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Abstract: A major challenge to the deployment of mobile robots is the ability to function autonomously, learning ap-
propriate models for environmental features and adapting those modelsin response to environmental changes.
This autonomous operation in turn requires autonomous selection/planningof an action sequence that facil-
itates learning and adaptation. Here we focus on color modeling/learning and analyze two algorithms that
enable a mobile robot to plan action sequences that facilitate color learning:a long-termaction selection ap-
proach that maximizes color learning opportunities while minimizing localizationerrors over an entire action
sequence, and agreedy/heuristicaction selection approach that plans incrementally, one step at a time, to
maximize the benefits based on the current state of the world. The long-term action selection results in a
more principled solution that requires minimal human supervision, while better failure recovery is achieved
by incorporating features of the greedy planning approach. All algorithms are fully implemented and tested
on the Sony AIBO robots.

1 INTRODUCTION
Recent developments in sensor technology have en-
abled the use of mobile robots in several fields (et.
al, 2003; Minten et al., 2001; Thrun, 2006). But
these sensors require extensive manual calibration in
response to environmental changes. Widespread use
of mobile robots is feasibleiff they can autonomously
learn useful models of environmental features and
adapt these models over time. But mobile robots need
to operate in real-time under constrained resources,
making learning and adaptation challenging.

We aim to achieve autonomous learning and adap-
tation in color segmentation – the mapping from pix-
els to color labels such as red, blue and orange. Sig-
nificant amount of human effort is involved in creat-
ing thecolor map, and it is sensitive to environmental
changes such as illumination. We enable the robot
to exploit thestructureof the environment – objects
with known features, to autonomously plan an action
sequence that facilitates color learning.

Planning approaches (Boutillier et al., 1999; Ghal-

lab et al., 2004) typically require that all actions (and
their effects) and contingencies be known in advance,
along with extensive state knowledge. Mobile robots
operate with noisy sensors and actuators, and possess
incomplete knowledge of state and the results of their
actions. Here the robot builds probabilistic models of
the results of its actions. The models are used to plan
action sequences that maximize color learning oppor-
tunities while minimizing localization errors over the
action sequence. We show that thislong-termaction
selection is more robust than agreedyapproach that
uses human-specified heuristics to plan actions incre-
mentally (one step at a time).

2 RELATED WORK
Segmentation and color constancy are well-

researched sub-fields in computer vision (Comaniciu
and Meer, 2002; Shi and Malik, 2000; Maloney and
Wandell, 1986; Rosenberg et al., 2001). But most ap-
proaches are computationally expensive to implement
on mobile robots with constrained resources.

On mobile robots, the color map is typically



created by hand-labeling image regions over a few
hours (Cohen et al., 2004). (Cameron and Barnes,
2003) construct closed regions corresponding to
known objects, the pixels within these regions be-
ing used to build classifiers. (Jungel, 2004) maintains
layers of color maps with increasing precision levels,
colors being represented as cuboids. (Schulz and Fox,
2004) estimate colors using a hierarchical Bayesian
model with Gaussian priors and a joint posterior on
robot position and illumination. (et. al, 2005) model
colors using a mixture of Gaussians and compensate
for minor illumination changes by modifying the pa-
rameters. (Thrun, 2006) distinguish between safe and
unsafe road regions, modeling colors as a mixture of
Gaussians whose parameters are updated using EM.
Our prior work (Sridharan and Stone, 2007) presented
a scheme to learn colors and detect large illumination
changes, actions being planned one step at a time us-
ing human-specified heuristic functions. Instead, we
propose an algorithm that enables the robot to learn
the appropriate functions autonomously, so as to gen-
erate complete action sequences that maximize color
learning opportunities while minimizing localization
errors over the entire sequence.

3 EXPERIMENTAL PLATFORM
AND COLOR MODEL

The experiments re-

Figure 1: Aibo and field.

ported in this paper
are run on the SONY
ERS-7 Aibo, a four-
legged robot with a
CMOS color camera
with a limited field-of-

view (56.9o horz., 45.2o vert.). The images are cap-
tured at 30Hz with a resolution of 208× 160 pix-
els. The robot has three degrees-of-freedom in each
leg, and three in its head.All processing for vision,
localization, motion and strategy is done on-board
a 576MHz processor. The Aibos are used in the
RoboCup Legged League, a research initiative where
teams of four robots play a game of soccer on an in-
door field (Figure 1).

