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Abstract—An agent assisting humans in daily living activities
can collaborate more effectively by anticipating upcoming tasks.
Data-driven methods represent the state of the art in task
anticipation, planning, and related problems, but these methods
are resource-hungry and opaque. Our prior work introduced a
proof of concept framework that used an LLM to anticipate
3 high-level tasks that served as goals for a classical planning
system that computed a sequence of low-level actions for the
agent to achieve these goals. This paper describes DaTAPlan,
our framework that significantly extends our prior work toward
human-robot collaboration. Specifically, DaTAPlan’s planner
computes actions for an agent and a human to collaboratively and
jointly achieve the tasks anticipated by the LLM, and the agent
automatically adapts to unexpected changes in human action
outcomes and preferences. We evaluate DaTAPlan’s capabilities
in a realistic simulation environment, demonstrating accurate
task anticipation, effective human-robot collaboration, and the
ability to adapt to unexpected changes.
Project website: https://dataplan-hrc.github.io

Index Terms— Task anticipation, Large Language Models,
classical planning, human-agent collaboration.

I. INTRODUCTION

Consider a human getting ready to leave from home for
work. This involves completing some high-level tasks, e.g.,
cooking breakfast and serving it at the table in Figure 1.
Each of these tasks requires the execution of a sequence
of actions, e.g., fetch and boil the egg to cook breakfast,
and bring the cooked egg and juice to the table. There is
a robot (agent†) that can assist in completing these tasks.
The tasks can be completed more effectively by anticipating
the upcoming tasks, with the agent and the human executing
actions to collaboratively and jointly complete all these tasks
with minimal effort. This happens in Figure 1(a), with the
agent (in green) anticipating the serving task, fetching juice
from the fridge to the table while fetching the egg that
the human (in blue) cooks in a metal pot and (not shown
here) brings to the table. There is no such collaboration in
Figure 1(b), with the agent fetching juice to the table while
the human fetches and boils the egg before bringing it to the
table. Furthermore, actions may have unexpected outcomes,
and changes in human preferences (e.g., the human decides to
work from home) may change the tasks to be completed.

Data-driven methods and models are the state of the art for
task anticipation and human-robot collaboration. These meth-
ods are resource-hungry, i.e., need considerable computation

†We use the terms ”robot” and ”agent” interchangeably.

Fig. 1: Illustration of ”human-robot collaboration with anticipation”: (a) agent anticipates
(serving task) and collaborates with human, fetching juice from the fridge to the table
while fetching the egg that the human cooks in a metal pot and brings to the table;
(b) The agent only serves the juice to the table and the human entirely performs the
necessary actions needed to cook and serve the egg.

and training examples, and are opaque, i.e., it is difficult to un-
derstand their internal processes. Our recent work provided a
basic demonstration of an agent in a household scenario (with
no other actors) using a pretrained Large Language Model
(LLM) for task anticipation and using classical planning to
compute a sequence of finer-granularity actions to jointly
achieve these tasks [1]. In this paper, we significantly extend
this work to describe a framework (DaTAPlan) that combines
data-driven task anticipation and knowledge-driven planning
for human-robot collaboration. The key characteristics of
DaTAPlan are:

1) A pretrained LLM predicts a list of anticipated tasks
based on a small number of prompts comprising a partial
sequence of tasks in specific user scenarios.

2) A classical planner reasons with prior knowledge of the
action theories of the agent and the human to compute a
plan of finer-granularity actions that the agent executes,
and the human is expected to execute, to collaboratively
achieve the identified list of tasks.

3) If the human’s action choices, action outcomes, or pref-
erences deviate from expectations as the agent executes
its actions, the agent automatically adapts by replanning
or generating new task predictions.

The novelty is in: (a) supporting adaptation to different task
patterns with limited prompting to LLMs; (b) computing a plan
to jointly achieve the anticipated high-level tasks such that the
agent and the human execute actions to collaboratively com-
plete each task; and (c) automatically adapting to unexpected
changes in the action outcomes or preferences of human. We

https://dataplan-hrc.github.io


use the Planning Domain Definition Language [2] and the
Fast Downward solver [3] for classical planning. We evaluate
our framework’s capabilities using household scenarios (with
multiple tasks, rooms, and objects) in the realistic CoppeliaSim
environment.

