
A Unified Formalism for Constructing Embodied Agents

Pat Langley1, Edward P. Katz2, Mohan Sridharan3

1 Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USA
2 Stanford Intelligent Systems Laboratory, Stanford University, Stanford, CA 94305 USA

3 School of Computer Science, University of Birmingham, Birmingham B15 2TT UK

Abstract

This paper reviews PUG, a cognitive architecture for embod-
ied agents, with a focus on its formalism for representing ex-
pertise. This includes a rule-like notation for encoding con-
cepts that describe states, motives that compute utilities, skills
that calculate control values to achieve goals, and processes
that predict changes to the environment. In each case, we re-
view the syntax for modular knowledge elements and how
the architecture uses them to generate dynamic content. We
also discuss how the framework integrates them to produce
teleoreactive behavior over time.

Introduction and Motivation
Embodied agents that interact with some external environ-
ment – whether they are humans, robots, or virtual charac-
ters – must support a number of distinct but interconnected
abilities. These include capacities for inferring the current
state, setting the agent’s goals, generating plans to achieve
those objectives, controlling effectors to implement its plans,
and predicting their impact on future states. Many existing
robotic architectures incorporate these elements, but they
typically use opaque routines that make it difficult to add
content. Moreover, they often integrate modules in an ad hoc
manner that falls short of a theory for embodied intelligence.

We maintain that the research community would benefit
from well-defined formalisms that support these component
abilities and their principled integration. These can serve as
programming languages that let their developers construct
knowledge-rich agents for physical environments. However,
they would also support more effective acquisition of this
content through learning by providing an inductive bias in
the same way that Prolog underpins work on inductive logic
programming. In addition, such computational frameworks
would ensure the interpretability of learned content and aid
understanding of agent behavior.

In this paper, we present a candidate formalism for em-
bodied expertise that satisfies these constraints. We start
with a brief review of PUG, an architecture for physical
agents with an associated programming language. After this,
we discuss the purpose, syntax, and operation of four types

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of knowledge elements: concepts, motives, skills, and pro-
cesses. Next, we clarify how PUG integrates these structures
during cognitive processing, although we focus mainly on
their representation. In closing, we consider related research
and directions for future work.

Overview of the PUG Architecture
PUG (Langley et al., 2016; Langley & Katz, 2022) is a cog-
nitive architecture that, like similar frameworks, incorpo-
rates key ideas from psychological theories. These include
assumptions that: dynamic short-term memories are distinct
from stable long-term stores; both memories contain modu-
lar elements that are cast as discrete symbol structures; long-
term elements are accessed through pattern relational match-
ing against short-term elements; processing revolves around
discrete cycles that involve retrieval, selection, and applica-
tion of knowledge structures; and cognition – both perfor-
mance and learning – involves the dynamic composition of
these mental structures.

Like other architectures, PUG comes with a programming
language whose syntax and interpreter reflects its assump-
tions about representation and processing. This formalism
supports the construction of embodied intelligent agents,
with its syntax covering both long-term knowledge struc-
tures that are stable over time and short-term elements that
change during processing. However, PUG differs substan-
tially from most earlier frameworks in that it:

• Grounds symbolic relations in quantitative descriptions
of the agent’s physical situation;

• Associates numeric utilities with symbolic goals that can
reflect tradeoffs among competing objectives;

• Combines discrete actions with continuous parameters to
specify fine-grained activities;

• Supports adaptive control that takes into account both the
agent’s objectives and its situation;

• Uses numeric simulation to generate motion trajectories
that guide high-level planning.

These commitments elaborate on ideas from its predeces-
sor, ICARUS (Choi & Langley, 2018), which also focused on
agents that operate in physical domains. In the sections that
follow, we examine the new framework’s assumptions about
representing and processing different types of expertise.

Figure 1: A scenario in which a robot must approach an ob-
ject (O3) when two obstacles (O1 and O2) fall along its path,
causing it to veer around them. Traces show the robot’s pose
at equal time intervals, indicating that position and orienta-
tion change more slowly as it approaches the target.

