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Abstract

Robust human-robot interaction in dynamic domains requires that the robot au-
tonomously learn from sensory cues and adapt to unforeseen changes. However,
the uncertainty associated with sensing and actuation on mobile robots makes au-
tonomous operation a formidable challenge. This paper describes a novel frame-
work for robots to incrementally learn object models and categorize objects based
on multimodal sensory cues. The robot learns multimodal models composed of
visual and verbal vocabularies to describe domain objects. The visual vocabulary
consists of learned probabilistic models of object properties such as color, shape
and size. Probabilistic graphical models and lexical tools are used to learn the ver-
bal vocabulary consisting of object property labels and category labels that specify
the relative importance of the objects. The robot also learns association models
that enable the description of visual observations with words allowing for more
natural human robot interaction. Furthermore, the robot uses the multimodal mod-
els to identify novel objects and augment existing object descriptions by posing
natural language queries for human feedback.

1 Introduction
Enabling natural and robust human-robot interaction (HRI) in dynamic domains is an
open research problem [13, 28]. Sophisticated sensory input processing algorithms
have enabled the use of mobile robots in many real-world application domains [6, 15,
23, 29]. However, in domains characterized by partial observability, non-deterministic
action outcomes and unforeseen changes, a robot equipped with multiple high-fidelity
sensors still lacks the ability to robustly sense the environment and naturally interact
with human participants. The sensory cues (e.g., vision and speech) are sensitive to
environmental factors (e.g., illumination and background noise) and the information
extracted by the processing algorithms is unreliable. Sustaining natural HRI requires
the robot to understand and learn from context-dependent cues provided by human
participants. Furthermore, the lack of time and expertise frequently makes it infea-
sible for humans to provide elaborate and accurate feedback—the robot needs to use
human feedback judiciously as needed. Robust and natural HRI in dynamic domains
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hence poses formidable challenges related to adaptive sensory processing, contextual
information understanding and learning from human cues.

This paper describes a framework for natural HRI that enables a robot to use mul-
timodal sensory cues to incrementally learn object models, categorize objects and ac-
quire human inputs as needed. Specifically, the framework enables the robot to learn
multimodal models of real-world objects based on visual and verbal vocabularies. The
robot processes images to incrementally learn a vocabulary of object properties that is
used to represent domain objects. The robot also analyzes verbal human inputs describ-
ing specific aspects of the scene to learn a more natural verbal vocabulary to describe
domain objects. A learned association between the visual and verbal vocabularies en-
ables the robot to provide natural descriptions of subsequent visual inputs and acquire
human feedback as needed. The following key contributions are made in this paper:
• A probabilistic bootstrap learning approach is developed to enable the robot to

incrementally populate the visual vocabulary with learned stochastic models of
object properties such as color, shape and size.

• Probabilistic graphical models and lexical tools are used to learn a verbal vo-
cabulary of object property labels and category labels that specify the relative
importance of the objects.

• An association is learned between the visual and verbal vocabularies to enable
the robot to map visual properties to words, identify ambiguities and augment
existing object descriptions by posing natural queries for human feedback.

All algorithms are implemented and evaluated on a robot interacting with a human to
describe objects in a tabletop scenario. The remainder of the paper is organized as fol-
lows. Section 2 summarizes related work to motivate the work described in this paper,
while Section 3 describes the proposed multimodal learning framework. Experimental
results are discussed in Section 4, followed by the conclusions in Section 5.

2 Related work
Sophisticated sensory input processing and decision-making algorithms have enabled
the deployment of robots and software agents to interact with humans in different ap-
plication domains [5, 15, 24]. For instance, the HUMAINE project aims to develop
an integrated framework for emotion-oriented computing, and describe the emotional
responses in human-machine interaction. Pineau et al. [24] developed a hierarchy of
partially observable Markov decision processes (POMDPs) for behavior control on
a robot operating as a nursing assistant at a hospital. Hoey et al. [15] used a simi-
lar POMDP hierarchy to develop a vision-based automatic monitoring and prompting
system for people with dementia engaged in hand-washing. However, the hierarchy
underlying these systems had to be manually specified.

