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Abstract—Key challenges to widespread deployment of mobile
robots include collaboration and the ability to tailor sensing and
information processing to the task at hand. Partially observable
Markov decision processes (POMDPs), an instance of proba-
bilistic sequential decision-making, can be used to address these
challenges in domains characterized by partial observability and
non-deterministic action outcomes. However, such formulations
tend to be computationally intractable for domains that have
large, complex state spaces and require robots to respond to
dynamic changes. This paper presents a hierarchical decom-
position of POMDPs that incorporates adaptive observation
functions, constrained convolutional policies and automatic belief
propagation, enabling robots to retain capabilities for different
tasks, direct sensing to relevant locations and determine the
sequence of sensing and processing algorithms best suited to
any given task. A communication layer is added to the POMDP
hierarchy for belief sharing and collaboration in a team of robots.
All algorithms are evaluated in simulation and on physical robots
localizing target objects in dynamic indoor domains.

I. INTRODUCTION

Mobile robots are increasingly being deployed in real-world
application domains such as disaster rescue and medicine
due to the ready availability of high-fidelity sensors and the
development of sophisticated algorithms to process sensor
inputs. Key challenges to widespread deployment of robots
include collaboration and the ability to adapt sensing and
information processing to the task at hand. In real-world do-
mains characterized by partial observability, non-deterministic
action outcomes and unforeseen dynamic changes, a robot
equipped with multiple sensors cannot reliably observe the
entire domain from a fixed location. In addition, information
can be extracted from sensor inputs using algorithms with
varying levels of uncertainty and computational complexity.
It is therefore a challenge for robots to respond to dynamic
changes by fully exploiting information relevant to the task at
hand. Although humans can provide rich information about the
task and domain, humans may not have the time and expertise
to provide elaborate and accurate feedback in complex do-
mains. Furthermore, multirobot collaboration poses additional
challenges because communication may be unreliable and
robots in the team may possess different capabilities.

The long-term objective of our research is to enable robots
to collaborate with non-expert humans, automatically acquir-
ing and using relevant sensor inputs and human feedback
based on need and availability. Towards this objective, this
paper focuses on reliable and efficient vision-based sensing,
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information processing and collaboration in a team of mobile
robots. Our prior work introduced a novel two-layered hierar-
chical decomposition of partially observable Markov decision
processes (POMDPs) [15], enabling a robot and a human
to jointly reason about and manipulate objects in simplistic
tabletop scenarios [29]. This paper describes more recent
research corresponding to the following contributions [32]:
• Each robot automatically directs sensing to relevant loca-

tions and determines the sequence of information processing
algorithms appropriate for any given task.
• A communication layer is added to the POMDP hierarchy

to enable each robot to probabilistically merge own beliefs
with the information communicated by teammates.

The remainder of this paper is organized as follows. Section II
discusses related work in visual planning and collaboration,
while Section III describes our POMDP hierarchy. Experi-
mental results in simulation and on robots are presented in
Section IV, followed by a discussion of conclusions and future
work in Section V.

II. RELATED WORK

Classical planning algorithms typically require prior knowl-
edge of domain states, action outcomes and contingencies [12],
and considerable research has been done to relax these con-
straints [3], [24]. The Planning with Knowledge and Sensing
(PKS) planner [24] uses a first-order language to describe
actions in terms of their effect on the agent’s knowledge,
rather than their effect on the world. The system is non-
deterministic because the agent’s knowledge of state is not
uniquely determined by the actions performed. The Continual
Planning (CP) algorithm [3] interleaves planning, execution
and monitoring, and postpones reasoning about uncertain
states by asserting that action preconditions will be met when
that point is reached during plan execution. Replanning occurs
if preconditions are not met during execution or are met
earlier. However, it is a challenge to use such algorithms to
support capabilities required in robot application domains, e.g.,
the ability to accumulate evidence by applying information
processing algorithms more than once.

The ability of POMDPs to model domains characterized
by partial observability and non-determinism has been used
to plan actions in tasks such as robot navigation and image
interpretation [10], [19]. Probabilistic graphical models have
also been used for sensor placement and active sensing [17].
These algorithms typically require substantial knowledge of
task and domain and/or require human supervision, but human
participants may not have the time and expertise to provide
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elaborate feedback or accurate domain knowledge. In addition,
POMDP formulations of complex domains frequently result
in exponentially increasing state spaces and modern POMDP
solvers can (in the worst case) have an exponential time
complexity. Researchers have hence imposed structure (or
hierarchy) on problem domains to support POMDP formula-
tions [10], [25]. Theocharous et al. [31] modeled hierarchical
POMDPs as dynamic Bayesian networks and used multi-
resolution spatial maps for robot navigation. Pineau et al. [25]
used a POMDP hierarchy for behavior control of a robot
assistant, with bottom-up planning and top-down action execu-
tion. However, these algorithms still require expert supervision
for creating the hierarchy and associated models. To make
POMDP formulations computationally tractable, researchers
have also introduced factored representations that separate the
fully and partially observable portions of the state [21]. In
parallel, attention is being devoted to knowledge representation
and the use of commonsense knowledge in robotics [1], [8],
[11]. More recent work is focusing on combining logical
and probabilistic reasoning for task and motion planning on
robots [13], [16]. However, substantial human supervision is
required to acquire and revise domain knowledge, which may
be a challenge in complex domains.