Figure 1 depicts a simple scenario in a two-dimensional
simulated environment that we can use to illustrate PUG’s
formalism and its operation. The robot, denoted by the small
circle, perceives its distance and angle to other objects in
egocentric polar coordinates. The robot begins by facing the
target object, but the direct path is blocked by two obsta-
cles, so it skirts the first one on the left and the second one
on the right before continuing to the goal. This setting re-
quires the agent to make inferences about its current situa-
tion, generate motion plans to achieve its objective, compute
the utilities of alternatives, and execute the selected plan in
the environment. Langley et al. (2016) examine more com-
plex scenarios that require task-level planning.

Concepts and Beliefs
The PUG architecture encodes knowledge about classes of
entities, and relations among them, as concepts. Each con-
cept is encoded by a separate rule, similar to a Prolog clause,
that includes a head and a set of antecedents. These rules
ground symbols in terms of percepts, each of which de-
scribes quantitative attributes of objects in the environment.
Moreover, concepts are graded in that they match against
particular situations to greater or lesser degrees, with each
match having an associated veracity that denotes this score.

Table 1 (a) shows two conceptual rules for the two-dimen-
sional robotic domain depicted in Figure 1. These define the
relations robot-at and robot-facing. Each rule has a head that
specifies a predicate and a set of attribute values, including
an identifier for the relation. In addition, an :elements field
describes a set of typed objects, each with an identifier and
numeric attribute values, and an optional :tests field gives
Boolean tests that must be satisfied for the concept to match.
The :veracity field specifies how to compute the concept’s
degree of match as a function of bound variables, support-
ing the notion of graded category membership. An optional
:binds field introduces new variables defined as arithmetic
combinations of ones in the :elements field that can be used
in either the head or the :tests field.

Inferred beliefs are instances of these defined concepts
that refer to perceived or imagined objects. Table 1 (b)
presents examples of beliefs that describe the scenario in
Figure 1 from the robot’s egocentric perspective. The four

percepts – which come directly from the environment –
specify an object type, an object identifier, and attribute val-
ues that describe it. The latter include the object’s distance
and angle from the robot in agent-centered polar coordi-
nates, along with their radii. The table also contains four in-
ferred beliefs – robot-at and robot-facing – to the perceived
objects O1, O2, and O3. These contain more than symbolic
predicates; they include attribute values derived from con-
stituent entities, along with veracity scores that reflect how
well their respective concepts match. For instance, (robot-
facing R1 O2) has the score 0.922 because the veracity ex-
pression (– 1.0 (/ 14.032 180.0)) = 0.922. This score, along
with the belief’s derived attribute values, can change over
time while its symbolic aspects remain stable.

The conceptual inference module operates in cycles, on
each pass finding all concept definitions with elements
whose types match against current percepts. For each match,
it computes derived attribute values, calculates the veracity
score, and, if this exceeds a threshold, adds an inferred be-
lief to memory. Next the system finds rules with elements
whose types match a subset of the percepts and these in-
ferred beliefs, leading to additional beliefs. This procedure
continues until no more conceptual matches occur, giving a
set of beliefs and percepts that encode the current state. For
instance, given the scenario in Figure 1, the concepts in Ta-
ble 1 (a) and the percepts in Table 1 (b) would produce the
four inferred beliefs in Table 1 (b).

We should clarify that PUG can use this syntax encode
many different conceptual relations. The concepts and be-
liefs in Table 1, which focus on the robot’s distance and an-
gle to an object, are only examples relevant to the Figure 1
scenario. The main limit on a belief’s attributes is that they
be computable efficiently from values the agent can predict
or perceive directly. These are not part of the architecture
and a developer can use whichever attributes seem most ap-
propriate. The framework supports the specification of three-
dimensional relations (e.g., in spherical coordinates) and at-
tributes that describe change (e.g., linear and rotational ve-
locity). Moreover, the notation can define complex relations
in terms of simpler ones, including composite objects with
components whose attributes satisfy certain constraints.

Motives and Utilities
The PUG framework represents knowledge about the agent’s
goals or objectives as a collection of motives, which it also
encodes in a rule-like format. Each of these structures spec-
ifies how to compute the utility of a belief based on the
agent’s inferences about its situation. These beliefs need not
have a high veracity and may not even have been inferred in
the current situation, so although motives are similar to con-
cepts in their syntax, they provide support for goal reasoning
(Aha, 2018) rather than belief inference.