There has been considerable work on cognitive architectures [1, 9, 20, 23] that build
computational models to study (and understand) human-level reasoning, and to enable
knowledge acquisition and reasoning on virtual agents and mobile robots. Large re-
search consortia are focusing on cognitive HRI (e.g., CogX) [8, 9], where information
obtained from different sensory cues (e.g., vision and speech) are bound together based
on predetermined rules. However, many of these schemes are computationally expen-
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sive, require manual encoding of a significant amount of domain knowledge, and lack
proper schemes for inference when dealing with information associated with varying
levels of uncertainty.

Many HRI schemes have focused on enabling robots to operate autonomously
based on sensory inputs [4, 11], or to learn from extensive manual training and do-
main knowledge [2, 14]. Since dynamic domains make it challenging for a robot to
operate without any human input and make it difficult for a human observer to provide
elaborate feedback, researchers are focusing on enabling robots to acquire and use lim-
ited human input based on need and availability [26]. However, these methods do not
model the unreliability of human inputs and require elaborate knowledge of the task
and domain, limiting their use to simple simulated domains or specific tasks. There
has also been considerable work on integrating multimodal cues within an appropri-
ate architecture for HRI. For instance, Perzanowski et al. [23] modeled human-level
communication to integrate gesture recognition and speech understanding within an
architecture that enables multimodal HRI. More recently, Kennedy et al. [17] inte-
grated computational cognitive models, multiple spatial representations and sensory
cues (gestures and speech) to enable human-robot collaboration in a reconnaissance
task. However, these approaches require manual encoding of considerable domain
knowledge. In addition, adaptive sensory processing, contextual speech understanding
and learning from human cues continue to be challenges for robust and natural HRI.
The next section describes our framework that aims to address these challenges by
learning multimodal associations between sensory cues.

3 Proposed Framework
The section describes the experimental scenario and the proposed framework that learns
object descriptions from multimodal sensory cues, as shown in Figure 1.

Figure 1: Overview of the multimodal learning framework.
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3.1 Tabletop Scenario
The algorithms described in this paper are illustrated in a scenario where a human
and a robot observe and describe objects placed on a tabletop. The scenario, though
simplistic, encapsulates the challenges that we seek to address. Figures 2(a)–2(d) show
some examples of the candidate objects. The objects are characterized by different
properties such as color, shape and size.

(a) (b) (c) (d)

Figure 2: Images of the tabletop scenario and sample objects.

The robot learns incrementally and simultaneously from the sensory cues that con-
sist of images from a color camera and verbal cues from a human observer. Section 3.2
describes the probabilistic bootstrap learning algorithm that enables the robot to incre-
mentally learn a visual vocabulary of relevant object properties such as color, shape
and size. Regions of interest (ROIs) in subsequent images result in probability dis-
tributions over the property class labels. A human participant observing the scene in
Figure 2(b) may provide a verbal input of the form: “the small green circle is not
typical”. Section 3.3 describes the graphical models and lexical tools that process the
text corresponding to this input to extract candidate property labels (e.g., small, green
and circle) and category labels (e.g., not standard). Finally, Section 3.4 describes a
scheme to associate a natural verbal vocabulary with the visual vocabulary, enabling
the robot to provide natural labels to subsequent sensory cues. In addition, feature
vectors consisting of probability distributions over visual and verbal vocabularies (i.e.,
class labels) are used to learn a mapping to object category labels. In this paper, objects
are characterized by three properties: color, shape and size; and two categories: nor-
mal, i.e., typical, and suspicious, i.e., needs investigation. For ease of explanation, the
description below assumes that the robot first learns the vocabularies and then classi-
fies test objects—learning can however be continuous. We also assume that objects are
viewed sequentially during learning, which makes it easier to establish correspondence
between multimodal cues.

3.2 Visual features
This section describes the use of visual cues to learn the visual vocabulary composed
of models of object properties.
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3.2.1 Visual Property Descriptions

An object in the tabletop scenario is characterized by color, shape and size properties.
In order to learn a visual vocabulary to describe objects, the robot hence needs an
approach to use images of different objects to learn models of object properties.