In order to operate in a color coded environment,
the robot needs to recognize a discrete number of col-
ors (N). A color mapprovides a color label for each
point in the 3D color space (say RGB). Typically a
human observer labels specific image regions over a
period of an hour or more, and the color map is ob-
tained by generalizing from these labeled samples.
We compare two action-selection algorithms for au-
tonomous color learning: (a) a novel approach that
maximizes learning opportunities while minimizing

localization errors over the entire sequence, and (b) an
approach that plans actions incrementally, based on
human-specified heuristics. Both planning schemes
generate a sequence of poses(x,y,θ) that the robot
moves through, learning one color at each pose. As
described in (Sridharan and Stone, 2007), we assume
that the robot can exploit the known environmental
structure (position, shapes and color labels of objects)
to extract suitable image regions at each pose, and
model each color’s distribution as either a 3D Gaus-
sian or a 3D histogram. Assuming all colors are
equally likely, i.e. P(l) = 1/N, ∀l ∈ [0,N−1], each
color’s a posterioripdf is proportional to the a priori
pdfs. The color space is discretized and each cell in
the color map is assigned the label of themost likely
color pdf.

4 ALGORITHMS

In both action-selection algorithms for color learn-
ing, the robot starts out with no prior information on
color distributions, and the illumination is assumed
to be constant during learning. The robot knows the
positions, size and color labels of objects in its envi-
ronment, and its starting pose.

4.1 Long-term Planning

Algorithm 1 presents the long-term planning ap-
proach. The algorithm aims to maximize color learn-
ing opportunities while minimizing localization errors
over the entire motion sequence. Three components
are introduced: a motion error model (MEM), a sta-
tistical feasibility model (FM), and a search routine.

The MEM, represented as a back-propagation
neural network (Bishop, 1995), predicts the error in
the robot pose in response to a motion command, as
a function of the colors used for localization (the lo-
cations of color-coded markers are known). For each
robot pose, the FM provides the probability of learn-
ing each of the desired colors given that a certain set
of colors have been learned previously. During train-
ing, the possible robot poses are discretized into cells,
and the robot moves between randomly chosen poses
running two localization routines, one with all col-
ors known (to provide ground truth), and another with
only a subset of colors known, collecting data for the
MEM. At each pose, it also attempts to learn colors
and stores a success count, which is normalized to
provide the probability value in the FM.

During the testing phase, given a starting pose,
the robot evaluates all possible paths through the dis-
cretized pose cells. The MEM provides the error ex-
pected if the robot travels from the starting pose to
the first pose. The vector sum of the error and target
pose provides the actual pose. If the desired color can



Algorithm 1 Long-term Action Selection.
Require: Ability to learn color models.
Require: Positions, shapes and color labels of the

objects of interest in the robot’s environment
(Regions). Initial robot pose.

Require: Empty Color Map; List of colors to be
learned -Colors.

1: Move between randomly selected target poses.
2: CollectMEMData() – collect data for motion er-

ror model.
3: CollectColLearnStats() – collect color learning

statistics.
4: NNetTrain() – Train the Neural network for

MEM.
5: UpdateFM() – Generate the statistical feasibility

model.
6: GenCandidateSeq() – Generate candidate se-

quences.
7: EvalCandidateSeq() – Evaluate candidate se-

quences.
8: SelectMotionSeq() – Select final motion se-

quence.
9: Execute motion sequence and model colors (Srid-

haran and Stone, 2007).
10: Write out the color statistics and the Color Map.

be learned at this pose, the move to the next pose in
the path is evaluated. Of the paths that provide a high
probability of success, the one with the least pose er-
ror is executed by the robot to learn the parameters of
the color models.

4.2 Greedy Action Planning

Algorithm 2 shows the greedy planning algorithm,
where actions are planned one step at a time, max-
imizing benefits based on the current knowledge of
the state of the world. The functions used for action
selection, are manually tuned and heuristic, as with
typical planning approaches (Ghallab et al., 2004).