Table 2 presents two motives from the robotics domain
that specify utility functions for the relations robot-at and
approaching. These functions refer to variables bound in the
conditions, such as the robot’s radius ?rr, the object’s radius
?or, and the robot’s distance ?od to the object. Because some
matched values will change over time, the computed value
will vary in response. The first structure is an achievement

Table 1: (a) Two PUG concepts for a two-dimensional robot
domain, each including a head, a set of observed elements,
and a veracity function of the entities’ attributes. The head
and elements comprise a predicate, an identifier, and at-
tributes with values. (b) Four percepts for this domain that
describe perceived objects and four beliefs inferred from
them. Each has a predicate, identifier, and attributes with val-
ues, the latter observed for percepts and inferred for beliefs.

(a) ((robot-at ˆid (?r ?o) ˆdistance ?od)
:elements ((robot ˆid ?r ˆradius ?rr)

(object ˆid ?o ˆdistance ?od ˆradius ?or))
:binds (?d (– ?od (+ ?rr ?or)))
:veracity (cond ((> ?d 10.0) 0.0)

(t (– 1.0 (/ ?d 10.0)))))

((robot-facing ˆid (?r ?o) ˆangle ?a)
:elements ((robot ˆid ?r)

(object ˆid ?o ˆangle ?a))
:veracity (cond ((< ?a 0.0) (- 1.0 (/ ?a –180.0)))

((> ?a 0.0) (– 1.0 (/ ?a 180.0)))
((= ?a 0.0) 1.0)))

(b) (robot ˆid R1 ˆradius 0.15 ˆmove-rate 0.0 ˆturn-rate 0.0) [1.0]
(object ˆid O1 ˆdistance 2.0 ˆangle 0.0 ˆradius 0.4) [1.0]
(object ˆid O2 ˆdistance 4.123 ˆangle 14.032 ˆradius 0.4) [1.0]
(object ˆid O3 ˆdistance 6.0 ˆangle 0.0 ˆradius 0.4) [1.0]
(robot-at ˆid (R1 O1) ˆdistance 2.0) [0.85]
(robot-at ˆid (R1 O2) ˆdistance 4.123) [0.643]
(robot-facing ˆid (R1 O1) ˆangle 0.0) [1.0]
(robot-facing ˆid (R1 O2) ˆangle 14.032) [0.922]

motive, which generates utility only when it first matches
against a particular belief with veracity above threshold. The
second example is a maintenance motive, which assigns util-
ity to a belief repeatedly each time that its conditions are sat-
isfied. The latter type often specifies negative values, which
means that the agent should avoid them if possible.

PUG interprets these structures during its state-processing
cycle, comparing each motive to current beliefs. For each
matched instance, it substitutes bound variables into the as-
sociated utility function, computes the result, and deposits
it in the :utility field of the corresponding belief. If multi-
ple motives have the same head, then it assigns the sum of
their utilities to this belief. Earlier versions of the architec-
ture stored this information in a separate goal memory, but
the current one associates utilities with beliefs themselves,
even when their veracity scores are too low to include them
otherwise. In such cases, they encode desired beliefs that the
agent does not yet hold and play the role of unsatisfied goals.

Skills and Intentions
In addition, PUG uses skills to encode knowledge about how
to achieve the agent’s objectives. Again, these structures
ground symbols that refer to actions in terms of percepts,
concepts, and their associated numeric attributes. Each skill
specifies a graded target concept that it aims to achieve,
which can match to a greater or lesser degree. It also includes

Table 2: (a) Two motives for the two-dimensional robot do-
main, each of which includes a relational head, a set of ob-
served entities, a function for computing the utility of the
relation, and a type. The first motive specifies the positive
value of the robot’s position being next to a target object;
the second gives the negative utility of being near an obsta-
cle. An achievement motive assigns utility to a belief only
on its first match; a maintenance motive does so repeatedly.

((robot-at ˆid (?r ?o))
:conditions ((robot ˆid ?r ˆradius ?rr)

(object ˆid ?o ˆtype target ˆdistance ?od ˆradius ?or))
:utility (cond ((< ?od (+ ?rr ?or 0.25)) 10.0) (t 0.0))
:type achievement)

((approaching ˆid (?r ?o))
:conditions ((robot ˆid ?r ˆradius ?rr)

(object ˆid ?o ˆtype obstacle
ˆdistance ?od ˆradius ?or))

:utility (cond ((< ?od (+ ?rr ?or)) –20.0) (t 0.0))
:type maintenance)

equations for control attributes that depend on the mismatch
between the target concept and the agent’s belief state. This
number serves as an error signal that supports continuous
control, although it is linked to a symbolic description simi-
lar to that found in STRIPS operators.