Consider the situation where salient regions of interest (ROIs) corresponding to
objects have been extracted from an image, and consider a single ROI. Each ROI pixel
m is a point in a three-dimensional color space, i.e., a vector 〈m1,m2,m3〉 of values
along the color channels (e.g., RGB). In this paper, the color property of an object is
modeled as a distribution of the corresponding image pixels in the RGB color space.
A disjunctive representation is used to model color distributions as a Gaussian mixture
model (GMM) [3] or a 3D histogram:

p(m) ∼
K∑
i=1

wiN (µi,Σi) or ≡ hist(b1, b2, b3)

hist
(1)

where the color distribution is modeled as the weighted sum of K Gaussians or a 3D
histogram in color space. The parameters of the GMM, i.e., wi, µi, Σi and K, are
computed by Expectation-Maximization [3] on the image pixels being considered. To
build a 3D histogram, the range of pixels values along the three channels are grouped
into bins, and (b1, b2, b3) are the bin indices corresponding to the color values m =
(m1,m2,m3). The histogram is normalized to obtain a probability distribution. The
disjunctive representation provides a good trade-off between ease of representation and
computational efficiency. A GMM or a histogram can be learned from one or more
images (of the same object) and represents an entry in the visual vocabulary.

The shape property seeks to capture the external contour of the object in the ROI.
The pixels corresponding to the boundary of the object in the ROI are therefore ex-
tracted and the contour is modeled using the seven Hu invariant moments [9, 16]:

sm1 =η20 + η02 (2)

sm2 =(η20 + η02)
2 + (2η11)

2

sm3 =(η30 + 3η12)
2 + (3η21 − η03)2

sm4 =(η30 + η12)
2 + (η21 + η03)

2

sm5 =(η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

sm6 =(η20 − η02)[η30 + η212 − (η21 + η03)
2]+

4η11(η30 + η12)(η21 + η03)

sm7 =(3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]−
(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

where ηij = µij/µ
1+ i+j

2
00 . These moments {smi, i ∈ [1, 7]} are robust to changes in

image scale, rotation, translation and reflection, e.g., the first moment (sm1) is similar
to the moment of inertia around the ROI’s centroid and the seventh moment is skew
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invariant. Each unique shape description represents an entry in the visual vocabulary,
which can be used to model different shapes.

Finally, the size property measures the relative size of the object in the image. This
is represented by computing the number of pixels within the ROI under consideration
and dividing it by the total number of pixels in the image, creating a unique size de-
scription entry in the visual vocabulary.

3.2.2 Bootstrap Learning and Matching

Given the visual feature descriptions described above, this section describes the boot-
strap learning approach for autonomously and incrementally learning the unique mod-
els of visual properties to populate the visual vocabulary.

Consider the incremental learning of color-based entries in the visual vocabulary.
For ease of explanation, assume that N unique entries have been learned for color
distribution-based descriptions, i.e., there are N color property classes: Ci, i ∈ [1, N ].
Let the robot now process the ROI in a new image. As described in Section 3.2.1,
Equation 1 is used to learn a model pnew(m) of the color distribution in the ROI, as a
GMM or a histogram. The robot compares this learned color distribution model with
the existing N unique color description models. For the GMM, this comparison mea-
sures the degree of overlap between pnew(m) and pj(m), j ∈ [1, N ]. For histogram
models, the distance between the new distribution and the existing distributions can be
measured using the Jensen-Shannon measure:

JS(a,b) =
KL(a,m) +KL(b,m)

2
(3)

KL(a,b) =
∑
i

(ai · ln
ai

bi
), m =

a + b

2

where a and b are the distributions to be compared andKL(a,m) is the KL-divergence
measure between distributions. This measure is robust to sudden spikes in the distri-
butions [27]. If the new distribution is a close match with one of the existing color
property descriptions, it is merged with the existing description using GMM-merging
or histogram-merging techniques [27]. If a close match is not found, a new color prop-
erty class created, i.e., a new entry is created in the visual vocabulary.

