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Abstract. A major challenge to the deployment of mobile robots in
a wide range of tasks is the ability to function autonomously, learning
appropriate models for environmental features and adapting these mod-
els in response to environmental changes. Such autonomous operation is
feasible iff the robot is able to plan an appropriate action sequence. In
this paper, we focus on the task of color modeling/learning, and present
two algorithms that enable a mobile robot to plan action sequences
that facilitate color learning. We propose a long-term action-selection
approach that maximizes color learning opportunities while minimiz-
ing localization errors over an entire action sequence, and compare it
with a greedy/heuristic action-selection approach that plans incremen-
tally, to maximize the utility based on the current state information.
We show that long-term action-selection provides a more principled so-
lution that requires minimal human supervision. All algorithms are fully
implemented and tested on the Sony AIBO robots. Keywords: Action
Planning, Real-time Vision, Robotics.

1 Motivation

Recent developments in sensor technology have provided a range of high-fidelity
sensors (laser range finders, color cameras) at moderate costs, thereby making
it feasible to use mobile robots in several fields [1–3]. But the sensors typically
require frequent and extensive manual calibration in response to environmen-
tal changes. An essential requirement for the widespread deployment of mobile
robots is therefore the ability to function autonomously, learning appropriate
models for environmental features, and adapting these models in response to
changes in the environment. Such autonomous behavior can be achieved iff the
mobile robot can autonomously plan a sequence of actions that facilitates learn-
ing and adaptation. Mobile robots typically operate under constrained computa-
tional resources, but they need to operate in real-time to respond to the dynamic
changes in their environment. Autonomous learning and adaptation on mobile
robots is hence a challenging problem.

Here we focus on autonomous learning and adaptation in the context of
color segmentation, i.e. the mapping from image pixels to color labels such as
red, blue and orange. This mapping, called the color map, may require extensive
manual re-training in response to environmental changes such as illumination
and object configurations. We enable the robot to autonomously plan an action



sequence that facilitates color learning, which can be combined with prior work
that adapts to illumination changes [4].

Traditional approaches to planning [5–7] require that all the actions and their
effects be known in advance, along with extensive knowledge of state and/or all
possible contingencies. Mobile robots operate with noisy sensors and actuators,
and typically possess incomplete knowledge of the world state and the results
of their actions. Here the robot autonomously builds probabilistic models of the
effects of their actions. These models are used to plan action sequences that
maximize color learning opportunities while minimizing localization errors over
the entire sequence. We compare this long-term action-planning with a typical
greedy approach that uses human-specified heuristics to model the possible re-
sults of actions, and plans actions incrementally (one step at a time) to maximize
gain given the current state of the world. We show (Section 5) that long-term
action-planning is more robust than the greedy approach.

2 Related Work
Color segmentation and color constancy are well-researched sub-fields of com-
puter vision [8–11], though the approaches are computationally expensive to
implement on mobile robots with constrained resources.

The color map is typically created on mobile robots by hand-labeling image
regions over a few hours [12]. Cameron and Barnes [13] learn this mapping by
constructing closed image regions corresponding to known environmental fea-
tures. The pixels from these regions are used to build classifiers, but the ap-
proach requires human supervision and offline processing. Jungel [14] maintains
layers of color maps with increasing precision levels, colors being represented as
cuboids. But the segmentation is not as accurate as the hand-labeled one. Schulz
and Fox [15] estimate colors using a hierarchical Bayesian model with Gaussian
priors and a joint posterior on robot position and illumination; the approach
requires extensive prior information even for testing under two illuminations.
Anzani et al. [16] model colors using a mixture of Gaussians and compensate for
minor illumination changes. But the method requires prior knowledge of color
distributions and suitable parameter initialization. Thrun et al. [3] distinguish
between safe and unsafe road regions, modeling colors as a mixture of Gaussians
whose parameters are updated using EM. The approach does not help distinguish
between overlapping colors. Our prior work enables the robot to detect large il-
lumination changes, and learn colors through planning using human-specified
heuristic functions [4]. Research in planning on mobile robots has lead to sev-
eral approaches [5–7], which typically require manual description of the possible
states that the robot can be in and/or the effects of the actions that the robot
can execute. Here we enable the robot to learn probabilistic models that predict
the results of actions, and generate complete action sequences that maximize
color learning opportunities while minimizing localization errors.

