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Toward Impedance Control in Human-Machine
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Abstract— Objectives: Adaptation of upper-limb
impedance (stiffness, damping, inertia) is crucial
for humans to physically interact with the external
environment during grasping and manipulation tasks.
We present a novel framework for Adaptive Impedance
Control of Upper-limb Prosthesis (AIC-UP) based on
surface electromyography (sEMG) signals. Methods:
AIC-UP uses muscle-tendon models driven by sEMG
signals from agonist-antagonist muscle groups to estimate
human motor intent as joint kinematics, stiffness, and
damping. These estimates are used to implement a variable
impedance controller on a simulated robot. Designed for
use by amputees, joint torque or stiffness measurements
are not used for model calibration. AIC-UP was evaluated
with eight able-bodied subjects and a transradial amputee
performing target-reaching tasks in simulation through
wrist flexion-extension. The control performance was
tested in free space and in the presence of unexpected
perturbations. Results: AIC-UP outperformed a neural
network that regresses the desired kinematics from sEMG
signals, in terms of robustness to muscle coactivations
needed to complete the task. These results were in
agreement with the qualitative feedback from participants.
Additionally, AIC-UP enabled the user to adapt the stiffness
and damping to the tasks at hand.

Index Terms— Myocontrol, impedance control, human
motor intent, muscle-skeleton models, prostheses.

I. INTRODUCTION

HUMANS use coactivation of agonist-antagonist muscles
to modulate the limb impedance in a time- and task-

dependent manner, independently from the limb kinemat-
ics [1]. Estimation of the motor intent in terms of joint kine-
matics and impedance would therefore be relevant when sub-
stituting missing limbs with artificial ones. However, enabling
a user to voluntarily control the impedance of even just a single
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Degree of Freedom (DoF) of an upper-limb prosthesis is still
an open problem. Our work aims to enable variable impedance
control of upper-limb prostheses; we describe a framework
that comprises simplified muscle-tendon models to extract
three degrees of control (kinematics, stiffness, and damping)
for a single DoF using low-density surface electromyographic
(sEMG) signals, in the absence of a reference joint torque and
stiffness. Here we first review methods that use low-density
sEMG signals to control a (simulated) prosthesis, including
methods that estimate the motor intent only as kinematics
(Section I-A), and those that also estimate and use the joint
impedance parameters in the controllers (Section I-B). We then
describe our contributions (Section I-C).

A. Estimation of motor intent as kinematics

Many methods have been developed to learn a mapping
from sEMG signals to target kinematics (i.e., joint kine-
matics or motion classes). These include pattern-recognition
methods [2], [3], regression-based [4]–[6], and unsupervised
ones [6]–[8]. In recent times, deep learning methods are
increasingly being used to extract sEMG features and learn
complex non-linear mapping between sEMG signals and
target kinematics [4], [9]–[14]. However, the robustness of
these methods has not been tested during control tasks that
require substantial changes in the coactivation of muscles
(i.e., limb impedance), making it unclear whether the control
performance of the algorithms deteriorates in these tasks.
In addition to data-driven approaches, progresses in muscu-
loskeletal modelling have provided physiologically accurate
kinematics and motion dynamics predictions. Muscle-tendon
models (MTUs) are used to estimate muscle-tendon forces,
and predict the body kinematics and dynamics of motion given
the input sEMG signals. The complexity of such simulations,
determined by the number of MTUs and the approach used to
model MTUs, is a trade-off between physiological accuracy
in the predictions [15]–[17] and computational cost [18]–
[20]. This is crucial in applications that have real-time con-
straints, such as prosthesis control. Moreover, the inability
to measure physiological parameters (e.g., moment arms)
needed for model identification, makes complex MTUs-based
simulations impractical when muscles may be (partly) missing.
Lumped muscle-tendon models have been introduced to limit
the modelling complexity by reducing the number of MTUs
and thus the number of sEMG recordings sites [21]–[23].
In these methods, muscles with the same functionality (e.g.,
agonist muscles) are modelled as a single MTU. As a result,
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the actuation of a DoF can be simplified to only two MTUs.
In addition to evaluating these methods in simple motions
in free space, recent studies have explored the robustness of
lumped MTUs to different arm loadings [24] and postures [25]
for able-bodied subjects. Preliminary results on the offline
prediction of kinematics during 3-DoF motion have also been
presented in [26] for an able-bodied subject. While promising
for prosthesis control applications, these methods do not com-
pute and use information about the muscle and joint impedance
available from MTUs models.

Our approach makes use of lumped muscle-tendon models.
However, in a departure from existing work, we define an
optimization framework for training such models to estimate
the user motor intent in terms of joint kinematics, stiffness, and
damping without using a reference joint torque or stiffness.

B. Impedance control of upper-limb prostheses

Given the association between cocontraction of ago-
nist/antagonist muscles and joint impedance [1], a signal defin-
ing the level of coactivation of agonist and antagonist muscles
is typically used in control schemes that attempt to adapt
the stiffness of the prosthesis. The coactivation index, also
defined as stiffness index, is computed as the weighted sum
of the amplitude of processed sEMG signals of agonist and
antagonist muscles [27]. Difficulties in discriminating changes
in sEMG signals associated with changes in joint position
or joint stiffness were avoided by using sEMG signals from
different muscle groups (chest and upper-limb) [28]. In [29],
a cocontraction index and a task-specific threshold on muscle
coactivation were used to limit the sensitivity of velocity-based
proportional control to variations in muscles coactivation and
enable an amputee to simultaneously control the velocity and
stiffness of one DoF by only using a pair of sEMG sensors.
Moreover, it was shown that the amputee preferred variable
stiffness control to a fixed-gain high-stiffness controller. Other
methods used reference joint torques and kinematics to learn
a model of joint stiffness and damping (polynomial function
of sEMG signals) [30], [31]. While these models have been
used to implement an admittance filter to estimate the DoF
kinematics from joint torque [31], the estimated stiffness
and damping were not employed to implement a variable
impedance controller on the robot.

