suboptimal, and incorrect
respectively, as shown in Figure 5.9. The equivalent distribution for simu-
lated scenes is shown in Figure 5.10. Furthermore, the inclusion of learned
constraints significantly reduced the search space and thus the planning time
in comparison with when the learned axioms are not included. These results
indicate that the knowledge acquired over time improves the overall quality
of plans, which supports hypothesis H1.

The second set of experiments was designed as follows with results summa-
rized in Table 5.3:

1. For each of the 200 combinations (40 configurations, five goals) from
the first set of experiments, considering (once again) knowledge bases
with and without the learned axioms.

2. The robot first had to describe the plan and justify the choice of a
randomly-chosen action in the plan. Then, one parameter of the chosen
action was changed randomly to pose a question about why this new
action could not be applied. Finally, one of the beliefs related to the
previous two questions had to be justified.

3. The literals present in the answers were compared against the expected
literals in the ideal response, with the average precision and recall
scores shown in Table 5.3.
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Table 5.3: Precision and recall of retrieving relevant literals for constructing
answers to explanatory questions, with and without the learned axioms used
for reasoning. These results refer to Real scenes from the robot’s gripper.

Precision Recall
Query Type Without With Without With

Plan description 91.77% 100% 91.77% 100%
Why X? 91.75% 94.75% 91.98% 94.75%

Why not X? 93.57% 95.16% 87.91% 98.88%
Belief 93.04% 99.35% 93.63% 100%

Table 5.4: Precision and recall of retrieving relevant literals for constructing
answers to questions, with and without reasoning with learned axioms. These
results refer to Simulated scenes.

Precision Recall
Query Type Without With Without With

Plan description 90.04% 100% 90.04% 100%
Why X? 93.0% 93.0% 93.0% 93.0%

Why not X? 93.22% 100% 89.43% 98.04%
Belief 97.22% 99.19% 97.9% 100%

4. The same experiments were separately conducted for simulated scenes,
with results summarized in Table 5.4.

Tables 5.3 and 5.4 show that when the learned axioms are used for rea-
soning, the precision and recall of relevant literals (for constructing the ex-
planation) are higher than when the learned axioms are not included. This is
especially true when the robot has to answer questions about the execution
of actions that it has not actually executed. Note that the precision and
recall rates are reasonable even when the learned axioms are not included;
this is because not all the learned axioms are needed to accurately answer
each explanatory question. When the learned axioms are included in the
reasoning, errors are very rare and correspond to some additional literals
being included in the answer (i.e., over-specification). In addition, when we
specifically remove axioms related to the goal under consideration, precision
and recall values are much lower. Furthermore, there is noise in both sensing
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and actuation, especially with robot experiments. For instance, recognition
of spatial relations, learning of state constraints, and manipulation have
approximate error rates of 15%, 5− 10%, and 15% respectively. Experimen-
tal results thus indicate that coupling reasoning, learning, and explanation
allows the robot to provide accurate relational descriptions in response to
questions about decisions, beliefs, and hypothetical events, which supports
hypothesis H2. Additional examples of images, questions, and answers are
in our repository (Mota and Sridharan 2020b).

5.4 Conclusions

With the increasing use of sophisticated AI and ML algorithms for different
tasks in robotics and AI, there is considerable interest in understanding the
operation of these algorithms. In this chapter, we have focused on integrated
robot systems that represent, reason with, and learn from incomplete do-
main knowledge and noisy data. For such a system, we have presented an
approach for reliably and efficiently answering explanatory questions about
the plans, decisions, and beliefs. We have implemented this approach in
the architecture, described in Chapter 4, that combines the complemen-
tary strengths of non-monotonic logical reasoning with incomplete domain
knowledge, deep learning, and inductive learning. In the context of a robot
sensing and manipulating objects, we have demonstrated that the ability of
our approach to exploit the interplay between knowledge-based reasoning
and data-driven learning enables the approach to reliably answer explana-
tory questions. In addition, the architecture is able to make good use of the
learned knowledge to further improve its performance.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented a system that integrates the grounding of spatial
relations between objects, relational representation of knowledge, common-
sense reasoning, incremental induction of knowledge, and data-driven learn-
ing for scene understanding tasks. We attempted to fill in the gaps of the
state-of-the-art algorithms in computer vision by exploring non-monotonic
logical reasoning (and representation) with incomplete commonsense knowl-
edge. Our main goal was equipping agents with the ability to learn incre-
mentally from a small number of samples.

As we discussed throughout this thesis, deep learning and associated
algorithms have achieved outstanding results in AI and robotics in recent
years. However, the need for a large amount of training data limits the ap-
plication of deep architectures, and the difficulty in interpreting the internal
representations they learn imposes a serious barrier to its adoption in many
critical areas, such as medical diagnosis and autonomous vehicles. These
limitations have motivated recent studies trying to reduce the training ef-
fort, e.g., by using preexisting knowledge to simplify learning, and to provide
any explanation for deep architecture decisions. We explored the relational
representation, non-monotonic reasoning with commonsense knowledge, and
induction of previously unknown state constraints for incrementally learning
the knowledge freely available in the domain, and efficiently training deep
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architectures. Explanations are then obtained from the relational description
of knowledge and the answer set provided by the reasoner.