3 Experimental Platform and Color Model

The experiments were run on the SONY ERS-7 Aibo, a four-legged robot whose
primary sensor is a CMOS color camera with a limited field-of-view (56.9o horz.,



45.2o vert.). The images are captured at 30Hz with a resolution of 208 × 160
pixels. The robot has three degrees-of-freedom in each leg and three in its head.
All processing for vision, localization, motion and strategy is done using an on-

board 576MHz processor.
Applications on mobile robots with cam-

Fig. 1: Image of Aibo and field.

eras typically involve a color calibration
phase that is repeated when the environ-
ment changes. An application domain for
Aibos is the RoboCup Legged League [17],
where teams of four robots play a compet-
itive game of soccer on an indoor field (see
Figure 1). We compare two schemes for au-
tonomous color learning.

3.1 Color Map and Model
In order to operate in a color coded environment, the robot needs a color map

that provides a discrete color label for each point in the color space:

Π : {m1,i,m2,j ,m3,k} 7→ l |l∈[0,N−1], ∀i, j, k ∈ [0, 255] (1)
where m1,m2,m3 are the values along the color channels (e.g. R, G, B) and l

refers to the numerical indices of the color labels (blue, orange etc). Typically, the
color map is obtained by generalizing from samples provided by a human observer
who labels specific image regions (≈ 30 images) over a period of an hour or
more [12]. We compare two action-selection algorithms that enable autonomous
color learning: (a) a long-term approach that maximizes learning opportunities
while minimizing localization errors over the entire action sequence, and (b)
a greedy approach that plans one action at time, maximizing gain based on
manually-tuned heuristics and the current state of the world.

Both planning schemes generate a sequence of poses (x, y, θ) that the robot
moves through, learning one color at each pose. We assume that the robot can
use the known structure of the environment (positions, shapes and color labels
of objects of interest) to extract suitable image pixels at each pose, and model
the color distributions. As described in our prior work [4], each color distribution
is modeled as a 3D Gaussian or as a 3D histogram (normalized to obtain a pdf),
the choice being made autonomously for each color, based on statistics collected
in real-time. The color space is discretized and each color map cell is assigned
the label of the most likely color’s pdf, by a Bayes’ rule update.

4 Planning Algorithms

In both action-selection algorithms for color learning, the robot starts out with
no prior information on color distributions – the illumination is assumed to be
constant during learning. The robot knows the positions, shapes and color labels
of objects in its environment (structure)1, and its starting pose. The robot’s goal
is to plan a action sequence, extract suitable image pixels at each pose, learn
a model for the color distributions, and generate the color map to be used for
segmentation, object recognition and localization.
1 Approaches exist for learning this structure autonomously.



4.1 Long-term Planning

Algorithm 1 presents the long-term planning approach, which aims to maximize
learning opportunities while minimizing errors over the motion sequence – the
robot may obtain more training samples by moving a larger distance, but this
motion may cause larger localization errors. Three components are introduced:
a motion error model, a statistical feasibility model, and a search routine.

Algorithm 1 Long-term Action-Selection.

Require: Ability to learn color models [4].
Require: Positions, shapes and color labels of the objects of interest in the robot’s

environment (Regions). Initial robot pose.
Require: Empty Color Map; List of colors to be learned - Colors.
1: Move between randomly selected target poses.
2: CollectMEMData() – collect data for motion error model.
3: CollectColLearnStats() – collect color learning statistics.
4: NNetTrain() – Train the Neural network for the MEM, Equation 2.
5: UpdateFM() – Generate the statistical feasibility model, Equation 3.
6: GenCandidateSeq() – Generate candidate sequences, Equation 4.
7: EvalCandidateSeq() – Evaluate candidate sequences.
8: SelectMotionSeq() – Select final motion sequence.
9: Execute motion sequence and model colors [4].

10: Write out the color statistics and the Color Map.