Methods that use MTUs, do not estimate the joint stiff-
ness from the muscle-tendon model’s state and contraction
dynamics; typically, the joint stiffness is either computed as
a weighted sum of the amplitude of sEMG signals from
agonist-antagonist muscles, or as the weighted sum of the
joint torque generated by each muscle-tendon unit [32]. In
[32], the stiffness index was linearly mapped by calibration
to the desired stiffness range (i.e., joint stiffness) according to
the subject’s requirements, the type of task, and the robotic
system. Joint damping was set to vary proportionally to
the joint stiffness. The control performance provided by the
framework was evaluated with an able-bodied subject on a
knee exoskeleton. In the context of upper-limb exoskeletons, a
similar approach to stiffness estimation was described in [33].
In [34], the joint stiffness and position of a single DoF were

estimated from a pair of sEMG signals using two hyperbolic
tangent models driven by the sum and the difference of the
amplitude of processed sEMG signals, respectively.

Finally, there has been a limited evaluation of the control
performance provided by previous methods in relation to the
modulation of stiffness [28], [30]–[32], [34].

C. Contributions of this work

We make the following contributions:

• We describe AIC-UP, an sEMG-based framework, that
enables the user to voluntarily adapt the kinematics,
stiffness and damping of one DoF of a simulated robot
through wrist flexion-extension. AIC-UP comprises a
“Detection of human motor intent” component (Figure 1-
A) that incorporates lumped muscle-tendon models, and
the “Prosthesis control” component to execute the esti-
mated motor intent through a simulated robotic system
based on a position-based variable impedance controller.

• The framework’s design is constrained by the application
domain. Unlike prior work (Section I-B), we assume
the impossibility of measuring joint torque and stiffness
trajectories to optimise the muscle-tendon models. This
problem is tackled by enriching the dataset used to train
muscle-tendon models, designing a novel optimization
framework, and by imposing constraints on the parameter
space of muscle-tendon models.

We evaluated AIC-UP with eight able-bodied subjects per-
forming reaching tasks in free space and in the presence
of unexpected external perturbations. A case study was also
carried out with a transradial amputee. AIC-UP was compared
with a baseline comprising a neural network trained to learn
a mapping from sEMG to joint kinematics without explicitly
learning and estimating the joint stiffness or damping.

II. METHODOLOGY

We first describe the two components of AIC-UP, high-
lighted in Figure 1-A in pink and blue. Then, Section II-C
provides a solution to the ill-posed problem of estimating
the value of the parameters of MTUs in the absence of
a reference joint torque and stiffness. As an example of a
controlled robotic system, we simulate the model of the Puma
560 robot because its characteristics are well-understood; we
consider the chain from link 0 to link 2 and control joint
2. The simulation is implemented using CoppeliaSim [35]
and MATLAB [36]. For simplicity, the time dependence of
variables is dropped in the description below.

A. Detection of human motor intent

The first component of AIC-UP maps the preprocessed
sEMG signals of the agonist and antagonist muscles (ch1, ch2)
to an estimate of the user’s motion intent as joint kinematics,
stiffness and damping (sr, K, D) in two phases detailed below.
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Fig. 1. (A) Overview of our framework AIC-UP. It comprises a Detection
of Human Motor Intent block which includes muscle-tendon models and
a Prosthesis Control block. The framework outputs the predicted joint
position qf , the joint stiffness K and damping D. The joint position
qf is used as an optimisation signal for training the muscle-tendon
units parameters and it is the visual feedback provided to the subject
during online control. (B) Arrangement of the MTUs on the link of the
“simulated robot model”. The “Robot plant” has the same structure and
dynamics of the “simulated robot”. (C) Forces generated by the MTU ’s
muscle (CE, PE) and tendon components (DE, SEE) respectively.

1) Phase 1 - Muscle-tendon contraction dynamics: Two
lumped MTUs were used to model the macroscopic proper-
ties of agonist and antagonist muscles, based on the Hill’s
muscle-tendon model [37]. Specifically, we adopted the model
structure discussed in [38], where it was shown how the
serial damping element (DE) enabled the suppression of high-
frequency oscillations within the model. Each MTUi of length
liMTU is composed of a muscle of length lice in series to a
tendon of length lise. The muscle is modeled by a contractile
element (CE) and a parallel elastic element (PE). The tendon
comprises an elastic element (SE) in parallel to DE, both added
in series to the muscle (Figure 1-C). Given chi, CE generates
a force F i

CE as a function of lice and contraction velocity l̇ice.
The contraction dynamics of both MTUs predicts the muscle-
tendon forces (F1, F2). The state of the MTUs (lce, l̇ce) at
the next time step is obtained at the end of phase 2 of the
framework component, since it also depends on the predicted
joint position qr of the “Simulated robot model”.

2) Phase 1 - Muscle-tendon stiffness and damping: Among
the approaches detailed in Section I-B, in AIC-UP the stiff-
ness Ki and damping Di of each MTUi is estimated from
the MTUi state and then mapped to the simulated robot’s
joint space. Ki is modeled as the muscle stiffness Ki

m in
series with the tendon stiffness Ki

t , computed as Ki =
Ki

mKi
t/(K

i
m +Ki

t). Di is modelled as the muscle damping
in series with the tendon damping and computed in the same
way. We compute Ki

m as the directional derivative of Fm with

respect to unit vector of lice [39]:

Ki
m =

∂F i
m(lice, l̇

i
CE , chi)

∂lice
(1)

This formulation, differently from the stiffness index (Sec-
tion I-B), takes into account the state of the muscle
(lice, l̇

i
ce, chi) and it removes the contribution to stiffness due

to changes in muscle force due to changes in l̇ice and chi.
Similarly, Ki

t is computed as the directional derivative of
F i
t = F i

se+F i
de with respect to unit vector of lise = liMTC−lice.