Many algorithms have been developed for multirobot and
multiagent collaboration [22], [23]. Researchers have also
developed algorithms for decentralized information fusion,
e.g., the decentralized delayed-state information filter enables
heterogeneous agents to fuse information [7], and a decentral-
ized information-gathering algorithm has been able to provide
scalability, robustness and modularity [20]. However, these
algorithms are not well suited to model the partial observ-
ability of robots deployed in dynamic domains. Although
decentralized POMDPs (Dec-POMDPs) are being used for
multiagent collaboration [18], [28], the computational com-
plexity of solving Dec-POMDPs is higher than that of default
POMDPs [2]. Another option is to use interactive POMDPs (I-
POMDPs) [14] that enable agents to model the behavior (and
preferences) of other agents as interactive beliefs with arbitrary
levels of nesting. However, I-POMDPs have high computa-
tional complexity and require significant domain knowledge.
An important factor in multirobot collaboration is the unrelia-
bility of communication between robots. Research has shown
that complex communication strategies do not necessarily
benefit robot teams engaged in collaborative tasks [27]. The
POMDP hierarchy described in this paper supports automatic
belief propagation and model generation, enabling robots to
adapt sensing and information processing to the task at hand.
The hierarchy is augmented with a communication layer for
belief sharing and multirobot collaboration.

III. PROBLEM FORMULATION

This section describes the problem domain, formulates the
visual planning task using hierarchical POMDPs and describes
the approach for multirobot collaboration.

A. Problem Domain and Hierarchy Overview
The visual planning and collaboration algorithms are illus-

trated in the context of a team of robots localizing objects in

Fig. 1: An overview of the POMDP hierarchy and scenario.

large, complex and dynamic indoor office domains. Figure 1
summarizes the POMDP hierarchy for sensing, information
processing and collaboration. Each robot uses a POMDP
hierarchy to locate target objects. The top-level visual sensing
(VS)-POMDP computes the sequence of 3D scenes to process
to locate a specific target object (Section III-B). For any chosen
scene, the robot moves to an appropriate location and uses a
scene processing (SP)-POMDP comprising one or two layers
(depending on scene complexity) to determine the sequence
of information processing algorithms to apply on a sequence
of regions of interest in images of the scene (Section III-C).
Each robot also uses the communication layer to share beliefs
and collaborate with teammates (Section III-D).

B. VS-POMDP for Visual Search
In an office or a home, a robot has to move and analyze

different scenes because target objects may exist in different
locations in a room or in different rooms. Consider the situa-
tion where the robot has learned a domain map based on (laser)
range data, using a simultaneous localization and mapping
algorithm to revise the map and compute own position in the
map. To localize a specific target, the 3D area is represented
as a discrete 2D occupancy grid. Each cell in the grid stores
the probability of occurrence of the target object in that cell.
The size of each cell is based on the field of view of the sensor
(i.e., camera). The VS-POMDP poses sensing as the task of
determining a sequence of actions (i.e., scenes to process) that
maximizes information gain, or equivalently reduces entropy
of the probability distribution over all cells. The VS-POMDP
tuple 〈S,A,T,Z,O,R〉 for localizing an object in a domain with
N cells is defined as:
• S : {si, i ∈ [1,N]} is the state vector; si corresponds to the

event that the target object is in cell i.
• A : {ai, i ∈ [1,N]} is the set of actions. Executing ai causes

the robot to move to and analyze cell i.
• T : S×A× S′ → [0,1] is the state transition function, an
identity matrix for actions that do not change the state.
• Z : {present, absent} is the set of observations that indi-

cates the presence or absence of the target in a cell.
• O : S×A×Z→ [0,1] is the observation function, which is

learned (see below).
• R : S×A→ R is the reward specification that is based on
belief entropy (see below).

Since the robot cannot observe the true state, it maintains a
belief state, a probability distribution over the underlying set
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of states. The entropy of belief distribution Bt is given by:

H (Bt) =−
N

∑
i=1

bi
t log(bi

t) (1)

where bi
t is the ith entry of the belief distribution over the

learned domain map at time t. The reward of action at is
defined as the reduction in entropy between belief state Bt−1
and the resultant belief state Bt after executing action at :

R(at) :=H (Bt−1)−H (Bt) (2)

=∑
k

bk
t log(bk

t )−∑
j

b j
t−1log(b j

t−1)

When nothing is known about the target object’s location,
the belief is uniformly distributed and entropy is maximum.
Entropy reduces as the belief distribution converges to states
likely to be the target’s location. To enable robots to exploit
local symmetries in visual processing for computational effi-
ciency, costs associated with robot motion are included in a
separate post-processing step—see Equation 9.

The observation function models the probability of target
detection as a function of the robot position and target position:

if isBlocked(s j,ak) (3)
O(zi = present,s j,ak) = Pr(zi = present|s j,ak) = β

else

O(zi = present,s j,ak) = η · exp{−1
2

λα
T

Σ
−1

α}

O(zi = absent,s j,ak) = 1−O(zi = present,s j,ak)

where the probability of observing the target in cell i given that
the target is in cell j and the focus is on cell k, i.e., p(zi|s j,ak),
is a Gaussian distribution whose mean is the target’s position.
The term α is the offset between target position and the cell
being examined, and λ represents the sensitivity of visual
recognition to distance. The covariance of the Gaussian, i.e.,
Σ, represents the uncertainty in the observations, e.g., a higher
uncertainty is associated with an observation of the target at
a greater distance. The factor η is a normalizer. If there is an
obstacle between robot and the target, i.e., isBlocked(s j,ak),
β is a small probability that the target can still be observed.
This observation function is learned from the lower-level
POMDPs in a semi-supervised manner [29]—it is used to
perform belief updates based on observations, and to generate
observations in the simulated experiments. As with the motion
costs, the orientation of target observations is included in a
post-processing step—see Equation 16.