The robot needs to decide the order in which the
colors are to be learned, and the best candidate ob-
ject for learning a color. The algorithm uses heuris-
tic action models to plan one step at a time. Three
functions are used to compute theweightsfor each
color-object combination(l , i). Function 1 assigns a
smaller weight to larger distances, modeling the fact
that the robot should move minimally to learn the col-
ors. Function 2 assigns larger weights to larger candi-
date objects, as larger objects provide more samples
(pixels) to learn the color parameters. Function 3 as-
signs larger weights if the particular object (i) can be
used to learn the color (l) without having to wait for
any other color to be learned.

Algorithm 2 Greedy Action Selection.
Require: Ability to learn color models.
Require: Positions, shapes and color labels of the

objects of interest in the robot’s environment
(Regions). Initial robot pose.

Require: Empty Color Map; List of colors to be
learned -Colors.

1: i = 0, N = MaxColors
2: while i < N do
3: Color = BestColorToLearn( i );
4: TargetPose= BestTargetPose( Color );
5: Motion= RequiredMotion( TargetPose)
6: PerformMotion{Monitored using visual input

and localization}
7: Model the color (Sridharan and Stone, 2007)

and update color map.
8: i = i +1
9: end while

10: Write out the color statistics and the Color Map.

In each planning cycle, the robot uses the weights
to dynamically determine thevalue of each color-
object combination, and chooses the combination that
provides the highest value. The robot then computes
and moves to the target pose where it can learn from
this target object, extracts suitable image pixels, and
models the color’s distribution (lines 6-7). The known
colors are used to recognize objects, localize, and
provide feedbackfor the motion, i.e. the knowledge
available at any given instant is exploited to plan and
execute the subsequent tasks efficiently.

5 EXPERIMENTAL SETUP AND
RESULTS

We ran experiments to compare the performance
of the two action-planning algorithms. The planning
success (ability to learn all colors) averaged over dif-
ferent object configurations (six objects that can be
placed anywhere along the outside of the field), each
with 15 different robot starting poses, is shown in Ta-
ble 1. We also had the robot move through a set of
poses using the learned color map and measured lo-
calization errors – see Table 2.

Config Plan (%)
Learn (global) 100

Learn (heuristic) 89.3±6.7

Table 1: Planning Accuracies using the two planning
schemes. Global planning is better.

With the global planning scheme, the robot is able
to generate a valid plan overall the trials. The lo-



Config Localization error
X (cm) Y (cm) θ (deg)

Learn (global) 7.6±3.7 11.1±4.8 9±6.3
Learn (heuristic) 11.6±5.1 15.1±7.8 11±9.7

Hand-labeled 6.9±4.1 9.2±5.3 7.1±5.9

Table 2: Localization Accuracies using the two planning
schemes. Global planning is better.

calization accuracies are comparable to that obtained
from a hand-labeled color map, and better than the
heuristic planning scheme. Modeling the motion er-
rors and the feasibility of color learning enables the
global planning scheme to generate robust plans, and
the replanningfeature of the heuristic approach can
be used when the plan fails due to unforeseen reasons.

The online color learning process takes a simi-
lar amount of time with either planning scheme (≈ 6
minutes of robot effort) instead of more than two
hours of human effort. The initial training of the mod-
els (in global planning) takes 1-2 hours, but it pro-
ceeds autonomously and needs to be done only once
for each environment. The heuristic planning scheme,
on the other hand, requires manual parameter tuning
over a few days, which is sensitive to minor environ-
mental changes.

6 CONCLUSIONS
The potential of mobile robots can be exploited

in real-world applications only if they function au-
tonomously. For mobile robots equipped with color
cameras, two major challenges are the manual cali-
bration and the sensitivity to illumination. Prior work
has managed to learn a few distinct colors (Thrun,
2006), model known illuminations (Rosenberg et al.,
2001), and use heuristic action sequences to facilitate
learning (Sridharan and Stone, 2007).

We present an algorithm that enables a mobile
robot to autonomously model its motion errors and
the feasibility of learning different colors at different
poses, thereby maximizing color learning opportuni-
ties while minimizing localization errors. The global
action selection provides robust performance that is
significantly better than that obtained with manually
tuned heuristics.

Both planning schemes require the environmen-
tal structure as input, which is easier to provide than
hand-labeling several images. One challenge is to
combine this work with autonomous vision-based
map building (SLAM) (Jensfelt et al., 2006). We also
aim to extend our learning approach to smoothly de-
tect and adapt to illumination changes, thereby mak-
ing the robot operate with minimal human supervision
under natural conditions.
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