Table 3 (a) gives two sample skills from the robot domain,
one for moving toward a given object and another for turn-
ing to face an object. Each skill has a head that specifies a
name and set of arguments, along with an :elements field
that describes the arguments’ types and values for a subset
of their attributes. As in conceptual rules, a :tests field in-
cludes Boolean tests that must be satisfied for the skill to
apply. Most important, a skill specifies a :target relation that
it aims to achieve and a :control field with expressions for
computing values for control attributes as a function of the
degree to which the target concept is mismatched (i.e., one
minus the target belief’s veracity score).

Just as beliefs in PUG are instances of general concepts,
so intentions are instances of defined skills. Each structure
has a skill name and arguments, along with an activation (the
mismatch of the target) and values for its associated control
attributes. For instance, for the scenario in Figure 1 (a), the
agent might have the intention set ((move-to R1 O3) (turn-
to R1 O3) (avoid-on-left R1 O1) (avoid-on-right R1 O2)),
which the agent could execute in parallel when they are ap-
plicable. Each intention’s mismatch to the target and its con-
trol values would vary over time, while its symbolic descrip-
tion would remain the same.

The architecture examines each current intention I during
its state-processing cycle to see whether its conditions are
satisfied by the agent’s current belief state. If so, then the
module accesses I’s target belief and its associated veracity
score. The interpreter substitutes one minus this score for the
symbol $mismatch in I’s control equations, along with the
values for any bound variables. Next the system evaluates
the instantiated expression to compute the value for each

Table 3: (a) Two skills for the robot domain, each speci-
fying a relational head, a set of observed entities, control
equations, and a target concept. Each entity is described
by a predicate and a set of attribute-value pairs, the latter
referring to variables that may be shared across elements.
The first skill influences the control attribute move-rate,
whereas the second affects turn-rate. (b) Four intentions for
approaching the target object O3 and for avoiding obstacles
O1 and O2, the first two being instances of the skills in (a).
A bracketed number denotes an intention’s activation, which
is one minus the veracity of its target concept.

(a) ((move-to ?r ?o)
:elements ((robot ˆid ?r ˆturn-rate ?t) (object ˆid ?o ˆangle ?a))
:tests ((> ?a –90) (< ?a 90))
:control ((robot ˆid ?r ˆmove-rate (∗ 0.3 $mismatch)))
:target ((robot-at ˆid (?r ?o))))

((turn-to ?r ?o)
:elements ((robot ˆid ?r) (object ˆid ?o ˆangle ?a))
:control ((robot ˆid ?r ˆturn-rate (∗ 5.0 (sign ?a) $mismatch)))
:target ((robot-facing ˆid (?r ?o))))

(b) (move-to R1 O3) [0.675]
(turn-to R1 O3) [0.812]
(avoid-on-left R1 O1) [0.793]
(avoid-on-right R1 O2) [0.0]

control attribute. For example, given the intention (move-to
R1 O1) and the veracity score 0.518 for target belief (robot-
at ˆid (R1 O1)), the mismatch would be 1 − 0.518 = 0.482
and the move-rate would be 0.3 × 0.482 = 0.145. When
multiple intentions apply on a given cycle, PUG computes
the target mismatches and control values for each one. If
different intentions affect a control attribute, then the mod-
ule takes the sum of their results.

The architecture also uses skills at the higher level of
task planning. Briefly, the module responsible for this abil-
ity matches the conditions of skills against the agent’s cur-
rent belief state to generate candidate intentions that could
achieve its goals (high-utility, low-veracity beliefs). This
supports forward-chaining search through the space of task
plans, which the system guides by using the results of mental
simulation to calculate the utility of alternative plan trajec-
tories over time. We discuss this module’s operation, and its
interaction with others, later in the paper.

Processes and Predictions
Finally, the PUG framework incorporates knowledge about
processes that it uses to predict future states. These de-
scribe how the values of control and state attributes influ-
ence the current values of state attributes, such as how turn-
ing changes the agent’s angle to a given object. Processes
in PUG are not the same as those in PDDL+ (Fox & Long,
2006), although there are similarities. They specify the dy-
namic effects of causal attributes, reserving operator-like
skills to encode details about how to achieve goals.