Given the model parameters, belief update in a POMDP is
based on Bayesian inference:

Bt+1(s′) =
O(s′,at+1,ot+1)∑s T (s,at+1,s′) ·Bt(s)

p(ot+1|at+1,bt)
(4)

POMDP solvers use such a model to compute a policy
πH : Bt 7→ at+1 that maps belief states to actions. In the
VS-POMDP, an existing implementation of policy gradient
algorithms [4] is used to compute the stochastic policy that
maximizes entropy reduction over a planning horizon.

1) Convolutional Policy (Kernel Extraction): Practical do-
mains can change, have different shapes and sizes, and the
number of cells can be arbitrarily large; solving POMDP for-
mulations of such domains can be computationally expensive.
The proposed hierarchy addresses this challenge by learning
a convolutional policy kernel that exploits the rotation and
shift-invariance of visual search. This strategy is motivated by
the fact that observations obtained by a robot at any location
are primarily influenced by (and modify beliefs about) the
neighboring locations [5]. A stochastic policy kernel is hence
learned from the baseline policy for a small local region:

K̄(s) = (πV ⊗ CK
m)(s) =

∫
π

V (s̃)CK
m(s− s̃)ds̃, (5)

K = ( ∑
states

K̄) ·/W

where πV is the (baseline) VS policy, CK
m is a mask of the same

size as the kernel being learned, K̄ is the un-normalized kernel,
W is the count of accumulated weights for each action and K
is the normalized kernel. A small kernel size is chosen to allow
generalization to maps of different sizes, and the baseline
policy’s size is chosen based on computational considerations.
No other constraints are imposed on the kernel or map.
Consider Figure 2(a), where a 3×3 policy kernel is extracted
from a 5×5 baseline policy, a 2D matrix whose rows denote
actions weights for specific states. Each row is re-arranged as
a 2D matrix (of the same size as the map) that stores action
weights when focusing on a specific state, decomposing the
policy into layers as shown in the left column of Figure 2(a). A
3×3 mask CK

m is convolved with the policy layers and weights
in the region covered by the mask are accumulated, as shown
in the middle column of Figure 2(a). Since weights in cells
outside the masked region are not considered, the resultant
kernel is normalized (using matrix W ) to obtain K, as shown
in the right column of Figure 2(a).

In addition to the learned policy kernel, a small weight value
is computed to be assigned (during policy extension) to cells
further away from the center of the mask:

W B =

∑
actions

∑
states

π
V −∑ ∑

states
K̄

Nactions×Nstates− sz(W )
(6)

where the default weight value is a function of the number of
actions: Nactions, the number of states: Nstates and the size of
the weight matrix: sz(W ).

When the policy kernel is used to generate policies for larger
maps (see below), the number of states covered by the kernel
remains unchanged. Since policy weights over the map are
normalized, the kernel’s effect will be different on maps of
different sizes, e.g., it will be much smaller when the size
of the map grows larger. A heuristic function is hence used
to revise the value of W B such that the ratio of importance
assigned to the area covered and left uncovered by the kernel
is similar over maps of different sizes:

Ŵ B =W B− ln(
NE

states− sz(W )

NB
states− sz(W )

) (7)

where NE
states and NB

states are the number of states in the large
map and baseline kernel respectively. The natural logarithm
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(a) Kernel extraction. (b) Kernel extension. (c) Hot-spot detection.

Fig. 2: Illustration of: (a) extracting 3×3 policy kernel from a 5×5 baseline policy; (b) using a learned 3×3 policy kernel
to generate 7×7 convolutional policy; and (c) hot-spot detection for motion planning.

function (ln) is used because the conversion of weight values
to probabilities is based on a softmax-like activation function.
Although it may take some time to learn a baseline policy
for a small area and extract a policy kernel, this one-time
computation does not need to be repeated unless the properties
of the robot’s sensors change significantly.

2) Convolutional Policy (Policy Extension): The learned
policy kernel is used to compute the policy for larger maps
using an efficient convolution operation:

π
V
C (s) = (K⊗CE

m)(s) =
∫

K(s̃)CE
m(s− s̃)ds̃ (8)

where K is the policy kernel, CE
m is the mask of the same size

as the target map and πV
C is the convolutional policy. Consider

Figure 2(b), where a learned 3×3 kernel is convolved with a
7×7 mask to generate the policy for a 7×7 map. This policy
is generated one layer at a time, by centering the kernel on the
state represented by the layer, e.g., there are 49 layers for the
7×7 map. Since the kernel covers (at most) nine cells, other
cells are assigned the weight computed in Equation 7 and the
policy is normalized. Robots can thus use the policy kernel to
generate policies for maps of larger areas in real-time.