While muscle damping Di
m was not computed in [39], we

obtained it as directional derivatives of F i
m with respect to l̇ice

unit vector as follows:

Di
m =

∂F i
m(lice, l̇

i
ce, chi)

∂l̇ice
(2)

The tendon damping Di
t was computed as directional deriva-

tive of F i
t with respect to the tendon extension velocity l̇ise =

l̇iMTU − l̇ice unit vector.
3) Phase 1 - Geometric arrangement of MTUs on robot’s link:

Figure 1-B shows the geometric arrangement of the MTUs on
the simulated robot link. Each MTUi is virtually attached
to the link from the Center of Mass (CoM) (lib) to a fixed
base (lia). The length liMTU is dependent on qr. Given the
parameters αi and the initial joint position qr = 0, we can
compute lia as liMTU sinαi. The values of lia and lib are constant
and identified based on the position of CoM and the initial
length of the MTUs. The MTUs length liMTU (qr) and moment
arm ri(qr) vary as function of qr:

liMTU (qr) =
√
(lia)

2 + (lib)
2 − 2lial

i
b cos (π/2− qr) (3)

Next, the muscle-tendon forces, stiffness, and damping are
mapped to joint space quantities using the Jacobian matrix
R(qr) = [r1(qr) r

2(qr)]
T = [

∂l1MTU (qr)
∂qr

∂l2MTU (qr)
∂qr

]T contain-
ing the moment arms ri of the two MTUs:

ri(qr) =
∂liMTU (qr)

∂qr
= lib sinα

i(qr)

with αi(qr) = acos (
−(lia)

2 + (lib)
2 + (liMTU )

2

2liMTU l
i
b

)

(4)

4) Phase 1 - Mapping from muscle space to joint space: The
net torque generated by applying the MTUs forces F1 and
F2 with moment arms R is computed as τr = [F1, F2]

T R.
Considering the definition of τr and the dependency of R on
qr [40], we compute K as follows:

K =
∂τr(qr)

∂qr
=

∂RT

∂qr
[F1, F2]

T + RT diag([
∂F1

∂qr
,
∂F2

∂qr
])R

(5)
Where the derivatives ∂Fi

∂qr
is the stiffness of MTUi. The joint

damping is computed as D =
∑2

i=1(Di(r
i)2).

5) Phase 2 - Forward dynamics: At this stage, the human
motor intent is represented by the joint torque τr, joint stiffness
K, and damping D. The torque τr is applied at the robot’s
joint using its forward dynamic model, to obtain the reference
motion sr = (qr, q̇r, q̈r) needed to implement the position-
based impedance controller discussed below.
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B. Prosthesis control
A position-based variable impedance controller is used to

track sr with K and D. The dynamic model for a robot with
one rotational joint is:

Mq̈r + g(qr) = τf + τext (6)

where M is the link’s joint space inertia, g is the gravity
compensation torque, and τext is the external perturbation on
the robot joint. We build on the impedance control method
used in the absence of force-torque readings [41] to define the
control law as follows:

τf = Mq̈r +K(qr − qf ) +D(q̇r − q̇f ) + g(qr) (7)

This definition uses the robot’s link inertia since only low
accelerations are reached during control. We design the MTUs’
length and contraction velocity to be a function of sr so that
any external perturbation τext only affects sf = (qf , q̇f , q̈f ),
while sr and the MTUs remain unaffected and represent the
user motor intent based on the input sEMG signal. This
enables the implementation of the user’s “corrective action” in
the impedance controller. In the absence of external perturba-
tions (τext = 0), qr matches qf . If τext is non-zero, depending
on K and D, qf will start diverging from qr. Therefore, qf
serves as visual feedback for the user, who can perform run-
time adaptation of the simulated robot’s state and gains (K, D)
by modulating the muscles’ coactivation to reduce the error
between qr and qf and achieve the desired performance.

C. Muscle-tendon models training
While the MTUs structure is defined based on [38], suitable

values for the parameters of each MTUi have to be defined.
Table IV lists the parameters pi ∈ Rm of MTUi to be
optimized. Related work uses a reference joint torque or joint
stiffness (Section I-B) to optimise the MTUs models. As
explained in Section I, our chosen domain of application is
upper-limb prosthesis, meaning that we do not have access to
any reference joint torque or stiffness. Solutions to this issue
are described in the following.

1) Structural assumptions on MTU: Muscle-tendon systems
characterised by a tendon longer than the muscle enhance con-
trol and impedance modulation [42], [43]. The hypothesis on
the functional properties enabled by this MTU’s structure has
been investigated in [44]. We thus define MTUs with a long
tendon compared to the muscle, by setting the tendon slack
length to 2

3 l
i
MTU . The muscle and tendon length ratio matches

that of the muscle-tendon complex investigated in [44].
2) Simplification of MTU parameters: Model re-

parametrization is detailed in Table IV. Sensitivity studies led
to two model simplifications: (i) the pennation angle is set to
be zero; (ii) The optimal length liopt is modelled as a constant
parameter to be estimated, and not as function of the input
activation [45].

3) Optimization signal: We collected sEMG signals and
the corresponding reference trajectory qtrainf to optimise the
MTUs within AIC-UP. We used the final joint position qf ,
which depends on the dynamics defined by the gains (K, D),
as the optimisation signal and collected examples of sEMG

signals and reference trajectory performed at different levels of
muscle coactivation (Section III-C.1). This important change
enabled us to train the MTUs such that the stiffness and
damping estimated from the MTUs’ state can be incorporated
directly into the position-based variable impedance controller
without further tuning. Including the impedance controller
in the optimization framework avoids a mismatch between
the dynamics of the MTUs and the robot’s one. Exemplary
experimental results in support of the argument are provided
in Appendix I and shown in Figure 6. The prediction function
f : R2m+2 → R acts on the input defined by [ch1(t), ch2(t)] ∈
R2 and the parameters of the MTUs p = [p1,p2] ∈ R2m

to produce the final joint position qf (t) ∈ R. Then, the
constrained optimization problem is:

min
p

√∑T
t=1(f([ch1(t), ch2(t)];p)− qtrainf (t))2

T

s.t. lb ≤ p ≤ ub

(8)

where qtrainf (t) ∈ R is the measured wrist flexion-extension
angular position; lb,ub ∈ R2m are the lower and upper
bounds of p in Table IV, and T is the trajectory length. The
following constraints are added to the optimization problem to
prevent numerical instability, aid in convergence, and impose
assumptions discussed in the section above:

• W i
des+W i

asc < liceInit, where liceInit is lice when qr = 0,
such that CE operates in the muscle-length range. Wdes

and Wasc are the width of the descending and ascending
branches of the isometric curve, as indicated in [38].