Table 4: Two processes for the two-dimensional robot do-
main, each of which includes a relational head, a set of ob-
served elements, and a set of changes to the values of these
entities. The first process predicts the change in the agent’s
distance and angle to an object when it moves forward. The
second describes the change in the agent’s angle with respect
to an object when it turns. The functions *dd and *da invoke
trigonometric equations to make calculations.

((move-relative ?r ?o)
:elements ((robot ˆid ?r ˆmove-rate ?m)

(object ˆid ?o ˆdistance ?d ˆangle ?a))
:changes ((object ˆid ?o ˆdistance (∗dd ?d ?a ?m)

ˆangle (∗da ?d ?a ?m))))

((turn-relative ?r ?o)
:elements ((robot ˆid ?r ˆturn-rate ?t)

(object ˆid ?o ˆangle ?a))
:changes ((object ˆid ?o ˆangle (– ?t))))

Table 4 provides two examples of PUG processes. These
include an :elements field that describes arguments and their
types, along with an optional :tests field with Boolean ex-
pressions. The key differences from skills are that they spec-
ify no control equations and they lack a target concept, as
they are not teleological in character. Instead, they incorpo-
rate a :changes field that specifies how values for attributes
of one or more entities will change as a function of vari-
ables matched in the :elements field. Thus, they encode
causal knowledge about the effects of actions, environmen-
tal forces, or their combination. Predictions are instances
of processes that specify a predicate, its arguments, and the
derivatives it predicts for the current situation.

On a given state-processing cycle, once PUG has com-
puted the summed values for its control attributes, it uses
matched instances of processes to predict changes to the en-
vironment. Each process instance predicts a change to one or
more environmental attributes, with their individual effects
being summed to determine overall results. For instance,
given the value 0.145 for the control attribute move-rate and
given the current distance of 5.105 and angle of 33.189 to
O1, the process instance (move-relative R1 O1) predicts a
change of −0.121 for distance and 0.913 for angle. Different
instances of move-relative also predict shifts of the robot’s
distance and angle to other objects in the environment.

Cascaded Integration in PUG
Like other cognitive architectures, PUG operates in discrete
cycles that match long-term knowledge structures against
short-term elements to produce instances of the latter, as
well as generate behavior in the environment. An important
difference is that the framework relies on five distinct levels
of temporal resolution. These include:

• Belief processing, which matches conceptual knowledge
against the agent’s perceptions and beliefs to draw infer-
ences and thus generate new or updated beliefs;

• State processing, which matches skills against percep-
tions and beliefs to calculate values for intentions’ control
attributes and matches processes against perceptions and
control values to predict their effects;

• Reactive execution, which generates motion trajectories
either in the environment, using feedback control, or in
the agent’s mind, combining prediction with the mental
simulation of such reactive control;

• Motion planning, which carries out greedy search in a
space of possible motion trajectories that are generated
by alternative sets of intentions and guided by utilities
associated with their states; and

• Task planning, which uses forward search for candidate
sequences of motion plans, again guided by their utilities,
that achieve some or all of the agent’s top-level goals.

PUG applies these modules in a cascaded manner, with each
one using mental structures produced by those below it. For
instance, state processing draws on beliefs generated by con-
ceptual inference, whereas execution uses results from state
processing to generate trajectories for a sequence of state
cycles. These operate at different time scales, in that multi-
ple cycles of belief processing occur for each step of state
processing and multiple cycles of the latter occur for each
execution or mental simulation run.

We have already discussed the two lowest levels, belief
and state processing, in previous sections. The next two lay-
ers are responsible for mental simulation and motion plan-
ning. The first relies on a simple iterative mechanism. Re-
call that, combined with the calculation of control attributes
by skill execution, processes let PUG predict the next state
in terms of what the agent can expect to perceive. Concep-
tual inference creates a new belief state, which in turn lets it
invoke skill execution, process prediction, and utility calcu-
lation. When applied repeatedly, this mechanism of mental
simulation produces a trajectory of belief states over time.
Each simulated trajectory follows deterministically from an
initial situation and a set of intentions.