II. RELATED WORK
State of the art research in human-robot collaboration

focuses on teleoperation, shared autonomy, or collaboration
[4, 5, 6]. There have been promising breakthroughs in percep-
tion, learning, task planning, and adaptive control[7, 8, 9, 10],
and work on improving collaborative interactions that enhance
efficiency and quality of life[11, 12, 13, 14]. Different data-
driven formulations represent the state of the art for human-
robot collaboration and task anticipation[15, 16]. However,
safety, trust, adaptability, real-time perception, and integra-
tion of human feedback remain open problems[17]. Planning
Domain Definition Language (PDDL) has been widely used
to encode prior knowledge for planning problems[2]. Within
automated task planning methods, the process of defining
the planning problem and prior domain knowledge (i.e., do-
main models) is labor-intensive and relies on closed-world
assumptions, limiting adaptability to dynamic environments.
There has been considerable research in learning the domain
models for planning, with more recent work using LLMs
for this purpose[18]. LLMs have also been used to pro-
duce goal states achievable by classical PDDL-based plan-
ners [19, 20]. and for generating diverse plans or translating
natural language to structured planning problems[21, 22].
However, integrating learning methods with planning systems
while ensuring that sound and executable plans are produced,
remains challenging[23, 24]. Recent studies have also used
LLMs for task planning in complex domains[25, 26, 27, 28],
including scene rearrangement[29], but there is a growing
body of research to show that LLMs are not really ap-
propriate for planning in the classical sense[18]. There is
well-established research in monitoring action outcomes and
adapting to unexpected outcomes[30]. Recent work in human-
robot collaboration uses human behavior models to detect
unexpected behavior and has the agent replan to prevent
failure[31]. Even systems that use LLMs for planning include a
method for detecting collisions or hardware failures[21], or use
probabilistic sequential decision-making for monitoring[32].
Our framework enables the agent to adapt if the human’s
action choices, action outcomes, or preferences deviate from
expectations. Our prior work enabled an agent in a household
scenario to use a pre-trained LLM for task anticipation, with
classical planning used to compute and execute a sequence of
finer-granularity actions to jointly achieve these tasks[1]. Here
we extend this approach to human-robot collaboration, with
planning directing the agent and the human to collaboratively
execute actions to complete each task and enabling the agent
to adapt when the human deviates from the plan.

III. PROBLEM FORMULATION AND FRAMEWORK

Consider a household with two actors, human (H) and
agent/robot (R). The objective is to complete a routine of high-

level tasks Q = {τ1, τ2, ..., τn} although the entire routine is
not known in advance and can change over time. Completion
of each τi ∈ T , a known list of high-level tasks such as cook
breakfast and do the laundry, requires a sequence of finer-
granularity actions {a1, a2, ...., ak} to be executed, e.g., to
cook breakfast, it is necessary to go to the fridge, fetch egg to
the stove, and boil the egg. Since Q can change over time, an
actor usually tries to complete one task at a time at minimum
cost (or time, effort). However, the tasks can be completed
more efficiently if R and H anticipate upcoming tasks and
collaborate to complete them. The agent has an action theory,
MR, describing preconditions and effects of its actions, and
a similar theory MH describing its expectations of human
behavior. There is no explicit communication between R and
H and we only control R’s action choices. Actions can be
non-deterministic but the domain state is assumed to be fully
observable.

Figure 2 outlines our framework, DaTAPlan, which com-
bines data-driven task anticipation and knowledge-driven plan-
ning (with monitoring) for human-robot collaboration. In
Figure 2 (a), an LLM is prompted with a partial task sequence
to obtain a sequence of anticipated tasks. These tasks become
goals in a PDDL problem file in Figure 2(b). A classical
planner uses this problem description and a domain description
to compute a joint plan of low-level actions for the agent and
expected actions for the human—Figure 2(c). The execution of
these actions is simulated in CoppeliaSim [33] in Figure 2(d).
The agent monitors any deviation from the plan and adapts
accordingly. We describe the individual components of DaT-
APlan below.