Mobile robots have to physically move between cells in
the map to search for target objects. Sensing, information
processing and actuation on robots are non-deterministic. In
addition, robot motion takes time and expends energy. A cost is
hence assigned to movement by revising each action’s (policy)
weights during policy execution based on the distance to be
traveled and the robot’s speed:

ŵ(a j) = f (w,dA∗) = w(a j)
1

1+ dA∗ (ai,a j)
speed

(9)

where w(a j) is the policy weight for action a j and dA∗(ai,a j) is
the distance between the current cell and candidate cell. The A∗

algorithm is used to compute the shortest path from current cell
to a candidate cell. The modified policy trades off likelihood
of localizing a target against the cost of moving to that
location. A robot thus does not choose to travel a long distance
between two sensing actions unless it expects to obtain a
significant amount of information about the target’s location
when it reaches the candidate cell. When the domain map
changes (e.g., doors are closed or obstacles are moved), the
robot also uses this policy re-weighting to quickly recompute
the distances between cells and revise the action weights

before making subsequent action choices. Appropriate values
of speed can be used in Equation 9 by each robot.

While the revision of action weights captures motion-based
costs, hill-climbing is used to make the search more efficient
in large maps. Figure 2(c) shows a domain map discretized
into cells, with the green cell being the position of a robot
after executing the most recent action. There are three cells in
the map with significantly higher weights than other cells: the
orange and pink cells have w = 0.3 (not ŵ) and the blue cell
has w = 0.2. Since the robot’s current position is equidistant
from the pink and orange cells, these cells have an equal
chance of being the next cell visited by the robot. However,
it makes sense to visit the pink cell first because it is also
close to the blue cell, a candidate cell of similar relevance.
We therefore enable robots to consider the entire path of
candidate cells, i.e., the path with the largest summation of
ŵ values instead of just looking for a target cell with the
largest ŵ. It is however infeasible to evaluate all possible paths
through all cells in a large map. Our approach therefore detects
“hot-spots”, i.e., cells with beliefs substantially larger than
their immediate neighborhood, and evaluates paths through
them. The number of hot-spots (Nhs) is a small fraction of
the number of cells in the domain map. To compute hot-
spots, Nhs seeds are selected randomly or initialized based on
prior knowledge and refined by hill-climbing to arrive at local
maxima such as the orange, blue and pink cells in Figure 2(c).
The robot considers these hot-spots for further analysis by
evaluating paths through them:

wpath([h0,h1, . . . ,hNhs ]) =
Nhs

∑
i=1

f (w(hi),
i

∑
j=1

dA∗(h j−1,h j)) (10)

where hi is the ith hot-spot, h0 is the robot’s current position
and w(hi) is the (action) weight of the cell corresponding to
hot-spot hi. The function f is defined in Equation 9. For a set
of hot-spots, the robot evaluates all paths through these hot-
spots and chooses a cell for analysis, e.g., values of pink-blue-
orange and orange-pink-blue paths in Figure 2(c) are 0.0672
and 0.0591 respectively, and the pink cell is analyzed next.
This path planning does not imply that the robot will move
through the entire path; the observations made by a robot in a
cell revise the belief distribution and planned path. The path
planning ensures that the robot’s attention is directed towards
the most interesting cells.
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C. SP-POMDP for Scene Processing
Invoking the policy obtained by solving the VS-POMDP

for a specific target causes the robot to move to a cell and
analyze the corresponding 3D scene by extracting salient
regions of interest (ROIs) in an image of the scene. There are
two options for scene processing based on scene complexity,
i.e., based on number of ROIs in the image and features
used to represent objects. In uncluttered scenes with a small
number of ROIs, the SP-POMDP has two layers. Each ROI
is modeled as a lower-level (LL)-POMDP, where actions
are information processing operators (e.g., detect color). The
LL policy provides the sequence of operators to apply on a
specific ROI to detect the desired object. The LL policies of
all image ROIs are used to automatically create and solve
a high-level (HL)-POMDP, where actions direct the robot’s
attention to specific ROIs. Executing the HL policy causes the
robot to analyze a specific ROI using the corresponding LL
policy. Executing the LL policy till termination provides an
observation that causes an HL belief update and action choice
until presence or absence of the target is established in the
image. The creation of POMDP models for these two layers
(HL and LL) has been described in detail in our prior work,
which focused on simplistic tabletop scenarios and considered
scenes with partially occluded objects [29]. In cluttered scenes
with many ROIs, on the other hand, the robot may need to
learn sophisticated object models. Scene processing is then
formulated as a POMDP that plans the sequence of operators
to apply on the image to establish presence or absence of the
desired object. Section IV-B provides some examples.

The overall operation of the POMDP hierarchy is as follows:
the robot uses the learned domain map to generate the VS-
POMDP, which is solved to obtain the VS policy that is used
to choose a cell in the domain map for analysis. The robot
moves to this cell and processes images of the corresponding
3D scene using the SP-POMDP with one or two layers,
creating and solving the associated POMDP models at run-
time. Executing the SP policies until termination provides an
observation in the VS-POMDP regarding presence or absence
of target in the image. After the belief update, the robot
invokes the VS policy to choose a cell (and thus a 3D scene)
for subsequent analysis. This process continues until the object
is found or the belief distribution does not converge over a
period of time. The key advantage is that automatic belief
propagation and model generation in all levels of the hierarchy
results in autonomous, reliable and efficient visual sensing and
information processing in complex domains.