Motion Error Model (MEM) The MEM predicts the error in the robot pose
in response to a motion command (target (x, y, θ)), as a function of the colors
used for localization (the locations of color-coded markers are known). Assuming
an even distribution of objects in the environment, the inputs are the difference
between the starting pose and target pose, and the list of colors the robot has
already learned. The output is the pose error that would be incurred during this
motion. The MEM is represented as a back-propagation neural network [18] with
N + 3 inputs, three outputs and a hidden layer of 15 nodes:

{∆x,∆y,∆θ, c1, c2, . . . , cN} 7→ {errx, erry, errθ} (2)

where {∆x,∆y,∆θ} represent the desired difference in pose, and {c1, c2, . . . , cN}
are binary variables that represent the N colors in the environment. If the robot
knows all the colors it can recognize all the markers and localize well. With only
some colors known, some markers aren’t recognizable and localization suffers.
During training the robot moves between randomly chosen poses running two
localization routines, one with all colors known (to provide ground truth), and
another with only a subset of colors known. The difference in the two pose
estimates provides the outputs for training samples.

Statistical Feasibility Model (FM) For each robot pose, the FM provides
the probability of learning each of the desired colors given that a certain set of



colors have been learned previously. The possible robot poses are discretized into
cells. Given the robot’s joint angles and camera field-of-view, a feasibility check
eliminates several cells – if the robot’s camera is not pointing towards a valid
object it cannot learn colors. Each FM cell also stores a probability:

FM(d, e, f, vi) = p, ∀{d, e, f} ∈ [0,K − 1] (3)

where d, e, f are cell indices corresponding to the K discrete poses (x, y, θ), and
vi, i ∈ [0,M−1] represents all possible combinations of colors. As the robot moves
during training, its pose maps into one of the cells. Assuming prior knowledge of
a set of colors, it attempts to learn other colors and stores a count of successes. At
the end of the training phase, the normalized cell counts provide the probability.

Search for Motion Sequence In the training phase the robot moves between
randomly chosen target poses and collects the data/statistics to build the MEM
(lines 2, 4) and the FM (lines 3, 5). The FM has to be re-learned when the object
configurations change, but even with just the geometric constraints the robot is
able to provide motion sequences leading to successful color learning. Then the
robot iterates through all candidate motion sequences (GenCandidateSeq – line
6), i.e. all possible paths through the discretized pose cells. The search depth is
equal to the number of colors to be learned2, i.e. to learn N colors:

path : {xi, yi, θi, colori} ∀i ∈ [0, N − 1] (4)

This formulation results in a large number of paths (≈ 109). But only a much
smaller subset (≈ 104) is evaluated completely. The MEM provides the expected
pose error if the robot travels from the starting pose to the first pose. The vector
sum of the error and the target pose provides the actual pose. If the desired color
can be learned at this pose (evaluated using FM), the move to the next pose
in the path is evaluated. If the whole path is evaluated, the net pose error and
probability of success are computed (EvalCandidateSeq – line 7). Of the paths
that provide a high probability of success, the one with the least pose error is
executed by the robot (SelectMotionSeq – line 8) to extract suitable image pixels
and learn the parameters of the color models [4].

4.2 Greedy Action Planning

Algorithm 2 describes greedy action-selection. Actions are planned one step at a
time, maximizing utility based on current state knowledge. The main difference
compared to Algorithm 1 is that the functions that predict the results of actions
are manually tuned and heuristic, as with typical planning approaches [7]

Due to the noise in the motion model and the initial lack of visual infor-
mation, geometric constraints on object positions are used to resolve conflicts
during learning. The robot needs to decide the order in which the colors are to
be learned, and the best candidate object for learning a color. The algorithm
makes these decisions greedily and heuristically – it uses heuristic action models
to plan one step at a time. The aim is to obtain a large target object while

2 We assume that the robot learns one color at each pose.



Algorithm 2 Greedy Action-Selection.