A. LLM-based Task Anticipation

A pretrained LLM is tuned with two types of prompts:
(i) few shot; and (ii) chain of thought. In both cases, the
inputs include T and a JSON scene description. In the former,
the input also includes 2-3 prior observations of user task
patterns—see Figure 3;, whereas the latter considers two in-
context examples [34] with step-by-step guidance [35] to un-
derstand user patterns. In both cases, the output is a sequence
of anticipated tasks, with hallucinated tasks outside T not
used for planning. Please see our project website for more
examples. We show later (Section IV-B) that the LLM’s task
predictions match human expectations.

Apart from anticipating future tasks, the LLM also receives
user feedback (during execution) if there is a change in tasks
from a usual pattern, e.g., if the user shares that guests are
coming over, then LLM is re-prompted to retrieve a fresh set
of anticipated tasks.

B. Task and Motion Planning

The sequence of anticipated high-level tasks QA =
{τ1, τ2, ...τn} from the LLM is mapped to goal state G in the
planning framework—see Figure 2(b). The next component
of the framework computes a sequence of finer-granularity
actions to be executed by R and H to achieve G.



Fig. 2: Our framework’s pipeline: (a) Input prompt contains the list of possible tasks, user preferences, and scene description, along with an example prompt and the corresponding
output high-level tasks; (b) High-level tasks predicted by LLM are mapped to PDDL problem description; (c) The FD planner generates a plan of agent’s actions and the expected
human actions; (d) Deviations of the human from the expected plan are noted and used to trigger replanning when appropriate.

Fig. 3: Few shot prompting with LLMs.

Task planning. To generate a sequence of actions to achieve
G, the domain and problem are created in PDDL.
The domain description D = ⟨DR,DH⟩ comprises the domain
descriptions of the agent (DR) and the human (DH). DR =
⟨SR,MR⟩ comprises signature S and action theory MR. S
includes types, constants, and predicates. Predicates include
fluents, which can change over time due to actions; and statics,
which remain unchanged. For instance, in Figure 2(c), actions
such as human picks and agent picks modify fluent obj-at that
determines the location of objects. MR specifies each action
(of the agent) in terms of its parameters, preconditions for
the action to be executed, effects that will be true once the
action is executed, and the action’s cost. In a similar manner,
DH = ⟨SH,MH⟩, is the agent’s estimate of the human’s
domain description. Here, we assume that these descriptions
are accurate; the revision of this description is left to future
work.

The problem P = ⟨O, I,G⟩ describes a specific scenario
in terms of a set of specific objects (O), the initial state I
comprising ground literals of the fluents and statics, and a
goal description G in the form of relevant ground literals. To
create suitable scenarios, we designed a complex household
domain with a range of actions and objects (72 predicates
and 88 actions); this is more complex than commonly used

planning benchmarks and our prior work. I is estimated from
sensor inputs and G includes the anticipated tasks. Example
problem and domain descriptions are available in our open-
source project website.

The planning task is to compute a sequence of actions
π = ⟨a1, . . . , aK⟩ that takes the system from I to a state
where G is satisfied. Some actions in this sequence are to be
executed by the agent, while the human is expected to execute
the other actions. To compute the plan, D and P are given
to the planner that tries to minimize the total cost of actions
required to achieve G. We use the LAMA[36] alias of the Fast
Downward system [37] to compute the plan. To reduce costs,
we opt for satisficing instead of optimal configurations of the
planner. To find the satisficing plan π∗ that minimizes cost,
we define the objective function as:

π∗ = argmin
π

C(π), C(π) =

(
M∑

m=0

cRm +

N∑
n=0

cHn

)
(1)

where cRm is the cost of the agent’s action aRm in plan π, and
cHn is the cost of the human’s action aHn in plan π. The cost
of each action corresponds to the time taken to execute it. The
optimal plan π∗ minimizes C(π) for both actors.
Human-robot collaboration. The computed plan π∗ = ⟨a1,
a2, ..., ak⟩ represents a collaboration between the human and
the agent. For example, the goal states in Figure 2 involve
preparing and serving breakfast of boiled eggs, preparing of-
fice clothes, and charging the cellphone. To prepare breakfast,
while the agent fetches eggs from the fridge nearby to the
stove, the human is expected to bring a metal pot to the
stove. Doing so will result in the task being completed in
the least amount of time; Figure 1(a) is an illustration of this
”collaboration” setting. There is no explicit communication
between the human and the agent. While the agent will execute
the relevant actions in the plan, there is no guarantee that
the human will execute the assigned actions. Figure 1(b) is
an illustration of the ”no-collaboration” setting in which the



(:action agent_boils
:parameters (?o - toboil)
:precondition(and

(item_in ?o metal_pot stove kitchen)
(agent_near stove kitchen)
(agent_switched_on burner stove kitchen)
(not(boiled ?o)))

:effect(boiled ?o))

Fig. 4: Action for boiling an item ?o*. Precondition: item must be in the metal pot.

agent and the human are assigned specific actions that do
not minimize the overall cost. We experimentally compare the
collaboration and no-collaboration settings in Section IV-B.
Adaptation to unexpected situations. DaTAPlan includes
an approach that enables the agent to adapt if the human’s
action choices, action outcomes or preferences deviate from
the expectations. Recall that the plan π∗

i will succeed only if
both the agent and the human execute the actions assigned to
them. The agent will meet this requirement, but we cannot
guarantee that the human will do so. In addition, the human’s
task-level preferences may change and make the anticipated
tasks irrelevant. For example, consider an agent executing
actions to achieve the anticipated tasks of preparing and
serving breakfast, and preparing the human’s office clothes.
This agent may find that the human was unable to bring the
metal pot to the stove (to cook breakfast), requiring the agent
to generate a new plan, or may be told that the human is no
longer going to the office, requiring the LLM to provide new
predictions of anticipated tasks.

In this paper, we illustrate our adaptation approach in the
context of a specific kind of unexpected outcome: when the
human does not execute a planned pick up action or the
execution of this action does not result in the desired object
being picked up. For instance, the plan shown in Figure 2
involves boiling eggs in a metal pot. Here, the agent expects
a human to bring the metal pot to the stove (see Figure 4)
while it fetches the eggs from the fridge to the stove. If
the human does not pick up the metal pot, the subsequent
steps of the plan will not achieve the part of the goal related
to cooking breakfast. Although the agent and the human do
not communicate with each other, the agent believes that
it has a good model of the human’s domain description,
and the system provides full observability. The agent thus
adapts by replanning from the current state. We experimentally
compare performance with and without this adaptation strategy
in Section IV-B.

We also illustrate the ability to adapt to unforeseen changes
in the human’s preferences. In this case, the agent directly
prompts the LLM for a new sequence of anticipated tasks
before replanning to achieve the revised goal.
Motion Planning. The low-level actions from the Task Plan-
ning are interpreted and are provided to the actors through
CoppeliaSim Remote API. For actions that entail movement
between locations, the nearest free space goal position is given
to the OMPL BiTRRT Planner [38] with 10000 maximum
search point nodes and 0.1 seconds for search duration for

*Due to space constraints, not all preconditions and effects are shown.

each simulation pass as search parameters. For actions such
as picking and cooking, the object’s goal position is used to
control the movement of the arm using the Inverse Kinematics
method provided by the CoppeliaSim IK Plugin.

IV. EXPERIMENTAL SECTIONS AND RESULTS

We experimentally evaluated four hypotheses related to the
performance of DaTAPlan:
H1: LLMs can accurately anticipate future tasks based on a

small number of contextual examples.
H2: Combining task anticipation and action planning sub-

stantially improves efficiency of planning and execution
in human-robot collaboration scenarios compared with
using just the classical planner.

H3: Human-robot collaboration results in more efficient goal
attainment compared with no active collaboration.

H4: Agent is able to automatically adapt to unexpected
changes in action outcomes and preferences of humans.