D. Multirobot Collaboration
Next, consider a team of robots tasked with localizing

one or more target objects. Each robot maintains a separate
belief vector for each target. Each robot also uses hierarchical
POMDPs (as described above) to adapt visual sensing and
information processing to the task and domain. This section
describes a probabilistic approach for the robots to share
beliefs and collaborate to locate the desired target objects. The
data structure maintained by each robot consists of:

{Bi, fi}, ∀i ∈ [1, |T L|] (11)

where Bi is the belief vector for a specific target i among the
list of target objects (T L) and fi is a binary flag that states if
the target has been discovered. In addition, each robot stores an
action map M , a vector of the same size as the belief vector.
Each entry in this vector stores the number of times the robot
has visited the corresponding cell in the domain map:

M = 〈m1, · · · ,mN〉 (12)

where mi is the count of the number of times cell i has
been visited. The entries in the action map corresponding to
locations that have not been visited in the recent past decay
over time. As a robot moves to detect a specific target, it
updates its action map and uses each observation to update the
appropriate belief vector. After such a belief update, the robot
communicates with teammates by broadcasting a package
that includes current belief vectors for all objects (∀i Bi),
discovery flags (∀i fi), action map (M ) and own position.
If the bandwidth is limited, robots can communicate just the
changes in the data structure at a low frequency.

A robot cannot completely trust information received from
teammates. At the same time, the communicated estimates
provide useful information about (possibly large) regions of
the domain that the robot has not visited and hence has no
knowledge about. In the proposed belief merging scheme, each
robot therefore assigns probabilistic weights to own beliefs
and beliefs communicated by each teammate. The objective is
to assign greater importance to estimates communicated by a
robot if the robot has visited the corresponding region of the
map recently. Each robot therefore uses the action map entries
as a probabilistic weight distribution to merge own beliefs with
communicated beliefs:

b j,own
i =

m j,own
i ·b j,own

i +m j,comm
i ·b j,comm

i

m j,own
i +m j,comm

i

(13)

∀ j ∈ [1,N], ∀i ∈ [1, |T L|]

where b j
i is jth entry of the belief vector corresponding to

target i, while m j,own
i and m j,comm

i are entries of action maps
of the robot and the teammate whose communicated belief
is being merged. The action map entries are not merged to
prevent rumor propagation among teammates. When one or
more robots revise their domain maps in response to changes,
data association can be achieved by grounding (i.e., matching)
the communicated belief vectors using the corresponding com-
municated robot locations. Each robot is thus able to assimilate
communicated estimates that may complement or contradict
own beliefs, and the merged beliefs are revised as each robot’s
beliefs change. Although this belief merging strategy can (in
theory) be sensitive to the order in which the communicated
beliefs are merged, it works well in practice.

Each robot also updates the vector of flags representing the
discovery of targets ( fi) based on efforts of all teammates:

F = { f own
i || f comm

i ;∀i ∈ [1, |T L|]} (14)

where each target is assumed to be found when at least one
robot in the team has communicated its discovery (belief in
a cell above a threshold) to teammates. There may hence be
times when a target object is being searched for by more than
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one team member. This overlap of targets among robots in the
team is allowed (intentionally) to ensure effective coverage of
target objects by robots in the team. However, in practice,
multiple robots rarely search for the same object.

Once a target is discovered, a new target is chosen from the
list of undiscovered objects in T L:

targetID = argmaxi{max
j

Bi( j)} (15)

where the robot identifies target i whose location it is most
certain about based on the merged beliefs of all teammates.
The robot thus selects the target object that it is likely to
locate with the least effort. This choice of a new target can
also include a heuristic cost based on distance of travel and
relative priority of the remaining targets (if such information
is available). These costs can be incorporated as weights on
the belief vectors, similar to the policy re-weighting performed
by Equation 9. The key outcome is that robots in a team are
able to reliably and efficiently coordinate their efforts despite
unreliable communication. Changes in team composition are
addressed automatically and the lack of communication causes
each robot to smoothly transition to operating as if it were the
only robot in the team. The next section evaluates the visual
sensing, processing and multirobot collaboration capabilities.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the initial setup and results of exper-
iments in simulation and on physical robots (Figure 5). The
objective is to evaluate each robot’s ability to: (a) use the
POMDP hierarchy to adapt visual sensing and processing to
the task at hand; and (b) probabilistically merge own beliefs
with communicated beliefs for collaboration. These capabil-
ities are evaluated in the context of robots localizing target
objects in indoor domains. Given the prior use of SP-POMDP
in other domains [29], this section considers the result of using
SP-POMDP (to process an image) as a response for executing
an HL action. The VS-POMDP models are solved using policy
gradient algorithms in the LibPG library [4]. Since it is not
feasible to execute a large number of trials on mobile robots,
experiments also included realistic simulations of grid maps
of different sizes and teams with different numbers of robots.

Evaluation on robots requires the following initial setup and
revisions. First, in an initial semi-supervised learning phase,
robots apply different information processing algorithms on
images of objects with known labels to learn object models
and some POMDP model parameters [29]; some examples of
object models are described in Section IV-B. Second, during
policy execution, robots compute the relative distance and
bearing to objects. Since including orientation as a parameter
in the observation set will destroy the local invariance in policy
space, the belief update (Equation 4) is modified:

if ¬ target (16)

B(s′) =
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

Pr(o|a,b)
=

O(s′,a,o)b(s)
Pr(o|a,b)

else

B(s′) =
O(s′, â,o)∑s∈S T (s, â,s′)b(s)

Pr(o|â,b)
=

O(s′, â,o)b(s)
Pr(o|â,b)

where B(s′) is the updated belief for state s′ after action a.
The belief update can be simplified (as shown) because the
transition functions are identity matrices. When a target is
detected, the relative distance and bearing are used to find
global location of the target in the grid map (based on robot’s
estimate of own location). The belief update is performed as
if the action corresponding to this global location (â) had
been executed. This update also models the observation that
false positives are rare while false negatives are common when
actions are executed on robots. Third, a robot moving between
cells may receive sensor inputs relevant to the current task,
e.g., it may unexpectedly have the target in its field of view.
The robot therefore periodically processes input images at
low-resolution to update current beliefs. Fourth, robots learn
and revise domain map using (laser) range data, and acquire
semantic labels (e.g., “kitchen” and “office”) from humans.