• if lice < 0.001liopt or lice > 0.95(liMTU − lisee0) set l̇ice =
0 such that liMTU = lice + lisee0 and tendon cannot be
compressed. lopt is the length at which the maximum
isometric force is reached, lsee0 is the tendon slack length.

• K > 0, D ≥ 0; required for control stability.
• tendon maximum extension (lise) is 0.1 · lisee0 [42].

III. EXPERIMENTAL EVALUATION

The experimental setup and protocol are illustrated in Fig-
ure 2. First, the data (E, qtrainf ) were collected as needed to
train AIC-UP and BL. Then, the trained model was used for
an online control experiment where the subject was given real-
time control of the (simulated) robot plant and had to perform
target-reaching tasks in the free space and in the presence of
unexpected perturbations.

A. Participants

Eight able-bodied volunteers (five females, three males, age:
27.87 ± 3.64, right-handed) without neuromuscular disorders
and prior experience in myocontrol, and a transradial amputee
(female, age 65) took part in the study approved by the
ethics committee of the University of Birmingham (ERN 19-
1564) and Imperial College London (18IC4685). The amputee
participant was not a prosthesis user.
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Fig. 2. A) Protocol for data collection (E, qtrain
f ) described in III-

C.1. B) Online control experiment described in III-C.2. Note that the
subject had no visual feedback on the force field, the force field in grey
is represented here only for explanation. C) Position of EMG sensors on
the subject’s forearm. D) Questionnaire of perceived controllability.

B. Experimental setup

Each participant sat in front of a screen, with their arm in
a neutral resting position along the body side. They wore a
Myoband by ThalmicLab (eight sEMG channels, frequency
200 Hz) positioned ≈ 5 cm below the elbow (Figure 2-
C). The raw sEMG signals were bandpass-filtered (20 - 500
Hz), and full-wave rectified; the root-mean-square temporal
features were extracted with a moving window of length 160
ms and step size 40 ms. The sEMG signals recorded by the
channels overlaying the Flexor Carpi Radialis and the Extensor
Carpi Ulnaris were selected and normalized according to the
maximum value recorded during the training phase to obtain
the activation signals ch1 and ch2. The sEMG from all the
channels of the Myoband were used for the baseline. The wrist
position qtrainf was tracked with a Qualysis motion capture
system for the able-bodied subject. For the amputee, qtrainf

was the trajectory of the visual cue the participant had to
follow during data acquisition experiment.

C. Experimental protocol

For each participant, experiments were conducted in three
sessions. In the first session, we collected data to train AIC-UP
and baseline (BL); the online control performance provided by
AIC-UP and BL was then tested on two separate days to avoid
muscle fatigue and involuntary bias due to the order in which
frameworks were evaluated.

1) Data acquisition for muscle-tendon model training: During
each trial, a visual cue moved along one of the axes and the
subject had to move their wrist to proportionally match this
cue. Each DoF motion was repeated 15 times while the subject

was instructed to perform the wrist motion while modulating
the muscle coactivation to achieve different levels of wrist
impedance (Figure 2-A). We ensured that the subjects under-
stood the concept of limb impedance by explaining to them
that muscle cocontraction allows modulating limb rigidity,
which affects the interaction with the external environment.
Although we focus on the control of a single DoF (flexion-
extension), we asked the subjects, during data collection only,
to also perform repetitions of ulnar-radial deviation so that
we could observe the “unintentional” flexion-extension motion
and include these in the training dataset. The sEMG signals E
and wrist position qtrain

f from 15 trials of flexion-extension
motion and the 15 indirect flexion-extension motions were
collected. A 60-40 split of this data was used for training and
validating the muscle-tendon models, with optimization based
on Simulated Annealing [46] (500 iterations, 5000 function
evaluations, initial value of temperature 300, annealing interval
50) since the cost function has discontinuous derivatives. The
same overall process was followed for the amputee participant,
except the trajectory of the visual cue (the black circle in
Figure 2-A) was used as qtrainf .

2) Online testing. Target-reaching task: As shown in Fig-
ure 2-B, in each trial a participant had visual feedback of
their predicted wrist position qf (green circle) and was asked
to perform wrist flexion-extension to accurately reach a target
position Ti (purple circle). Once at the target, the subject
had to maintain the position for three seconds. Every time
the subject could not maintain the position for the set time
the 3-second dwelling time was reset. The ratio between the
radius of the circle for qf and for the target Ti was 3

4 ,
requiring precise control. Experimental trials for each subject
were divided into three blocks (Figure 2-B): familiarisation
with the control interface; reaching tasks in the free space;
and reaching tasks in the presence of a perturbation field
τext that pushed qf away from the target. At the beginning
of each session, the subject was told that different motor
control strategies could be explored, (e.g., relaxed movement,
changing muscle coactivation), but the subject had no prior
knowledge of the method being tested. The subject was told
that some force would perturb qf , but no information about
the force field (type, magnitude, location) was provided to
avoid biasing their control strategy. This choice allowed us to
investigate the user’s (visual) perception of the external force
field depending on the control method being used (Section III-
D.2). A uniform force field was activated when the distance
from the centers of the cursor qf and the target was 15
[deg] (d in the equation of Figure 2) and pushed the cursor
away from the target. The magnitude of the perturbation was
defined as a percentage of the maximum torque τmax

f =
Kmaxqr generated by the subject during training for AIC-UP
by considering the maximum stiffness Kmax across trials. The
contribution of damping to τmax

f was not considered due to its
high dependence on joint velocity which could lead to values
of τmax

f unfeasible to counter during online control when the
joint velocity is likely to be low due to the resistance opposed
by the force field. The impact of different magnitudes of
force field was investigated in preliminary studies, concluding
that 10% of τmax

f was adequate to provide visual feedback
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perceived by the subject as a perturbation of qf to then trigger
a change in control strategy, and to avoid muscle tiredness.