The Fast-Downward system [3] provides different configu-
rations: lama, seq-sat-fdss-2018, and seq-sat-fd-autotune-1.
We experimentally determined that lama provides the best
performance and used it for all experiments reported here.

A. Experimental Setup

We begin by describing the experimental set up process.
LLM Prompting. We evaluated H1 quantitatively using dif-
ferent LLMs: Gemini Pro [39], Claude 3 [40] and GPT-4 [41].
We also extended the diversity of household tasks introduced
in our prior work [1], to obtain 16 global tasks. To explore
specific user task patterns, we created two households, each
with five different scenarios (e.g., tasks related to different
time of day), in which the sequence of task execution is dif-
ferent. household-1 is characterized by orderly task execution,
whereas in household-2 immediate needs are prioritized with
tasks performed as they come. We collected and used actual
human expectations as the ground truth. Specifically, for each
scenario, human expectations were recorded from 11 humans,
with each of them asked to anticipate four tasks at a time.
The humans were provided the same information as the LLMs.
There is variability in the responses of different humans to the
same scenario, and it is often hard to identify the ”correct”
response. Hence, we obtained the ground truth for each
scenario by selecting four tasks with the highest frequency
from all human responses for that scenario. Since computing
the frequency of tasks may lead to the loss of information
about the sequencing of tasks, we (instead) measured overlap.
Let gi be the set of (most frequent) tasks in the human
responses (ground truth) for the ith scenario, and li be the
sets of tasks predicted by the LLM.; gi ∩ li denoted the set of
tasks that appear in both gi and li. We then used two measures
to evaluate H1:

• Mean Overlap: the average overlap between the ground
truth and the LLM responses.

Mean Overlap =

∑n
i=1 |gi ∩ li|

n
(2)



where | · | denotes the cardinality of a set, and n is the
total number of response pairs.

• ≥ 50% and ≥ 75% Overlap: the proportion of LLM
outputs that have an overlap of at least 50% or 75% with
the ground truth. This is calculated as:

≥ Overlap =

∑n
i=1 I(|gi ∩ li| ≥ k)

n
(3)

where k ∈ {2, 3}, and I(·) is the indicator function
defined as: I(x) = 1 if x is true, and 0 if x is false. Note
that 50% overlap implies two tasks in common between
LLM response and the ground truth, and 75% overlap
implies three common tasks.

In these measures, n is the number of response pairs, i.e., num-
ber of scenarios multiplied by the number of LLM prompts.
We collected data for five scenarios from 11 humans, and
prompted each LLM 25 times: n = 5× 25 = 125.
Planning. The household environment in which the agent
and human operated had four rooms: Bathroom, Kitchen,
Storeroom, and Livingroom. As stated in Section III-B, the
mapping of the properties of this environment (and the agent,
human) in PDDL had 72 predicates and 88 actions, with
39 human-specific actions, 39 robot-specific actions, and 10
actions common to both. There were 17 types of objects.

The default domain description had the agent and the human
collaborating to achieve the desired goals. To mimic lack of
collaboration between the human and the agent, plans were
generated separately for the human and the agent with the
corresponding domain description only containing the human-
specific and the agent-specific actions (respectively).

Plans were computed to minimize the total cost. We deter-
mined action costs based on four factors: (i) distance to the
target location, encoding the principle that the actor closest
to a location should move to it; (ii) object type, encoding
the preference that humans handle fragile objects if possible
because it is harder for the agent to safely grasp and move such
objects; (iii) task completion time, encoding prior knowledge
that humans are more efficient with some complex tasks such
as cooking while the agent is more efficient with some tasks
such as cleaning; and (iv) action priorities, encoding the
principle that an agent should handle the more repetitive tasks
such as fetching objects. Note that the planner often had to
trade-off between these factors when computing a plan, e.g.,
the agent is closer than the human to a fragile object that needs
to be moved to a different room.

Next, we used two measures to evaluate the performance of
the planning framework:

• Execution cost: the execution cost of plan π is defined
as the sum of the costs of all actions executed by the
agent (R) and the human (H) while following π; this is
computed as shown in Equation 1.