The combination of a manually encoded (QSR) and an incrementally
updated (MSR) representation of spatial relations between objects, along
with a symbolic relational representation of knowledge, produced reliable
estimates of these relations. While the QSR component encodes the initial
knowledge about spatial relations, the MSR allows the adaptation to spe-
cific characteristics of the domain, as well as the use of human feedback if
available. The non-monotonic reasoning and the relational representation of
knowledge in ASP enables the combination of basic prepositions in more
elaborate relations, and allows elegant recovery from errors caused by rea-
soning with incomplete knowledge.

The learning model explores the complementary strengths of incremental
induction of knowledge, non-monotonic logical reasoning, and deep learning
for scene understanding tasks. Specifically, the induction of decision trees,
using the groundings of spatial relations and image labels, discovers un-
known axioms available in the domain. These axioms are encoded in ASP
for reasoning with new scenes, and the resulting program is used for ef-
ficiently training Convolutional Neural Networks. These CNNs deal only
with images that the reasoner is unable to classify. As a result, this model
uses the knowledge available in the domain to reduce the effort for training
deep architectures.

Explanatory descriptions of agent’s decisions and beliefs are then based
on the incrementally updated relational representation of knowledge and the
answer set computed by the reasoner. The symbolic relational representa-
tion in ASP facilitates the retrieval of knowledge required to compose the
responses. Since our architecture learns (i.e., using decision tree induction)
such knowledge from the same data used for constructing deep networks,
the relational descriptions provided as explanations may also be considered
as descriptions of the observed behavior of these networks, providing in-
sights about their internal operation. In addition, our architecture allows
the interleaving between learning from simulated images and applying this
knowledge in the real world. In the experiments, unknown state constraints
were learned from scenes created by simulators, whereas the explanations
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also consider real world scenes extracted from the robot Baxter’s onboard
cameras.

In summary, the research presented in this thesis resulted in three main
contributions:

• A grounding model for representation of spatial relations between do-
main objects able to learn incrementally and interactively from expe-
riences.

• An approach that combines the complementary strengths of decision
tree induction, non-monotonic logic reasoning, and deep learning for
scene understanding tasks that reduces the complexity for training
deep architectures by considering the knowledge available in the do-
main.

• A method that explores the relational description of incrementally up-
dated knowledge to facilitate the retrieval of the information required
for answering decision making related queries, improving the quality
of explanations for agent’s decisions, beliefs and experiences.

6.2 Future work

The work presented in this thesis opens up multiple directions for future
research. First, the interplay between reasoning and learning could be fur-
ther explored to understanding the behavior of deep network models. We
already showed how the training of deep networks can be optimized, and the
same samples used to train these networks can also be used to induct previ-
ously unknown axioms that help understand their behavior. The approach
presented here could be further explored to incrementally understand the be-
havior of different deep network architectures in terms of axioms. Although
we explored Convolutional Neural Networks (CNN) applied the specific task
of physics understanding from visual scenes, the approach can be extended
to many other applications involving deep architectures, e.g., Visual Ques-
tion Answering (VQA), Recommendation Systems, boardgames, which may
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also employ different types of deep architectures, such as Recursive Neural
Networks (RNN) and Feedforward Neural Networks (FNN).

The architecture presented in this thesis uses decision tree induction in
order to discover state constraints of a domain that includes an agent ma-
nipulating tabletop objects. The learning capabilities of our architecture can
be expanded to learn different types of domain knowledge, such as causal
laws and executability conditions. This in turn could enhance the archi-
tecture’s ability of reasoning and of better exploring the behavior of deep
network models. Our architecture could also be explored in more complex
domains, e.g, robots moving between different rooms in an office, tasked
with finding and delivering objects to humans or other robots. Such a do-
main imposes some challenging problems, such as multi-agent planning and
collective learning, in which simultaneous execution of actions are possible
and the learned knowledge have to be shared among agents.

In addition, the architecture’s ability to explain decisions, beliefs and
experiences based on the declarative representation of knowledge would be
expanded to accommodate further interactions with humans requiring the
adjustment of these descriptions to different needs. The architecture de-
scribed in this thesis assumes a perfect communication between humans and
robots, in which agents would perfectly understand humans’ questions and
humans would be always satisfied with robots’ responses. However, ambigu-
ous questions and unsatisfactory answers are likely to occur in human-robot
interactions. Future work could expand our architecture to construct clari-
fication queries for ambiguous questions, and to restructure the description
provided by the agent in order to express different levels of abstraction and
detail as required by humans.
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