D. Data-driven baseline

The baseline used for comparison was a two-layer neural-
network (NN) that learned a mapping from sEMG signals
to qtrainf [6] and predicted qr. The same training data were
used for training AIC-UP and NN. The NN was trained to
match the performance reported in [6]. To ensure accurate
motion tracking and perturbation rejection, a high-stiffness
(KB = 100[N/rad]) proportional-derivative controller was
added in cascade to the NN to track the predicted joint position
qr and obtain qf . The damping was set assuming a critically
damped system (DB =

√
KB/4[Ns/rad]) [47]. Notice that

the definition of τmax
f is suitable in relation to the proportional

and derivative gains of the high-stiffness controller.
1) Performance measures: The design of target-reaching

tasks to evaluate the online control of human-machine in-
terfaces is common in the literature and it is based on
Fitt’s studies [48]. We selected six widely used performance
measures [49] to quantify the task performance for four targets
illustrated in Figure 2-B: (i) Success Rate (SR) [%]: proportion
of successful trials, with a trial successful if the target is
reached within 30 s and the target position held for 3 s; (ii)
Near Miss (NM) [#]: number of times the subject entered
the target circle, but did not maintain the position for 3 s;
(iii) Time to Reach (TR) [s]: time to complete the trial, with
30 s as the maximum allowed time. All the measures are
affected by distance to the target, which may impact the
difficulty of the task and are thus weighted by an index of
difficulty [49] considering the target circle radius and the
distance form the origin to allow comparison across the four
targets. To further characterise the impact of enabling joint
stiffness and damping modulation for AIC-UP, to smooth
out the oscillation imposed by the force field, we considered
two additional performance measures: (iv) Coactivation (CA)
was computed as c̄h1 + c̄h2, where c̄hi is the normalised
amplitude of the preprocessed EMG signal averaged across
a trial. The same channels of the Myoband are used for AIC-
UP and BL to obtain c̄hi. (v) Smoothness (SPARC) of qf is
computed using the SPARC measure [50]; we expected to
observe a higher value of SPARC if the subject successfully
countered the external perturbations and modulated the joint
impedance to smooth out the oscillation faster. While BL has
constant high stiffness and damping, AIC-UP required the
user to modulate such values via muscle cocontraction; (iv)
The Mutual Information (MI) between τf and qr is used to
quantify the predictability of qr given τf ; MI has been used in
literature for dynamic system analysis (e.g., [51]). Since qr is
the unperturbed reference trajectory and τf is the torque that
results in qf , we expect MI to increase when qr matches qf ,
thus when the subject quickly counters the perturbation.

2) Survey of user’s perception of controllability: We explored
the user’s perceived controllability provided by AIC-UP and
BL, in terms of control intuitiveness, effectiveness and ro-
bustness asking the subjects to answer six questions about
the control methods at the end of each experimental session

(Questionnaire in Figure 2-D). We investigated if the subjects
modulated joint impedance as a strategy to accomplish the task
and asked them to describe the force field properties they un-
derstood while using the control methods and interacting with
the perturbations. Users had to choose one of the following
answers to the first three questions: good (A1), fair (A2), and
poor (A3). We have resolved to use a 3-level Likert scale since
we found that participants tended to avoid extreme-category
responses or could not decide between categories 1-2 and 4-5,
for a 5-levels scale. The remaining questions allowed free-
form answers. The participants were unaware of the control
method being evaluated when completing the questionnaire.

E. Independent stiffness control
To assess whether stiffness could be controlled indepen-

dently from kinematics, we analysed the correlation between
joint kinematics, muscle coactivation and joint stiffness and
damping during the three phases of the reaching-target task
performed in the presence of perturbations: phase 1) move-
ment from the origin towards the target, before entering the
force field; phase 2) moving in the force field, towards the
target; phase 3) maintaining the target position for 3 seconds
while countering the force field perturbations. We defined the
following measures: i) MI(qr,K), the correlation between the
joint position and joint stiffness computed as mutual infor-
mation between the two variables; ii) MI(q̇r, D), the mutual
information between joint velocity and joint damping; iii)
MI(K, ch1 + ch2), mutual information between coactivation
of muscles and joint stiffness; iv) the integral of joint stiffness∫
K and of vi) damping

∫
D.

IV. RESULTS
All participants completed the online reaching-task ex-

periment with AIC-UP and BL, and the questionnaire. The
Wilcoxon signed-rank test was used to measure the statistical
significance (p-values < 0.05) between the distributions of
performance measures for AIC-UP and BL. These were not
normally distributed based to the Kolmogorov–Smirnov test.

A. Offline tracking results
In able-bodied subjects, the average root mean square error

(RMSE) between the predicted and reference joint position ob-
tained during offline testing was RMSEAIC−UP = 0.2291±
0.0457 [rad] and RMSEBL = 0.1763 ± 0.0435 [rad], for
AIC-UP and BL respectively. BL achieved higher prediction
accuracy than AIC-UP. For the amputee, the tracking errors
were RMSEAIC−UP = 0.4014 [rad] and RMSEBL = 0.5817
[rad]. The substantially higher average RMS values for the
amputee than the able-bodied subjects are mainly due to lack
of reference wrist trajectory for the amputee.