• Plan length: the length of a plan is the total number of
actions in the plan, computed as the sum of the number
of actions executed by the agent and the human.

Adaptation. As with collaboration, the standard operation of
DaTAPlan had the agent adapting to unexpected changes in

the human’s action outcomes and preferences as described in
Section III-B. Specifically, any unexpected outcome of a pick
up action executed by a human resulted in a new plan being
generated from the current state. The agent then executed the
actions (in the plan) allocated to it and expected the human to
do the same. The planning and execution costs of this new plan
were added to the plan(s) computed and executed so far. In a
similar manner, a change in the human’s high-level preference
resulted in a new sequence of anticipated tasks being generated
by the LLM, followed by a new plan.

We simulated the lack of such an adaptive approach by
having the agent and the human continue executing the actions
allocated to them (to the extent possible) even when the
human’s action did not have the expected outcome. The agent
became aware of the unexpected outcome only when the
current plan resulted in failure, at which point a new plan could
be generated. In this case, the time made available to the agent
and the human to compute and execute plans matched the time
taken to achieve the goal when the adaptation approach was
used. The performance measure was the fraction of the goal
achieved in the time available.

B. Experimental Results

Evaluating H1. As stated in Section IV-A, we evaluated the
ability of three different LLMs to anticipate upcoming tasks
in two different households, compared these predictions with
those of a set of humans, and used Equations 2-3 as the
performance measures. We also considered the two prompting
mechanisms described in Section III-A. The results are docu-
mented in Table I. Recall that household-1 was characterized
by an orderly task execution whereas household-2 prioritized
immediate needs. The results in Table I indicate that there
was a greater degree of overlap between the predictions of
the LLMs and those of humans in household-1. In the case
of household-2, there was greater variability in the predictions
provided by the LLMs and in those provided by the human
subjects; as a result, the degree of overlap between humans
and LLMs was lower.

Among the prompting methods, better performance, i.e.,
a higher degree of overlap between the predictions of the
LLMs and the humans, was obtained with the chain of thought
prompting compared with the few shot prompting method.
In fact, the mean overlap value was as high as 86% for the
Claude-3 LLM, and it correctly anticipated at least three out of
four tasks with the chain of thought prompting (compared with
the ground truth). In addition, in the absence of this prompting
method, which includes more contextual information, the
LLMs often went into a loop of hallucination. Overall, these
results support hypothesis H1.
Evaluating H2. We compared the performance of DaTAPlan
(i.e., our framework) with that of a framework that used a
classical planner to compute the sequence of actions for one
high-level task at a time. As with H1, we considered the
five scenarios in each of two households. In each scenario,
the number of anticipated tasks was varied from 0-4, with 0
corresponding to no anticipation. The planner was provided



LLM Models
→

Claude GPT-4 Gemini
few-shot CoT few-shot CoT few-shot CoT

Household 1
Overlap 0.72 0.86 0.75 0.82 0.59 0.77
≥ 50% overlap 0.99 1 1 1 0.92 1
≥ 75% overlap 0.77 1 0.8 0.96 0.46 0.78

Household 2
Overlap 0.70 0.71 0.68 0.72 0.57 0.6
≥ 50% overlap 0.94 0.98 0.96 1 0.9 0.93
≥ 75% overlap 0.69 0.79 0.68 0.76 0.32 0.42

TABLE I: Evaluating LLM-based task anticipation for two separate households based
on few-shot prompting and chain-of-thought reasoning. Results support H1.

Fig. 5: Evaluating H2. Values of execution cost and plan length with different levels of
anticipation computed as a ratio over values computed for no anticipation; paired trials
conducted for different scenarios in two different households. The combination of task
anticipation and action planning improved performance.

an initial search time limit that was then increased in fixed
increments. We conducted paired trials, i.e., for any particular
scenario in a specific household, we would pick a particular
initial state and run trials with and without anticipation. Recall
that the performance measures for this experiment were execu-
tion cost and plan length. Since the values of these measures
can change drastically depending on the initial conditions, we
computed the ratio of the value (of a performance measure)
for a given level of anticipation (ranges from 1-4 tasks being
anticipated) with the value for no anticipation. The results
are summarized in Figure 5; each point in the plots is the
average of the ratios computed for five scenarios in a particular
household.