PUG users can provide a motion plan, but it can also find
such structures using mental simulation and utilities to guide
heuristic search. Motion planning starts with goals, which
the system uses to retrieve candidate intentions by match-
ing skills’ target concepts. The architecture uses simulation
to envision each plan’s trajectory if it were executed in the
environment. On each time step, it computes each beliefs’
utility and stores a running total of values for them. If some
beliefs have negative utility, the system retrieves new inten-
tions that should eliminate them, favoring ones that occur
earlier in the trajectory. PUG adds each intention to the cur-
rent motion plan, simulates these elaborations, and selects
the best one. However, the new trajectory may introduce fur-
ther sources of negative utility (e.g., obstacles) that require
additional repairs. This process continues until it finds no
way to improve on the best candidate, at which point it halts.

The highest level of processing involves heuristic search
through a space of task plans. Given the current belief state,
the architecture finds which skills are applicable, simulates
them mentally, and evaluates their trajectories in terms of
motive-computed utilities. It selects the highest-scoring in-

tention (or intention set) not yet been tried, infers the belief
state that it produces, and extends the plan by selecting ad-
ditional intentions if needed. In this manner, PUG carries
heuristic depth-first search through the space of task plans,
backtracking when plan length exceeds a user-specified
limit. The system continues search until it finds N plans with
high-enough utility, where N is another user-set parameter.

In this manner, PUG integrates its knowledge about con-
cepts, motives, skills, and processes to produce reactive but
goal-driven behavior. The reliance on discrete cycles is akin
to that in other cognitive architectures, but its cascaded char-
acter makes its approach to integration unique. Each level of
processing draws on results produced by lower ones that op-
erate on a more rapid time scale, running the gamut from
the generation of beliefs at one extreme to the creation of
sequential task plans at the other.

Related Research and Impact
The robotics literature is sizable and our architecture for em-
bodied agents incorporates many ideas that first appeared
elsewhere. We have been influenced especially by frame-
works that integrate multiple abilities and that provide for-
malisms for stating expertise. We can divide this work into
four broad categories:

• Robotic architectures (Kortenkamp & Simmons, 2008),
which integrate state inference, motion planning, and in
some cases task planning (Garrett et al., 2021). Research
in this paradigm often assumes a set of specialized mod-
ules that interact by passing messages to each other rather
than adopting a unified framework with shared memories.
Other work, such as Bonasso et al.’s (1997) 3T architec-
ture, offers formalisms for knowledge but, unlike PUG,
adopts different notations for each level of processing.

• Cognitive architectures, such as ACT-R (Anderson &
Lebiere, 1998) and Soar (Laird, 2012), which come with
high-level programming languages that let users spec-
ify modular knowledge elements to produce intended
agent behavior. PUG incorporates many ideas from this
paradigm, including the distinction between long-term
and short-term memory and a reliance on discrete cog-
nitive cycles. However, because these frameworks devel-
oped from theories of high-level cognition, they do not
support embodied agency at the architectural level and
instead call on external routines (e.g., PID controllers).

• Research in cognitive robotics (e.g., Ferrein & Lake-
meyer, 2008; Grosskreutz & Lakemeyer, 2000; Levesque
et al., 1997), which provides logic-based formalisms that
represent expertise about agents’ goal-directed activi-
ties. Despite its emphasis on logical foundations, this
paradigm favors procedural notations rather than the
modular structures that PUG employs. More important,
like most cognitive architectures, these systems focus on
high-level planning and action selection, leaving the is-
sues of continuous control to external routines.

• The spatial semantic hierarchy (Kuipers, 2000), which
encodes and interprets knowledge at multiple levels of
spatio-temporal abstraction, from continuous control to

high-level path planning. Moreover, the framework asso-
ciates quantitative control laws with qualitative regions
that drive a robot to distinctive states, much like PUG’s
skills and the associated target concepts. This architec-
ture comes closer to our own, although it does not include
separate structures for motives and processes.

As noted earlier, PUG builds directly on the ICARUS ar-
chitecture (Choi & Langley, 2018), which included a sim-
ilar formalism for concepts, skills, and motives, but did not
provide mechanisms for feedback control or motion plan-
ning. Our framework also borrows substantially from other
research paradigms, including logical inference, continuous
control, decision theory, task planning, and heuristic search,
but it combines them in novel ways to produce a distinctive
architecture for intelligent systems.