B. Online control. Results for able-bodied subjects.
Figure 3-A shows the distribution of the average (across-

trials) performance of the eight able-bodied participants. Sta-
tistically significant differences in distributions of average
performance measures between AIC-UP and BL are indicated
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Fig. 3. Values of performance measures for the able-bodied subjects A) and the amputee B) in the absence and presence (highlighted in
shaded yellow) of perturbations. A) Each group contains the average (across 40 trials) performance of the eight subjects; B) Each group contains
the performance measure value of all trials. A statistically significant (p-value < 0.05) difference of the median are highlighted with an asterisk.
Quantitative results describing the plots and the p-values are in Table I and Table II of Appendix II. Note that in B) the success rate is a single value
for each group, no statistical analysis is considered.

Fig. 4. Reaching-target tasks in the presence of perturbation are considered. For each measure, the distribution of average values across able-
bodied participants (A), and across trials for the amputee (B), is computed in three distinct phases of the task, indicated in red, blue and black: (1)
moving up to the force field, (2) crossing the force field to reach the target, (3) matching the target position for 3 seconds against perturbations.
Statistically significant differences (p-value < 0.05) between median values of the task phases are indicated with an asterisk. Numerical values on
statistically significant differences are in Table III of the appendix.

with a red asterisk at the top of the plot for the corresponding
measure. In particular, the performance measures are com-
pared for BL and AIC-UP when performing the task in the
same condition (i.e., perturbation off, and on). The SR, NM
and TR matrices are first considered to evaluate the task com-
pletion. Unlike BL, AIC-UP consistently enabled successful
task completion with or without perturbation: the average SR
metric was 95% and 82.19% for AIC-UP and BL (respec-
tively) without perturbation, and 93.75% and 76.87% with
perturbation. AIC-UP had a significantly lower number of NM
during tasks in the presence of perturbations meaning that the
subjects using AIC-UP were able to more precisely maintain
the target position. The distributions of NM are in agreement
with the task success rate. While the time to reach (TR) the
target was not significantly lower for AIC-UP than BL, it can

be observed that BL had a larger interquartile range, which is
explained by the higher number of NM. The flexor-extensor
coactivation was significantly higher when the subjects used
AIC-UP instead of BL, indicating the active modulation of
coactivation to achieve the task. While CA has a degree of
correlation to joint stiffness, it is subject to variability due to
the different strategies the subjects may adopt and depending
on the control method being used. SPARC was greater with
AIC-UP than with BL indicating that participants were able
to smooth out the oscillations imposed by perturbations when
using AIC-UP through modulation of the muscle coactivation.
For BL, oscillations are bound to the accuracy of the estimates
provided by the NN (see Figure S3 in the Supplementary
Information). Finally, we observed that AIC-UP provided a
significantly higher MI between τf and qr compared with BL,



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 5. Able-bodied participants and amputee’s responses to Q1-
3 of the questionnaire, completed at the end of the session with or
without external perturbations (highlighted in yellow). For able-bodies,
each category shows the fraction of subjects who provided a certain
answer. For the amputee, the same question is asked every 10 trials,
and the 4 answers are shown. The participants could choose among
good (A1); fair (instances of low controllability) (A2); poor (A3).

with or without perturbation, suggesting that the participants
using AIC-UP were able to modulate the joint stiffness and
damping, used in the control law to obtain τf , to successfully
complete the task and address the perturbations if needed.
Overall, these results indicate that AIC-UP outperformed BL
and effectively enabled joint stiffness and damping modulation
through coactivation of agonist and antagonist muscles.

We investigated the perceived controllability of AIC-UP
and BL among subjects; results for Q1-Q3 are summarized
in Figure 5. Subjects indicated that AIC-UP provided a better
match between motor intent and cursor motion, resulting in a
more timely execution of motor commands, and more precise
control than BL; these differences between the two controllers
were more pronounced with perturbations. For Q4, six out of
eight subjects gave a correct description of the perturbation
field when using AIC-UP while two subjects were unsure;
with BL, five out of eight subjects could not correctly describe
the location of the force field and the others were unsure.
For Q5, all the subjects had the same control strategy with
BL: adopt low muscle cocontraction and move the wrist
until the joint limit is reached. With AIC-UP, two subjects
did not significantly increase muscle cocontraction, but the
other six adapted joint impedance to counter perturbations.
For Q6, all subjects agreed impedance modulation did not
improve performance with BL; two subjects stated that it
resulted in the worst perceived controllability. With AIC-
UP, on the other hand, six out of eight subjects indicated
that impedance adaptation helped counter perturbations; two
subjects were unsure. These results support and correspond to

the quantitative results in Figure 3-A.

C. Online control. Results for the amputee.
The values of performance measures obtained over the 40

trials per session by the amputee participant are reported in
Figure 3-B. We observed that AIC-UP provided a higher SR
than BL, with or without perturbation: average values were
87.50% and 65% for AIC-UP and BL without perturbations,
and 80% and 55% with perturbations. NM was significantly
higher with BL than with AIC-UP in the presence and absence
of perturbations, which is in accordance to the relative SR.
While there was no significant difference in TR for the able-
bodied participants, for the amputee AIC-UP provided a sig-
nificantly shorter TR than BL in the presence of perturbations.
When the amputee used AIC-UP, there was a significant
increase in coactivation. Moroever, SPARC and MI between
τf and qr were significantly greater with AIC-UP than with
BL, with or without perturbation.

Finally, in Figure 5 the amputee’s responses to Q1-Q3 are
shown; we asked the subject to answer questions four times per
session in an attempt to obtain more reliable answers. Similar
to the responses from able-bodied participants, the amputee
indicated that AIC-UP provided better controllability than BL,
and correctly described the force field (Q4) with AIC-UP. For
Q5, the amputee’s control strategy when using BL changed
from tensing up the muscles to trying to minimally co-activate
the muscles “or the cursor would jump too far”; this was an
example of the baseline incorrectly assigning an increase in
activation to a change in position. When using AIC-UP, the
amputee focused on cocontracting the muscles of the forearm
when needed. For Q6, the subject was unsure if impedance
modulation by muscle coactivation improved the performance
with BL since the cursor would sometimes oscillate unexpect-
edly; with AIC-UP, however, she indicated three times that
stiffening the muscles helped to counter the perturbations, and
mentioned that it once led to some overshoot. Overall, these
results support and match the quantitative results.