Require: Ability to learn color models [4].
Require: Positions, shapes and color labels of the objects of interest in the robot’s

environment (Regions). Initial robot pose.
Require: Empty Color Map; List of colors to be learned - Colors.
1: i = 0, N = MaxColors

2: while i < N do

3: Color = BestColorToLearn( i );
4: TargetPose = BestTargetPose( Color );
5: Motion = RequiredMotion( TargetPose )
6: Perform Motion {Monitored using visual input and localization}
7: Model the color [4] and update color map.
8: i = i + 1
9: end while

10: Write out the color statistics and the Color Map.

moving minimally, especially when not many colors are known. Three weights
are computed for each color-object combination (l, i):

w1 = fd( d(l, i) ), w2 = fs( s(l, i) ), w3 = fu( o(l, i) ) (5)

where the functions d(l, i), s(l, i) and o(l, i) represent the distance, size and object
description for each color-object combination. Function fd( d(l, i) ) assigns a
smaller weight to larger distances – the robot should move minimally to learn
the colors. Function fs( s(l, i) ) assigns larger weights to larger candidate objects
– larger objects provide more samples (pixels) to learn the color parameters.
Function fu( o(l, i) ) assigns larger weights iff the particular object (i) for a
particular color (l) is unique, i.e. it can be used to learn the color without
having to wait for any other color to be learned. In each planning cycle, the
robot uses the weights to dynamically chooses the color-object combination that
provides the highest value. The BestColorToLearn (line 3) is:

argmax
l∈[0,9]

(

max
i∈[0,Nl−1]

{ fd( d(l, i) ) + fs( d(l, i) ) + fu( o(l, i) ) }
)

(6)

where the robot parses the different objects (Nl) available for each color (l ∈
[0, N −1]) – the color with the maximum value is chosen to be learned first. The
robot determines the best target object to learn that color as:

argmax
i∈[0,Nl−1]

(

fd( d(l, i) ) + fs( d(l, i) ) + fu( o(l, i) )
)

(7)

For a chosen color, the target object provides the maximum weight/value. The
robot then computes the target pose where it can learn from this target object,
based on the known field-of-view constraints (line 5). The robot executes the
motion command to move to the target pose, extract suitable image pixels and
model the color’s distribution (lines 6-7). The known colors are used to recognize
objects, localize, and provide feedback, i.e. the knowledge available at any given

instant is exploited to plan and execute the subsequent tasks.



5 Experimental Setup and Results

We ran experiments to compare the two action-selection algorithms in the robot
soccer domain. We aim to ensure that the learned color map is similar in per-
formance to a hand-labeled color map. But segmentation accuracy is not a good
performance measure in the presence of background noise. Hence the localization
accuracy is measured. Of the colors needed for localization (pink, yellow, blue,

white, green), the ground colors (green, white) are typically learned/modeled by
scanning in place (a feature of the environment) – the depth of the search pro-
cess is therefore three. The algorithms extend to additional colors, the smaller
subset being used only to make things easier to understand.

For long-term action-selection, the range of poses was divided into (6×9×12)
cells, i.e. divisions of 600mm, 600mm, and 30o along x, y, amd θ. The back-
propagation network was learned using the MATLAB Neural Network tool-
box [19] (≈ 2000 training samples). For the greedy action-selection scheme, the
heuristics were modeled as linear and exponential functions (Equation 5) whose
parameters were experimentally tuned.

Config Plan success Localization error
X (cm) Y (cm) θ (deg)

Long-term 100 7.6 ± 3.7 11.1 ± 4.8 9 ± 6.3

Greedy heuristic 89.3 ± 6.7 11.6 ± 5.1 15.1 ± 7.8 11 ± 9.7

Hand-label n/a 6.9 ± 4.1 9.2 ± 5.3 7.1 ± 5.9

Table 1: Planning and Localization Accuracies in challenging configurations with two
planning schemes. Long-term planning is better.

Both algorithms were tested under several object configurations and robot
starting poses – there are six objects that can be placed anywhere along the
outside of the field, but the robot knows their positions. Table 1 shows the success
ratio averaged over 5 different object configurations, each with 15 different robot
starting poses – a trial is a success if all desired colors are learned. We also had
the robot move through a set of poses using the learned color map and measured
localization errors (15 trials of 10 poses each) – a tape measure and protractor
provided ground truth (see Table 1).