The results in Figure 5 clearly indicated a decrease in the
planning time and execution cost as the number of anticipated
tasks increased. Overall, there was a drop in total execution
cost of ≈ 12.5% and ≈ 25% in household-1 and household-
2 respectively as the number of anticipated tasks increases
from one to four. Similarly, we observed a decrease of
approximately 10% and 17.5% in plan length in Household
1 and 2 respectively. These plots support hypothesis H2 and
demonstrate the advantages of integrating LLM-based high-
level task anticipation with planning (a sequence of low-level
actions) for achieving the tasks.
Evaluating H3. We conducted paired trials with and without
collaboration, and measured the total time taken by both
actors (agent, human) to achieve the corresponding goal states.

Overlap
Gemini 0.59
Claude 0.98
GPT-4 0.91

TABLE III: Evaluating H4. Examined re-prompting of different LLMs during task
execution in response to an unexpected change in human preference that makes the
current set of anticipated tasks irrelevant. We measured the overlap between new set
of anticipated tasks predicted by LLMs and the new predictions provided by human
subjects; results support H4.

Specifically, we created 16 different initial conditions by
considering different combinations of initial state of the robot
and the human, e.g., agent initially in the Kitchen with human
in the Storeroom. We also considered two settings: (i) HFAS
(Human-Fast-Agent-Slow), in which the human was faster than
the robot and had a lower movement cost; and (ii) AFHS
(Agent-Fast-Human-Slow), in which the agent was faster and
had a lower movement cost. Then, for each initial condition
and each setting, we ran 50 trials, each with two tasks in
the goal state. In each trial, we computed ζ as the ratio of
the total execution time with collaboration over the value of
the measure without collaboration; ζ < 1 denotes effective
collaboration. We then computed the average of these ratios
for a particular initial state, and report the average of these
ratios in Table II.

Results indicate that we achieved ζ < 1 for all initial
conditions and all settings, clearly demonstrating the benefits
of collaboration between the agent and the human in terms
of the reduction in execution time; the maximum reduction in
time (or equivalently the cost) was 25.3%, which was obtained
in the AFHS setting. Overall, these results clearly support
hypothesis H3.
Evaluating H4. We first explored the ability of the agent
to adapt to unexpected changes in human preferences, i.e.,
in situations that required the agent to generate a new set
of anticipated tasks (from the LLM) before computing and
executing the corresponding plan. In these experiments, the
interrupt (due to change in human preference) occurs as the
agent and the human are executing the actions. We con-
ducted experiments similar to those for H1, measuring the
overlap between the new set of anticipated tasks predicted
by the LLMs and the tasks predicted by human subjects;
we conducted these experiments over 25 repetitions (each)
of five different scenarios (with chain of thought promoting).
The corresponding results, summarized in Table III, indicated
support for hypothesis H4.

Next, we explored the ability to adapt to unexpected changes
in the outcomes of human actions; as stated in Section III-B,
we randomly introduced errors in the outcome of the pick up
actions executed by the human. We considered combinations
of 16 different goals, four each with 1-4 high-level tasks,
and 1-3 instances of errors (in human pickup actions). The
goal states contained tasks ranging from simple ones such
as picking up clothes from the closet and placing them on
the ironing board, to complex tasks such as cleaning and
slicing multiple fruits before placing them in a bowl to prepare
salad. Our adaptation approach results in the goals being



ROBOT

HUMAN

Init → Livingroom Storeroom Bathroom Kitchen
Init ↓ ζHFAS ζAFHS ζHFAS ζAFHS ζHFAS ζAFHS ζHFAS ζAFHS

Livingroom 0.913 0.778 0.883 0.747 0.913 0.788 0.895 0.757
Storeroom 0.969 0.873 0.959 0.863 0.98 0.843 0.929 0.853
Bathroom 0.968 0.838 0.926 0.794 0.949 0.828 0.911 0.833
Kitchen 0.943 0.846 0.927 0.81 0.925 0.826 0.924 0.856

TABLE II: Evaluating H3. Computed ζ as the ratio of execution time with collaboration over the execution time without collaboration. Each value in table is average over 50 trials
(with two of more tasks in the goal state) for each of 16 possible initial locations of the agent and the human, and for each of two settings: HFAS and AFHS. Results indicate a
clear benefit of human-agent collaboration in terms of reduction in execution time, thus supporting H3.