We should reiterate that none of PUG’s individual fea-
tures are unique and its contribution lies in combining ear-
lier ideas in novel ways to provide a unified formalism for
knowledge-based embodied agents. We will not claim that
the framework as it stands supports entirely new abilities or
that it provides more robust operation than alternative ones.
However, PUG’s formalism should ease the construction of
robotic systems in much the same way that Prolog (Clocksin
& Mellish, 1981) aids the creation of logic programs and
PDDL (McDermott et al., 1998) simplifies the development
of planning systems. One can implement effective embodied
agents in C or Python, but using a high-level language will
be far more efficient and take much less time.

The declarative formalism for concepts, motives, skills,
and processes should also support more advanced abilities.
For instance, we could extend the architecture to store traces
of structures generated during inference, control, mental
simulation, and planning. These in turn should support ex-
plainable agency (Langley, 2019), enabling systems that can
answer questions about their reasons for making choices and
pursuing specific plans. The formalism should also provide
an inductive bias that allows sample efficient learning of new
knowledge structures, with distinct mechanisms for acquir-
ing or revising concepts, skills, processes, and even motives
(Langley, 2023). Moreover, the results of learning should be
interpretable because they will be encoded in a modular no-
tation with clear implications for behavior. Thus, although
the current framework offers no new capabilities, it holds
clear pathways for their development.

Directions for Future Research
We have implemented the PUG architecture in Steel Bank
Common Lisp. This lets users specify knowledge bases for
embodied agents using the syntax outlined above for con-
cepts, motives, skills, and processes. They can load this con-
tent from a file along with the description of an initial situa-
tion in terms of object poses and other attributes. Users must
also specify a set of percepts produced by the environment
and a set of control attributes that can affect it. As described
earlier, the architecture interprets its knowledge structures in
discrete cycles, calling on modules for conceptual inference,
utility calculation, reactive control, state prediction, mental
simulation, motion planning, and task planning. Each run

produces a trace of the agent’s dynamic mental structures,
along with the trajectory of physical states produced when it
interacts with the environment.

Despite PUG’s unification of these abilities, we can still
extend the theoretical framework along various fronts to pro-
vide even broader coverage. In particular, future research on
the cognitive architecture should:

• Introduce more flexible processing for conceptual infer-
ence (e.g., abduction of postulated entities and attributes
in partially observable environments) and support more
sophisticated control schemes (e.g., replacing propor-
tional with PID methods);

• Integrate the original PUG task planner (Langley et al.,
2016), which carried out backtracking search guided by
utilities, with the newer modules for control and motion
planning, as well as with earlier software for plan execu-
tion and monitoring (Langley et al., 2017);

• Incorporate temporal constraints into concepts and skills
about the initiation, termination, and duration of beliefs
and intentions (e.g., that some are mutually exclusive)
and introduce details about timing into motives’ condi-
tions and utility functions;

• Elaborate the formalism for concepts to encode spatial
knowledge about the shapes of complex objects, places
that are recognizable in terms of visible landmarks, and
topological maps that describe large-scale relationships
(e.g., Langley & Katz, in press);

• Organize skills into hierarchical structures, similar to
those in hierarchical task networks (Nau et al., 2003),
that represent extended activities, with both sequential
and parallel elements, to constrain and guide agent plan-
ning and execution; and

• Support stochastic skills and processes that encode un-
certainty about the values of control attributes and causal
effects, invoking repeated mental simulations to predict
trajectories and taking their probability distributions into
account during utility calculations.

We should also improve the system interface so that users
can trace and analyze agent behaviors more easily, as well
as alter parameters for different modules. Together, these
changes should make PUG a more attractive and effective ar-
chitecture for developing knowledge-rich embodied agents.

In addition, we should demonstrate the framework’s use-
fulness on physical platforms. These should include classic
mobile robots that combine task planning, motion planning,
and obstacle avoidance, say that deliver objects in office set-
tings (e.g., Zita Haigh & Veloso, 1996), which map well
onto test cases we have already used. However, to show ev-
idence of generality, we should also apply the architecture
to manipulation tasks, like equipment assembly and object
sorting, that rely on multi-jointed effectors. This will re-
quire propagating constraints along joints either by calling
on routines for inverse kinematics or, preferably, by adapt-
ing skills to carry out analogous stepwise calculations within
the architecture. These demonstration efforts will undoubt-
edly suggest additional extensions that are needed to support
a truly unified framework for constructing embodied agents.