With long-term planning, the robot is able to generate a valid plan over all

the trials, unlike in the case with human-specified heuristics. The localization
accuracy with long-term planning is better than that with greedy planning, and
is comparable to that obtained with a hand-labeled color map. Figure 2 shows
some plans obtained with our long-term planning scheme, the starting position
denoted by number ’0’, while the direction of the arrows show the orientation.
We observe:

1. As all objects with the color pink have another colored blob of the same
size, the robot learns pink only after one of the other two colors (blue, yellow)
have been learned.
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Fig. 2: Sample motion plans generated by long-term planning. All plans lead to suc-
cessful learning on the robot.

2. Among the other two colors (blue, yellow) the robot first learns the color
which requires motion that would result in smaller localization error.
3. For colors which exist in several objects the robot automatically makes
a trade-off between object size and distance to be moved.

In addition to the ’best’ motion-plan, several of the top sequences lead to suc-
cessful learning. The algorithm works well when additional colors that overlap
with existing colors (orange, red etc) are also learned.

The reason behind the better perfor-
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Fig. 3: A configuration where heuristic
planning fails.

mance of the long-term planning algo-
rithm, as compared to the heuristic plan-
ning scheme, is determined by analyz-
ing the configurations where the heuris-
tic planning failed to work. Figure 3
shows one example, where the robot
has to move a large distance to obtain
its first color-learning opportunity (from

pose 0 to 1). This sometimes leads the robot into poses different from its target
pose (pose 1) due to slippage, and it is then unable to find any candidate image
region that satisfies the constraints for the target. Autonomous learning of mod-
els for motion errors and color learning feasibility enables long-term planning to
anticipate pose estimation errors and account for it in the learning procedure.
The long-term planning scheme fails only due to unforeseen reasons (say the
environment changes after a plan is created). Then the robot replans a path
starting from current state – the learned MEM and FM are still applicable.

The color learning with either planning approach proceeds autonomously in
real-time: long-term planning takes ≈ 7 minutes, while greedy planning takes
≈ 6 minutes of robot effort – hand-labeling takes ≈ 2 hours of human effort.
The additional time taken by the long-term planning scheme is due to the initial
search for the motion sequence. The initial training of the models (in long-term
planning) takes 1-2 hours, but it proceeds autonomously (human supervision
only for changing batteries), and needs to be done only once for an environment.
The greedy planning scheme, on the other hand, requires manual parameter



tuning of heuristics (over a few days), which is typically sensitive to (and may
need to be repeated in response to) minor changes, for instance different object
configurations. The learned models are robust to such environmental changes.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Sample images. (a)-(c) Original, (d)-(f) Segmented.

The segmentation performance (Figure 4) of the learned color map is similar with
either planning scheme. Over 20 images, the average segmentation accuracies of
the learned and hand-labeled color map are 94.9±3.9 and 96.7±4.3 respectively
(no difference at 95% significance). Ground truth is provided by a human.

6 Conclusions

The potential of mobile robots can be exploited iff they operate autonomously.
The robot needs to be able to plan action sequences that facilitate the au-
tonomous learning (and adaptation) of models for environmental features. Two
major challenges for robots with color cameras are manual calibration and sen-
sitivity to illumination changes. Prior work has focused on modeling known
illuminations [11], learning a few distinct colors [3], and using heuristic models
to plan action sequences that facilitate learning [4].

In this paper, we enable the robot to autonomously learn models for motion
error and learning feasibility. The long-term action-selection maximizes learning
opportunities while minimizing errors over the entire action sequence, resulting
in better performance than the greedy, heuristic approach that involves extensive
manual parameter tuning. Though we have presented results for color learning
in a moderately structured scene, similar techniques can be devised for other
higher-dimensional features. In addition, the planning scheme used to model
colors can be applied to other learning/modeling tasks.

Both planning schemes require the environmental structure as input, which
is much easier to provide than hand-labeling several images. One challenge is
to combine this work with autonomous vision-based map building (SLAM) [20]
so that structure can also be largely learned by the robot. We also aim to com-
bine the planned learning approach with our prior work that detects and adapts
to illumination changes [4]. The ultimate goal is to develop algorithms for au-
tonomous mobile robot operation under natural conditions.
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