Next, assume that M shape property descriptions: Shj , j ∈ [1,M ] have been
learned. The shape description corresponding to the ROI extracted in a new image
smi,new, i ∈ [1, 7] is compared with the existing M shape descriptions using a dis-
tance measure in the seven-dimensional space of moments—Equation 3. A new shape
property class is created, i.e., a new entry is created in the visual vocabulary, if the
observed shape is not a close match with any of the existing descriptions. Given that
the ROI-size just measures the area of the image covered by the ROI, new size descrip-
tions are created if the observed ROI size is more than 1.5 times larger or smaller than
L existing size models (Szj , j ∈ [1, L]). All size values within a range are merged
together.

Assume that the robot has learned models for N , M , and L color, shape and size
property classes in its visual vocabulary, using the bootstrap learning approach. Any
object is now described using the vocabulary entries. A strategy is developed to match
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the property distributions in an image with the learned property models, to obtain a
feature vector that describes objects as a probability distribution over the vocabulary.

Consider the color distribution ptest extracted from a ROI in the test image. The
similarity between this distribution and the learned color property models is computed
as the degree of overlap with the existing GMMs or the JS distance (Equation 3) to the
existing histograms. This distance is used to obtain a probability distribution over the
color-based entries in the vocabulary, i.e., a N -dimensional vector of match probabil-
ities: 〈mpc1 , . . . ,mpcN 〉. Similar match probabilities are obtained by measuring the
similarity between the shape property description smi,test, i ∈ [1, 7] of the test image
ROI with the M learned shape property models. The shape-based comparison pro-
vides an M -dimensional vector: 〈mpsh1

, . . . ,mpshM
〉. To obtain match probabilities

based on ROI-size, the test image ROI size is compared on a linear scale between the
largest and smallest learned size property models. The net visual feature vector for the
test object is a combination of the individual match probability vectors over the visual
vocabulary:

mpc1 , . . . ,mpcN ,mpsh1
, . . . ,mpshM

,mpsz1 , . . . ,mpszL (4)

The robot learns associations between this feature vector and the verbal feature vectors
of Section 3.3. The robot also uses the entropy in the match probability vectors to
identify ambiguous test objects, e.g., for the color-based match probability vector:

H(C) = −
N∑
i=1

mpci log(mpci) (5)

If the match between color properties of the object in the test image ROI and the learned
color property models is ambiguous, this entropy measure will have a large value.
Similar entropy measures are computed based on the shape and size properties, and the
maximum of these entropies is used to determine the need for human inputs.

3.3 Verbal Features
As stated in Section 3.1, the verbal cues consist of transcripts of human descriptions of
image ROIs, i.e., sentences of the form: “the small red triangle looks quite standard”.
The robot is also given the dictionary of object category labels: normal and suspicious.
The verbal vocabulary for describing objects is the set of labels for object properties
such as color, shape and size, i.e., a dictionary of labels such as red, green, circle,
triangle and large. This vocabulary is learned by isolating words or phrases in the
verbal inputs which are in the form of annotations. Verbal features are then learned
by computing the semantic interpretation of each of these verbal properties. Next,
associations are learned between visual and verbal vocabularies to describe each object
as a feature vector. A set of feature vectors, along with the category labels, are used to
build a joint model that classifies objects as normal or suspicious.

3.3.1 Verbal Property Descriptions

Extracting verbal vocabulary from verbal cues involves tagging individual words or
phrases with object properties. The property labels are COL, SIZ, SHA, COM for color,
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size, shape and comment where comment refers to the category labels in the text. The
tagging is done according to the IOB2 convention [25] where the B, I and O are used
to indicate that a word is at the beginning, inside or outside of a property label. For
instance, the three words looks quite normal that represent the comment property in a
sentence, are tagged B COM, I COM, I COM and all words that do not correspond to
any specific property are tagged O.

Figure 3: Part of speech and object property tags for words in a sentence.

In addition to the property tags, Part of Speech tags (POS tags) of the individual
words in the annotated data are generated automatically using the Stanford Log-linear
POS Tagger [30] with the tags belonging to the Penn Treebank tag set [21]. Com-
mon POS tags are noun, adjective, verb, adverb, determiner, which are denoted by:
NN, JJ, VBZ, RB, DT. Figure 3 illustrates the assignment of POS and object property
tags for a sample sentence.