Target objects in the experimental trials are assumed to
be unique, and observations of targets are assumed to be
independent of each other. In addition, although the incre-
mental accumulation of evidence (of target occurrence) by
the POMDP hierarchy can (in theory) be used to localize
objects that move (or are moved), targets are assumed to stay
within a local area while they are being located by robots.
These simplifications are used to focus on the underlying
planning challenge and study the effects of factors such as
prior knowledge and communication failures.

Experiments were designed to evaluate the following hy-
potheses: (I) constrained convolutional (CC) policy provides
similar detection accuracy to non-convolutional (i.e., baseline)
policy but is much more efficient; (II) CC policy significantly
reduces time for reliable target localization compared with
manually-tuned heuristic search strategies; and (III) belief
merging enables a team of robots to fully utilize prior
knowledge and collaborate despite unreliable communication.
Hypothesis I was evaluated in simulation while hypotheses II
and III were evaluated in simulation and on robots.

A. Simulation Experiments
In each simulated trial, a grid map of specific size was

generated with the locations of targets and robots chosen
randomly. A cell is assumed to contain a target when belief in
the cell exceeds 0.9. Each data point in the following results
is the average of 1000 simulated trials.

Hypothesis I was evaluated with the adaptive observation
functions and policy re-weighting described in Equations 3–9.
A baseline policy computed for a 5×5 map was used to extract
a policy kernel that was used to compute policies for larger
maps. Figure 3(a) compares the CC policy against the baseline
policy for a 7×7 map—the x-axis shows the number of times
the policy was invoked, as a fraction of the number of states.
A larger map was not used to generate the baseline policy
(for comparison) because the time taken to generate a stable
baseline policy increases exponentially. A trial was deemed
successful if the target’s location was identified correctly. No
statistically significant difference was observed in the target
localization accuracy obtained with CC and baseline policies.

Hypothesis II was evaluated by comparing the CC policy
with a heuristic policy that makes greedy action choices. The
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(a) CC vs. baseline policy. (b) CC vs. heuristic policy. (c) BRIEF descriptor.

Fig. 3: (a) Target localization accuracy of the CC policy is similar to that of baseline policy; (b) CC policy enables the robot
to find targets in a much smaller number of steps than a (greedy) heuristic policy; and (c) Illustrative example of the use of
BRIEF descriptor to represent and recognize objects.

(a) Multirobot search. (b) Effect of Bias. (c) Effect of CSR.
Fig. 4: (a) Belief merging and hierarchical POMDPs result in robust multirobot collaboration; (b) Performance improves if
prior information is incorporated; and (c) Performance is robust to dropped communication packages.

results shown in Figure 3(b) used a 15× 15 convolutional
policy generated from a 5× 5 kernel. Existence of prior
knowledge was simulated by adding bias to the initial belief—
70% of the belief was uniformly distributed over all cells,
while the remaining 30% was Gaussian-distributed around
the target. To generate the data points in Figure 3(b), trials
were terminated after a certain distance had been traveled—
the cell with the largest belief was then considered the target’s
location. The robot’s performance is scored as the weighted
distance between the actual and detected locations of targets.
Figure 3(b) shows that the CC policy significantly reduces the
distance traveled (and thus time taken) by the robot to locate
targets with high accuracy.

Next, hypothesis III (i.e., multirobot collaboration capabil-
ity) was evaluated. Assuming that all robots in a team move
at the same speed, the average distance moved by robots
in a team (in an episode or trial) was used as a measure
of the team’s performance; better collaboration will result
in lower values of this measure. In each trial, robots and
targets were placed randomly in a grid map. A Gaussian
bias (20%) was added to the initial belief in a 3× 3 area
around every target, and the belief vector was normalized. To
simulate unreliable communication, a communication success
rate (CSR) parameter was introduced and set to 0.5, i.e., every
other broadcasted package (on average) was not received.

Additional experiments were conducted to evaluate the
effect of team size, prior knowledge and CSR on multirobot
collaboration. Figure 4(a) shows the results for different num-
bers of robots and targets in a 15×15 grid map based on a real-
world office scenario. The results show that the robots collabo-
rate effectively to find the targets. Next, Figure 4(b) shows the
performance of a team of two robots tasked with localizing two
targets, as a function of the bias in the initial belief. Robots are

(a) Erratic robot. (b) Nao robots.

Fig. 5: Robot platforms used in experiments.

TABLE I: Target localization accuracy ∈ [0,1] as a function of
the (normalized) distance traveled by the team of robots. The
proposed approach enables accurate target localization in much
less time than random and heuristic collaboration strategies.