Acknowledgements
The research reported here was supported by Grant FA9550-
20-1-0130 from the US Air Force Office of Scientific Re-
search and by Grant N00014-23-1-2525 from the Office of
Naval Research, which are not responsible for its contents.

References
Aha, D. W. (2018). Goal reasoning: Foundations, emerging

applications, and prospects. AI Magazine, 39, 3–24.
Anderson, J. R., & Lebiere, C. (1998). The atomic compo-

nents of thought. Mahwah, NJ: Lawrence Erlbaum.
Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller,

D., & Slack, M. (1997). Experiences with an architecture
for intelligent, reactive agents. Journal of Experimental
and Theoretical Artificial Intelligence, 9, 237–256.

Choi, D., & Langley, P. (2018). Evolution of the ICARUS
cognitive architecture. Cognitive Systems Research, 48,
25–38.

Clocksin, W. F., & Mellish, C. S. (1981). Programming in
Prolog. Berlin: Springer-Verlag.

Ferrein, A., & Lakemeyer, G. (2008). Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems, 56, 980–991.

Fox, M., & Long, D. (2006). Modelling mixed discrete-
continuous domains for planning. Journal of Artificial In-
telligence Research, 27, 235–297.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver,
T., Kaelbling, L. P., & Lozano-Perez, T. (2021). Inte-
grated task and motion planning. Annual Review of Con-
trol, Robotics, and Autonomous Systems, 4, 265–293.

Grosskreutz, H., & Lakemeyer, G. (2000). cc-Golog: To-
wards more realistic logic-based robot controllers. Pro-
ceedings of the Seventeenth National Conference on Ar-
tificial Intelligence (pp. 476–482). Austin, TX: AAAI
Press.

Kortenkamp, D., & Simmons, R. (2008). Robotic systems
architectures and programming. In B. Siciliano & O.
Khatib (Eds.), Springer handbook of robotics. Berlin:
Springer.

Kuipers, B. (2000). The Spatial Semantic Hierarchy. Artifi-
cial Intelligence, 1–2, 191–233.

Laird, J. E. (2012). The Soar cognitive architecture. Cam-
bridge, MA: MIT Press.

Langley, P. (2019). Explainable, normative, and justified
agency. Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (pp. 9775–9779). Honolulu, HI:
AAAI Press.

Langley, P. (2023). Cognitive systems and theories of open-
world learning. Advances in Cognitive Systems, 10, 3–14.

Langley, P., Barley, M., Meadows, B., Choi, D., & Katz, E.
P. (2016). Goals, utilities, and mental simulation in con-
tinuous planning. Proceedings of the Fourth Annual Con-
ference on Cognitive Systems. Evanston, IL.

Langley, P., Choi, D., Barley, M., Meadows, B., & Katz,
E. P. (2017). Generating, executing, and monitoring plans
with goal-based utilities in continuous domains. Proceed-
ings of the Fifth Annual Conference on Cognitive Systems.
Troy, NY.

Langley, P., & Katz, E. P. (2022). Motion planning and con-
tinuous control in a unified cognitive architecture. Pro-
ceedings of the Tenth Annual Conference on Advances in
Cognitive Systems. Arlington, VA.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., & Scherl,
R. B. (1997). Golog: A logic programming language for
dynamic domains. The Journal of Logic Programming,
31, 59–83.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram,
A., Veloso, M., Weld, D., & Wilkins, D. (1998). PDDL—
The Planning Domain Definition Language. Technical
Report CVC TR98003, Center for Computational Vision
and Control, Yale University, New Haven, CT.

Nau, D., Au, T., Hghami, O., Kuter, U., Murdock, J., Wu, D.,
& Yaman, F. (2003). SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research, 20, 379–404.

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, F.,
Khemlani, S. S., & Schultz, A. C. (2013). ACT-R/E: An
embodied cognitive architecture for human robot interac-
tion. Journal of Human-Robot Interaction, 2, 30–55.

Zita Haigh, K., & Veloso, M. M. (1996). Interleaving plan-
ning and robot execution for asynchronous user requests.
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 148–155). Osaka,
Japan: IEEE Press.