The property tags and POS tags are used to learn a Conditional Random Field
(CRF) [19, 3, 18] that can tag new annotations with their verbal property tags. A CRF
is a partially directed graph whose nodes correspond to Y

⋃
X where Y is a set of target

variables and X is a set of observed variables. The graph is parameterized as a set of
factors, φ1(D1), ..., φm(Dm) in the same way as a Markov network. However, rather
than encoding the distribution P (Y,X), the network encodes a conditional distribution
as follows:

P (Y|X) =
1

Z(X)
P̃ (Y,X) (6)

P̃ (Y,X) =

m∏
i=1

φi(Di)

Z(X) =
∑

Y

P̃ (Y,X)

The POS tags and words are modeled as the observed variables (X) and the object
property tags SIZ, SHA, COL, COM are the target variables (Y) used for tagging the
words in the annotation. The CRF model is learned using the CRF Toolkit [10]. A
small set of annotated sentences are manually labeled with verbal property tags and
provided as input to the toolkit along with the corresponding words and POS tags.
However, the CRF model bootstraps off of the available information (similar to the
visual vocabulary). As property tags are identified in subsequent sentences, they are
used as automatically labeled training data. The candidate verbal tags are processed
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using a lexical tool (WordNet[22], see below) to identify verbal vocabulary entries,
i.e., items to be placed in the verbal dictionary. The verbal dictionary will therefore
consist of entries (i.e., labels) for color, shape and size.

3.3.2 Learning Semantic Interpretations

Given the verbal vocabulary entries, the semantic content of the words is then extracted
to generate verbal features corresponding to any object, using a lexical database. Con-
sider the color property. As stated above, the verbal vocabulary for color consists of
entries such as red, blue, green, yellow. WordNet [22, 12], is a large lexical database
of English with words grouped into synsets or cognitive synonyms. Each synset ex-
presses a distinct concept and the words in the synsets are connected through different
relationships such as synonyms, antonyms, hypernyms and hyponyms.

(a) (b)

Figure 4: Using WordNet to compute semantic distances. The colors red, blue, green
and yellow all have the same hypernym chromatic color and this is an example of a
is-a relationship. The adjective large does not have a hypernym but instead has several
synonyms and similar words, a few of which are shown in this figure.

When a word is tagged with an object property, the meaning of the word is ex-
pressed as a semantic distance with the different possible dictionary values for the prop-
erty. Color values such as red, blue and green have the same hypernym chromatic color
and this is an instance of a is-a relationship where red is a chromatic color. Once a word
is identified as a color property in a new sentence, the semantic distance between the
word and the possible entries for color in the dictionary are computed and this dis-
tribution represents the color-based verbal feature for this sentence. Similar semantic
distances are computed by matching size and shape property tags in the sentence with
the entries in the size and shape dictionaries (vocabulary). For instance, given the sen-
tence: “this is a gigantic object”, a distribution will be obtained over learned size-based
vocabulary entries (e.g., small, medium, large), and the best match is likely to be with:
large. Figures 4(a)–4(b) show how WordNet is used to semantically link words in the
annotation with synsets of words in the dictionary. Thus words in the annotated text
are semantically interpreted using WordNet and the distributions over possible values
of color, shape and size are computed. Similar to Equation 4, a verbal feature vector
is generated as a distribution over verbal dictionary entries. However, unlike the vi-
sual features, a match is also obtained between words in the annotated text with the
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given category labels, i.e., the verbal feature represents a sentence using a vocabulary
composed of object properties and category labels.

3.4 Algorithm

Algorithm 1 Multimodal Learning and Inference
1: Learning Scheme:
{Visual Learning}

2: for i = 1 to Nimg do
3: Extract Nsr,i salient regions in image Ii.
4: for j = 1 to Nsr,i do
5: Extract visual properties (color, shape, size) of ROIj .
6: Compute probability distribution of match with existing property classes.
7: if detectNewObject() then
8: Populate new vocabulary entries and obtain human input if necessary.
9: else

10: Merge with appropriate object property distributions.
11: end if
12: end for
13: end for
{Verbal Learning}

14: Get Nver sentences corresponding to human verbal descriptions.
15: for i = 1 to Nver do
16: Extract verbal property tags and comment tags in STi.
17: Compute distribution over dictionary entries for properties and comments.
18: end for
{Multimodal mapping}

19: Extract co-occurrence patterns of visual and verbal descriptions of object proper-
ties.