Approach Normalized distance traveled
0.5 1.0 1.5 2.0

Random 0.033 0.171 0.382 0.537
Heuristic 0.079 0.334 0.549 0.817
Proposed 0.153 0.544 0.825 0.957

typically likely to have some prior knowledge of the locations
of objects, e.g., a microwave is likely to be found in the
kitchen. Figure 4(b) shows that robots are able to identify
the targets faster as more information about target locations is
made available or the information available about the targets’
positions is more accurate (i.e., smaller variance of bias). Next,
Figure 4(c) summarizes results of experimental trials where
the CSR was varied as robot teams were asked to localize
two target objects. Communication between robots in the real-
world can be unreliable. The results in Figure 4(c) indicate
that although a low likelihood of successful communication
(i.e., low CSR) hurts the team’s performance, the time taken
to localize targets stabilizes as CSR increases and is then no
longer sensitive to the value of CSR.
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Fig. 6: Occupancy-grid map of the third floor of the CS
department with 13 faculty offices, three research labs, a
conference room and a common area with a kitchen.

Table I summarizes target localization accuracy ∈ [0,1] as
a function of the distance traveled (normalized by the number
of cells in the map), when two robots searched for targets
in a 15×15 map. Initial positions of robots and targets were
randomly assigned in each trial. The proposed approach (belief
sharing with hierarchical POMDPs) was compared with: (a)
random selection of actions and assignment of targets to robots
(row labeled “random”); and (b) a (greedy) heuristic policy
that selects targets and actions based on the cell with the
largest belief (row labeled “heuristic”). To simulate realistic
scenarios, prior belief was assigned to multiple areas in the
map (including the target location). Results show that belief
sharing in hierarchical POMDPs significantly reduces the
distance traveled by robots to detect targets with high accuracy.

The experiments described above were repeated for different
numbers of robots and targets, different levels of prior beliefs,
and different values of CSR in domain maps ranging in size
from 5×5 to 25×25. The experimental results indicate that
using hierarchical POMDPs and the belief sharing strategy
enables a team of robots to collaborate and localize target
objects reliably and efficiently. As stated earlier, multiple
robots are (intentionally) allowed to search for the same target,
but instances of such overlap occur very infrequently.

B. Robot Experiments

Experiments were conducted on a wheeled robot and a team
of humanoid robots in indoor domains—see Figure 5.

1) Experiments on Wheeled Robot: The hierarchical
POMDPs were used for planning sensing and information
processing on the Erratic robot platform shown in Figure 5(a).
This robot is equipped with stereo and monocular cameras that
provide 640× 480 images at 30Hz, and a laser range finder
with an angular range of ±135o for a distance of 30m. All
processing is performed using a dual-core 2.6GHz processor
on-board the robot. Experiments were conducted in an indoor
domain comprising multiple floors of the Computer Science
department at Texas Tech University. Figure 6 is the result of
using a simultaneous localization and mapping algorithm [9]
to learn the occupancy grid map of a floor with three research
labs, 13 faculty offices, a conference room and a common area
with a kitchen. The size of each cell is ≈ 2m× 2m and the
size of the learned policy kernel is 5×5.

Object models learned by the robot consist of color distribu-
tions and the Binary Robust Independent Elementary Features
(BRIEF) [6], i.e., local image gradient features. Although
BRIEF features are not rotation and scale invariant, images
captured in the learning phase are automatically transformed
to model different rotations and scales; features extracted from
all these images populate object models. Such object models
enable robots to recognize objects despite partial occlusions.
Figure 3(c) shows a test image’s BRIEF features being
matched with those in a learned object model. Object models
also include a measure of size to compute the relative distance
and bearing of objects. Many scenes in this domain are clut-
tered, resulting in images with many ROIs and object models
consisting of complex features. As stated in Section III-C,
SP-POMDP has one (two) layer(s) for cluttered (uncluttered)
scenes. During policy execution, the robot analyzes scenes
from multiple viewpoints. Target objects include boxes, cups,
books and other robots in complex backgrounds. All targets
are assumed to be visually distinguishable.

For modular software development, algorithms were imple-
mented in the Robot Operating System (ROS) [26] framework.
Figure 7 is an overview of a relevant subset of the ROS
implementation. Our planning algorithms are placed in the
vs_planner node, which communicates with the vs_vision
node that processes input images to populate the <v_pack>
package. This package contains the ID of detected objects,
relative distance and bearing of the objects, and (probability)
measures of the certainty associated with the observations.
Belief updates occur when the robot arrives at a desired cell
and processes images of the scene, or processes images during
navigation to a cell. The planner node sends coordinates of
desired cells to the movement control node move_base and
then waits for a response, e.g., arrived when the desired
cell is reached or not-arrived when an unexpected change
such as closing a door makes a location inaccessible. The
hokuyo_node provides laser readings to the motion control
node and the localization node amcl. The platform driver node
erratic_base_driver moves the robot platform based on the
velocity command cmd_vel. The position and goal are
sent and received by nodes that aid in local path planning,
localization and navigation.