No. of erroneous outcomes Success
Rate %No. of Tasks 1 2 3

1 0 ± 0 0 ± 0 0 ± 0 0.0 ± 0.0
2 0.5 ± 0 0.25 ± 0.25 0 ± 0 25.0 ± 8.33
3 0.49 ± 0.16 0.33 ± 0.23 0.25 ± 0.14 36.11 ± 9.21
4 0.62 ± 0.12 0.56 ± 0.11 0.43 ± 0.11 54.17 ± 9.32

TABLE IV: Evaluating H4. Considered combinations of goal states with 1-4 high-level
tasks with 1-3 instances of erroneous human (pick up) actions. Computed mean and
standard deviation of the fraction of tasks completed without adaptation in the same
amount of time taken by the adaptation approach (in DaTAPlan) to achieve the goal.
Results support H4.

Fig. 6: Collision avoidance between human (orange arrow) and the agent (green arrow)
in CoppeliaSim: (a) initial position of human and agent; (b) both move in a direction
that could result in a collision in the near future; (c) agent stops and waits for the human
to pass; (d) agent continues once the collision situation is addressed.

accomplished in all trials despite the errors in human actions
by replanning from a revised initial state, but there is an
increase in execution (and planning) time. We thus conducted
paired trials and computed (in each trial) the fraction of
the high-level tasks (in the goal) achieved in absence of
our adaptation approach in the same amount of time taken
by our adaptation approach. The corresponding results are
summarized in Table IV, with the last value in each row
representing the average performance over different levels of
errors for a goals with a specific number of high-level tasks.
There was a reduction in performance in the absence of our
adaptation approach, and this reduction was (understandably)
more pronounced with the increase in the number of instances
of errors in the outcomes of the human actions. These results
support H4.

Finally, we evaluated the ability of our framework to detect
and address instances of possible collisions between the agent

and the human. Any such potential collisions were successfully
avoided in all trials and we show a qualitative example in
Figure 6. Our implementation successfully tracks the trajectory
of both actors. When a potential collision is detected, the agent
stops and allows the human to pass first, and proceeds with
its trajectory once it is safe to do so again.

V. CONCLUSIONS AND FUTURE WORKS

This paper described DaTAPlan, a framework that combines
data-driven task anticipation with knowledge-driven planning
for reliable and efficient human-agent collaboration. This
builds on our recent work that combined LLM-based task an-
ticipation with classical planning for a single agent in a domain
with no other actors [1]. Here, the LLM-based anticipation
is extended to accommodate different user patterns. Also,
the anticipated high-level tasks form the goal for a classical
planning system that generates a sequence of finer-granularity
actions, with both the agent and the human executing actions
to collaboratively achieve each task in the goal. In addition,
an approach enables adaptation to unexpected changes in the
action outcomes and preferences of the human. We experimen-
tally evaluated these capabilities and demonstrated substantial
improvement in performance compared with a framework
without collaboration or without the adaptation approach. The
paper opens up multiple directions of further research. First,
we currently do not model or support any active communica-
tion between the agent and the human; this constraint can be
relaxed to consider communication as an action. Second, we
consider the domain descriptions (including action costs) to
be complete and accurate; future work can explore reasoning
with incomplete descriptions and the incremental revision
of existing descriptions. Third, action execution has limited
uncertainty in the current implementation and there is full
observability; these assumptions can be relaxed in the future.
Overall, the long-term objective is to enable physical robots to
provide reliable and efficient assistance to humans in complex
domains.
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