20: Learn multimodal models of object properties and categories.

21: Classification/Inference:
22: for i = 1 to Ntest do
23: Extract salient regions from Ii.
24: for j = 1 to N do
25: Extract visual property distributions from ROIj .
26: Compute match probabilities with learned property classes.
27: Use visual class probability distributions to obtain verbal class distributions.
28: Classify feature vectors of visual and verbal class distributions to obtain ob-

ject category labels.
29: Draw attention or acquire human inputs for objects with ambiguous labels.
30: end for
31: end for

We propose that combining visual and verbal descriptions of objects leads to more
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natural human-robot interaction. Visual and verbal features are hence used to develop
a joint model for classifying objects into one of two categories. Algorithm 1 shows the
different stages involved in the learning and classification process. As stated earlier, the
learning and classification can be continuous processes after an initial learning phase.

The visual vocabulary is learned as described in Section 3.2 from images of various
objects (lines 2-13) in Algorithm 1. The vocabulary is populated incrementally by
learning models of distributions of object properties such as color, shape and size. As
property descriptions are learned from image ROIs, they are matched against existing
descriptions, resulting in the creation of new vocabulary entries (line 8) or merging
with the existing property descriptions. After some vocabulary entries are populated
for the object properties, any object can be characterized as a feature vector, i.e., a
distribution over the learned vocabulary entries—Equation 4.

The verbal vocabulary entries are learned next based on the verbal descriptions
corresponding to the images used to learn the visual vocabulary (lines 14-18) in Al-
gorithm 1. Some of the annotated text is generated manually to train a CRF model
(Equation 6) that is used to identify candidate verbal dictionary items. A lexical tool is
then used to identify the vocabulary entries corresponding to object properties. In ad-
dition to the property tags, the object category tags (corresponding to dictionary items:
normal and suspicious) are also extracted.

Next, an association is learned between visual and verbal features (line 19 in Al-
gorithm 1), i.e., the distributions over the visual vocabulary entries are mapped to the
corresponding distributions over the verbal vocabulary entries. An object is now char-
acterized using feature representations over visual and verbal vocabularies. If an anno-
tation for an object has the word red in it, the corresponding visual feature distribution
over the visual vocabulary’s color entries is associated with the word red. Each entry in
the verbal dictionary corresponding to color words (described in Section 3.3.1) is hence
mapped to one or more visual feature distributions. In other words, every property en-
try in the verbal dictionary is associated with a set of class distributions over the visual
vocabulary. The visual-verbal association is very useful because different objects of the
same property (e.g., color) may not have identical distributions over the visual classes.
For instance, color distributions can vary based on illumination changes. However,
different verbal property tags for the same color are likely to be clustered together, and
hence the different visual feature distributions are likely to be annotated with the same
label from the verbal dictionary. As far as the visual features are concerned, the object
simply has a distribution over the set of property classes. It is only when computing
the verbal features, that the actual name of the property and its semantic meaning are
known.

The feature vectors (considered individually and together) and category tags are
also used to learn a Support Vector Machine [3] classifier that can categorize subse-
quent visual and/or verbal features (line 20 in Algorithm 1).

The learned models and associations are used for classification (lines 21-30) in
Algorithm 1. When a new object with no corresponding annotation is seen, its vi-
sual features are computed as before and mapped to appropriate labels from the ver-
bal dictionaries for each property. This mapping is done by computing the distance
between the visual feature distribution for the new object and the distributions associ-
ated with each verbal label, based on the Jensen-Shannon distance measure in Equa-
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tion 3. For instance, the distance between the color-specific entries of the visual fea-
ture (of the test object) and the set of feature distributions associated with each color
red, blue, green, etc. in the verbal space is computed. The object is then assigned the
label of whichever set of distributions is closest to it. At the same time, if a good match
is not found with any of the existing verbal classes (e.g., with Equation 5), human input
can be requested by posing more natural queries. Once the verbal label is determined,
the visual and verbal features are used in the joint classification model to determine ob-
ject category labels, which can (once again) be used to pose natural language queries
to solicit human feedback over “suspicious” objects.