In each trial, the robot’s initial position and the positions of
target objects were chosen randomly. Belief distributions were
initialized to give the robot some prior knowledge of object
locations. The left half of Table II summarizes localization
time for specific target objects (i.e., a representative subset
of the experiments). Each data point is averaged over 10−15
trials. Since the robot and target positions differ between trials,
results for random and heuristic strategies are expressed as a
multiple of the proposed strategy’s results, e.g., the average
time taken to localize the Box with the POMDP hierarchy
is 4.08mins. The heuristic strategy that makes greedy action
choices requires significant manual tuning of the associated
parameters. Table II does not show results for the random
strategy due to the large variance; although the (average) mul-
tiplying factor is ≈ 3, many trials do not terminate even after
15mins. For all targets, the POMDP hierarchy significantly
reduces the localization time in comparison with random and
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Fig. 7: Relevant subset of nodes in the ROS implementation
of the proposed algorithms.

heuristic (multiplying factor of 1.5) strategies. The results
are more pronounced than in simulation because the domain
(Figure 6) is more complex. A video of an experimental trial
can be viewed online: http://youtu.be/CbsC0ScuuBk

2) Experiments on Humanoid Robots: Multirobot collabo-
ration experiments were conducted on the humanoid (Nao)
robots shown in Figure 5(b). The Nao is equipped with
multiple monocular cameras that provide 640× 480 images
at 30Hz, and ultrasound sensors for obstacle avoidance. Since
stable humanoid navigation on different surfaces is a chal-
lenge, experiments were conducted on an indoor (4m× 6m)
robot soccer field, which is typically used by a team of
Naos to play a competitive game of soccer. This moderately
constrained domain captures the collaboration challenges we
seek to address. Each robot has a domain map and localizes
based on domain landmarks such as goals and field corners
(with known map locations) detected in images. All scenes
in this domain are treated as uncluttered, but challenging
scenarios are created by artificially introducing obstacles that
the robot(s) have to walk around to see targets and landmarks.
All computation was performed using a 500MHz processor
on-board the robots. Robots broadcast packages to teammates
to share information. The size of each cell in the domain map
is ≈ 0.5m and the size of the learned policy kernel is 5×5.

Target objects include boxes and balls of different colors
and shapes. Since objects are composed of homogeneous
colors, gradient features are not used in the object models and
visual processing operators consist of algorithms that detect
the dominant color and shape in each ROI. Scene processing
was modeled as a two-layered POMDP, with a POMDP that
selects operators (i.e., algorithms) to apply on each salient
ROI in an image, and a POMDP that controls the selection of
image ROIs for processing. The transfer of control between
SP-POMDP and VS-POMDP is described in Section III-C.

In all multirobot collaboration experiments, a team of (1−4)
Naos localized target objects. The right half of Table II sum-
marizes a representative subset of these experiments, where
two Naos localized two targets (boxes and balls). The proposed
strategy is compared with: (a) a strategy that randomly assigns
robots to targets; and (b) a (greedy) heuristic collaboration
strategy that requires substantial manual tuning to consider fac-
tors such as distance to target and presence of obstacles [30].
The target localization times are smaller due to collaborative
effort and relative simplicity of the domain (compared to
Figure 6). Using the proposed strategy, the average time
taken by two Naos to localize two boxes is 1.01mins. The
proposed strategy significantly reduces the target localization

TABLE II: Target localization time expressed as a fraction
of the time taken by the proposed approach. Use of POMDP
hierarchy enables the wheeled robot to identify targets reliably
and efficiently. Sharing POMDP beliefs enables a team of
humanoid robots to improve target localization time.

Search and Localization time for specific targets
Collaboration Wheeled robot Humanoid robots

Strategies Box in Fig. 3(c) Nao robot Boxes Balls
Random – – 1.93 1.64
Heuristic 1.47 1.44 1.2 1.03
Proposed 1 1 1 1

time in comparison with the random strategy, and performs
better than (or at least as well as) the heuristic strategy.
Similar results are obtained for different combinations (and
numbers) of robots and targets. The effect of communication
uncertainty is arbitrary with the heuristic strategy, e.g., robots
cluster around targets and take twice as much time to localize
targets. However, with the proposed collaboration strategy,
delayed or lost communication packets did not affect target
localization when CSR was above a low threshold (≈ 0.2).
The results reported in Table II correspond to a CSR of
≈ 0.5. Furthermore, adding or removing a team member
resulted in the smooth re-distribution of targets among robots.
These experiments show that the POMDP hierarchy and belief
sharing strategy enable robots to adapt visual sensing and
information processing to the task at hand, and collaborate
despite unreliable communication.

V. CONCLUSIONS

This paper described an algorithm for planning visual
sensing, information processing and collaboration in a team
of robots. A hierarchical decomposition of POMDPs enables
each mobile robot to automatically tailor visual sensing and
information processing to each of a range of tasks at hand. The
hierarchy incorporates constrained convolutional policies and
automatic belief propagation, enabling a robot to operate reli-
ably and efficiently in complex indoor domains. Belief sharing
between a team of robots is accomplished by augmenting
the hierarchical POMDPs by a communication layer, enabling
each robot to merge beliefs acquired by processing sensor
inputs with the beliefs communicated by teammates. The
robots are thus able to fully utilize the available information
and collaborate in simulated and real-world domains.

One direction of further investigation is to explicitly model
the sensing and actuation capabilities of different robots, and
incorporate these learned models to improve the multirobot
collaboration capabilities. Experiments will also include a
larger number of robots and targets, and different types of
robots and information processing algorithms. Furthermore,
we are exploring the integration of the POMDP hierarchy
with a knowledge representation and non-monotonic logical
inference paradigm [33]. The ultimate goal is to enable reli-
able, efficient and autonomous multirobot (and human-robot)
collaboration in complex real-world domains.
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