D. Modulation of joint kinematics and impedance
For able-bodied participants (Figure 4-A), there was a

statistically significant decrease in correlation between joint
position qr and stiffness K between phase 2 and 3, and also
between joint velocity and joint damping. In fact, in phase 3
the subject has to maintain the position while modulating K.
Notably, the correlation between K and coactivation is signif-
icantly higher in phase 2 and phase 3 than in phase 1 where
no perturbation is applied. Finally, the median value of

∫
K

in phase 3, was significantly higher than in the other phases.
This is in agreement with experimental studies showing that
static stiffness is higher than the stiffness reached during
dynamic movements [52]. The same can be observed for

∫
D,

higher in phase 3 than in phases 1 and 2; in phase 3 the
muscle-tendon models operate mostly in isometric conditions
and the muscle has low contraction velocities. Overall, these
results indicate that the participants modulated the values of
K and D by changing the muscles’ coactivation in a time
and task-dependent manner. The same can be observed for
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the amputee, with statistically significant differences between
all three phases for also the measures MI(qr,K), and

∫
K.

The higher correlation between coactivation and stiffness in
all phases than for able-bodies subjects can be explained by
considering that the amputee’s flexors and extensors operate
in isometric conditions. However,

∫
K and

∫
D were higher

in phase 2 than in phases 1 and 2 indicating that the amputee
might have coactivated the muscles throughout phase 1 and
phase 2. Consider that phase 2 and phase 3 have different
durations, which impact

∫
K and

∫
D.

V. DISCUSSION AND CONCLUSION

We described AIC-UP, a novel sEMG-based interface to
voluntarily control the kinematics and the joint impedance
(stiffness and damping) of a DoF of a simulated robot. Unlike
prior work, two lumped muscle-tendon units were used to
decode the motor intent in terms of joint kinematics, stiffness
and damping. This required a reparametrization and structural
assumption of the muscle-tendon units, and the design of an
optimization framework to train the muscle-tendon models
that included the impedance controller (Section II-C). In
contrast to previous work, our framework does not require the
measurement of joint torque or stiffness to train the models and
it is therefore suitable for application in upper-limb prosthesis
control. Note that we do not claim to learn stiffness and
damping values that match the biological ones. Instead, our
AIC-UP provides a coherent representation of the dynamics
of the MTUs and that of the robot, leading to improved
controllability. We showed that AIC-UP resulted in a signif-
icantly higher performance compared to the control BL, and
allowed the able-bodied participants to exploit joint stiffness
and damping adaptation as a means to modulate the physical
interaction between the robot’s plant and the environment. We
further demonstrated that correlation between joint kinematics
and stiffness or damping is substantially different during task
execution, suggesting that AIC-UP enables time and task
dependent modulation of stiffness and damping regardless of
the joint position. While the methods were tested with a single
amputee, the obtained results were coherent with those of the
able-bodied participants.

In this work, we focused on a single DoF to isolate
confounding factors. The insight we obtained will be used to
expand AIC-UP to multi-DoF control. While lack of evaluation
on a real prosthesis may be considered a limitation, we believe
that the framework design and testing in a simulated environ-
ment, in the absence of physical constraints imposed by the
hardware, is a necessary step towards improving methods for
estimation of motor intent from sEMG signals. Observations
from experimental results in simulation may be used as a per-
formance baseline for when the framework is used to control a
real robotic system. Moreover, because the chosen application
domain is prosthesis control, we do not use a model of the
biological limb, but we optimize the muscle-tendon models to
implement the desired motor intent on a given robotic system;
AIC-UP can be thus applied to any other robotic system
with know kinematic and dynamic properties. In conclusion,
our framework makes a step towards enabling impedance

adaptation of prosthesis. While upper-limb prostheses was the
chosen application domain, the approach may also be relevant
in other rehabilitation device applications, or in human-robot-
interaction scenarios, such as teleoperation.

APPENDIX OVERVIEW

In Appendix I we provide exemplary results in support
of including the impedance controller in the optimization
framework for estimating MTUs’ parameters values. Ap-
pendix II provides numerical values and statistics to support
the experimental results in Section III. In the Supplementary
Information, we show the time evolution of values of MTUs’
and joint variables during task trials.

APPENDIX I
IMPEDANCE CONTROLLER IN OPTIMIZATION FRAMEWORK

Fig. 6. Trajectory tracking during offline evaluation of AIC-UP. The black
dotted line is the ground truth position. The blue line is the predicted
trajectory under the following conditions: (top) framework optimization
and evaluation included the impedance controller; (center) framework
training and testing did not include the impedance controller; and
(bottom) the optimization framework did not include the impedance con-
troller, but the evaluation framework included the impedance controller.

As discussed in Section II-C, our optimization method uses
qf as an optimization signal, which is affected by the use of
K and D as gains of the position-based impedance controller.
Existing methods(Section I-B) instead use the joint torque τr
and qr as optimization signal. A reference joint stiffness may
also be used. In this example, we trained the MTUs using
qr as optimization signal (60% of collected data), i.e., the
impedance controller and the robot’s plant were not included
in this training process. We then evaluated the trained MTUs
on the entire dataset (for completeness) as part of the entire
framework that includes the impedance controller and the
robot’s plant (Figure 6, third plot). We showed that K and D
cannot be used directly as gains in the impedance controller



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE I
DATA IN SUPPORT OF RESULTS FOR ABLE-BODIED PARTICIPANTS SHOWN IN FIGURE 3-A. WILCOXON SIGNED-RANK TEST IS USED TO ASSESS

STATISTICALLY SIGNIFICANT DIFFERENCES (P-VALUE < 0.05) BETWEEN AIC-UP AND BL.

Perturbations OFF Perturbations ON
AIC-UP BL AIC-UP BL

Median IQR Median IQR P-value (< 0.05) Median IQR Median IQR P-value (< 0.05)
SR 97.50 5 80 11.25 0.009 97.50 11.25 72.50 33.75 0.03
NM 0.68 0.92 1.71 1.86 0.06 1.00 1.12 3.72 3.10 0.004
TR 9.39 2.89 9.19 3.48 0.87 11.57 2.68 13.19 5.18 0.13
CA 0.28 0.06 0.20 0.06 p <0.001 0.39 0.14 0.25 0.10 p <0.001

SPARC -3.16 1.76 -5.32 3.08 0.04 -5.90 2.98 -10.32 5.72 0.06
MI 0.52 0.38 0.08 0.05 p <0.001 0.58 0.71 0.33 0.11 0.03

TABLE II
DATA IN SUPPORT OF RESULTS FOR THE AMPUTEE, SHOWN IN FIGURE 3-B. WILCOXON SIGNED-RANK TEST IS USED TO ASSESS STATISTICALLY

SIGNIFICANT DIFFERENCES (P-VALUE < 0.05) BETWEEN AIC-UP AND BL.

Perturbations OFF Perturbations ON
AIC-UP BL AIC-UP BL BL
Median IQR Median IQR P-value (<0.05) Median IQR Median IQR P-value (<0.05)

NM 0 0 2 4 p < 0.001 0 0 2 4 p < 0.001
TR 10.55 5.65 14.81 14.57 0.12 14.80 25.27 22.65 19.47 0.06
CA 0.44 0.30 0.22 0.07 p < 0.001 0.49 0.24 0.30 0.25 p < 0.001

SPARC -2.26 1.60 -2.91 3.83 0.06 -3.15 5.54 -8.42 12.48 p < 0.001
MI 0.21 0.39 0.12 0.18 0.02 0.82 0.79 0.36 0.46 p < 0.001

TABLE III
DATA IN SUPPORT OF RESULTS IN FIGURE 4. WILCOXON SIGNED-RANK TEST IS USED TO ASSESS STATISTICALLY SIGNIFICANT DIFFERENCES

(P-VALUE < 0.05) BETWEEN MEDIAN VALUES OF THE TASK PHASES FOR ABLE-BODIED SUBJECTS AND THE AMPUTEE WHEN USING AIC-UP.

Able-bodied subjects Amputee
AIC-UP (Perturbation ON) AIC-UP (perturbation ON)

Phase 1 - 2 Phase 2 - 3 Phase 1 - 3 Phase 1 - 2 Phase 2 - 3 Phase 1 - 3
P-value (<0.05) P-value (<0.05) P-value (<0.05) P-value (<0.05) P-value (<0.05) P-value (<0.05)

MI(qr,K) 0.12 0.02 0.09 p < 0.001 p < 0.001 0.01
MI(q̇r, D) p > 0.9 0.006 0.16 0.89 p < 0.001 p < 0.001

MI(K, ch1 + ch2) 0.07 0.90 0.03 0.01 p < 0.001 0.06∫
K 0.90 0.01 0.001 0.01 p < 0.001 p < 0.001∫
D 0.53 0.01 0.001 0.17 p < 0.001 p < 0.001

and that this leads to oscillatory behavior and instabilities
of the robot’s plant. This explains why in related works the
MTUs stiffnesses were tuned to implement a position-based
control on the robot. This solution allows stable control but
does not support the key requirement of matching the MTUs
dynamics with the robot’s dynamics. Figure 6 shows the
offline evaluation of the framework when (i) the optimization
and evaluation framework included the impedance controller;
(ii) did not include the impedance controller; (iii) when
the optimization framework did not include the impedance
controller, but the evaluation framework did.

APPENDIX II
QUANTITATIVE VALUES AND STATISTICS

In Table I and Table II we report the median and in-
terquartile range (IQR) values of the distributions of average
performance measures shown in Figure 3-A and Figure 3-B,
for AIC-UP and BL. Results obtained during trials performed
in the absence and presence of perturbation are shown on the
left and right sides of the tables. We test the significance
(p-value < 0.05) of the difference in performance provided
by AIC-UP and BL in the case of “perturbation off” and

“perturbation on” using Wilcoxon signed-rank and reported
the p-values in the tables. In Table III we report the p-values
in support of the results in Figure 4. In Table IV we report
the list of parameters optimised for each MTUs, the lower and
upper bound of such values, as discussed in Section II-C.

ACKNOWLEDGMENT

The authors thank Deren Barsakcioglu, Irene Mendez
Guerra, Milia Helena Hasbani, and Patrick G Sagastegui Alva
for their support in conducting the experiments at ICL.



FERRANTE et al.: PREPARATION OF BRIEF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

TABLE IV
PARAMETERS pi OF MTUi ESTIMATED DURING MODEL

OPTIMIZATION; SEE [38] FOR DETAILS. THE COLUMN “VARIABLE”
DETAILS OUR RE-PARAMETRIZATION. THE LOWER AND UPPER BOUNDS

ARE SET EXPERIMENTALLY AND BASED ON PRIOR WORK [53].

Parameter Name Variable Lower Bound Upper Bound
Fmax p̄1 1000 6000
vpee p̄10 1.1 3
lopt p̄2linit

ce 0.05linit
ce 0.085linit

ce
fpee0 p̄1p̄11 0.5p̄1 1p̄1
Wdes p̄2p̄3 0.7p̄2 3.5p̄2
D p̄12 0.001 3
Wasc p̄2p̄4 0.7p̄2 3.5p̄2
R p̄13 0 0.8
vdes p̄5 1.2 3
lsee0

2
3
lMTU

2
3
lMTU

2
3
lMTU

vasc p̄6 1.2 3
∆Unl p̄14 0.02 0.07
Amax p̄7 0.1 0.4
∆Ul p̄14p̄15

1
3
p̄15

2
3
p̄15

Bmax p̄8 1.1 5.1
∆Fsee0 p̄1p̄16 0.3p̄1 1p̄1
lpee0 p̄2p̄9 0.7p̄2 0.95p̄2
S p̄17 1.2 2
F p̄18 0.5 2
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