4 Experimental Setup and Results
This section describes the experimental framework and results from the different exper-
iments conducted. The data for the experiments consists of 40 objects in the tabletop
scenario described in Section 3. Each input image consists of one object to simulate the
extraction of ROIs from an image. The 640× 480 images are captured by a monocular
color camera mounted on a wheeled robot. The objects are characterized using color,
shape and size properties, and each object is unique in terms of at least one of the three
properties. The objects used in the experiments had colors that mapped to four possible
verbal dictionary terms: red, blue, green or yellow—the object colors included differ-
ent shades of these colors. Object shapes (similarly) mapped to three verbal dictionary
terms: rectangle, circle and triangle and sizes mapped to small, medium or large. As
with colors, there were minor differences between objects that mapped to the same ver-
bal shape. Note that there is mostly only one instance of each possible combination of
the object property labels (e.g., large, green circle). Any characterization of an object
(during learning or testing) hence has to occur by combining feature vectors learned
independently. This approach simplifies the learning process but presents a consider-
able challenge when novel objects have to be labeled and classified during evaluation
(see below).

Each object is also described by a sentence (verbal cue provided by a human) that
provides information about each of the object properties (color, shape and size). In
addition, the sentence includes an object category description (normal or suspicious).
These object category labels are used for learning the SVM classifier and serve as
ground truth during the evaluation of the learned classifier.

The following hypotheses were evaluated within the experimental framework: (I)
visual vocabulary entries and visual features are learned successfully from objects in
images; (II) semantic interpretations of object properties are learned successfully from
verbal cues; (III) the association between visual and verbal vocabularies results in suc-
cessful labeling of novel visual features; and (IV) multimodal models of object prop-
erties and categories are learned successfully, and used to label and categorize objects
in test images.

All images and sentences in the dataset were considered to evaluate hypotheses I
and II. Visual property descriptions were extracted from images as described in Sec-
tion 3.2.1. New entries were added to the visual vocabulary for each of the object prop-
erties by bootstrapping off of the available information, as described in Section 3.2.2.
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Multiple (20) experimental trials were conducted by presenting the objects in different
sequential order. In each trial, the robot was able to successfully acquire the different
color, shape and size class models to populate the visual vocabulary—in many cases,
the robot learned a good model of each property class after observing just one instance
of it. The learned vocabulary terms were also used to successfully generate visual
features for objects as distributions over the visual vocabulary entries. Correct visual
features were learned for an object even if its property labels had never been observed
together, e.g., visual feature was computed for a red triangle even though the color
(red) and shape (triangle) had never been observed together.

To evaluate hypothesis II, verbal vocabulary entries were learned from all the an-
notated sentences as described in Section 3.3. The CRF model was learned (and incre-
mentally revised) and used in combination with WordNet to arrive at the correct verbal
vocabulary entries. As with the visual vocabulary, the learning was successful when
the sentences were presented in different sequential order. In addition, semantically
similar cues were successfully grouped under the same verbal vocabulary entry.

Figure 5: Mapping of visual features to verbal labels for the object’s color property.
The distance is computed between the distribution over all color classes for the object
in the center (a red circle) and those of the already labeled objects. The closest match
is to the objects with color label red.

To evaluate hypothesis III, the mapping between visual and verbal features was
done after learning the individual vocabularies. In this case, 50% of the available ob-
jects were presented sequentially to populate the vocabularies and generate some visual
feature distributions corresponding to different verbal vocabulary entries, as described
in Section 3.4. The other 50% of the images were used to generate the visual features
that need verbal property labels. As stated in Algorithm 1, the distance is measured be-
tween the visual feature corresponding to an object with the visual feature distributions
associated with the existing verbal property classes. The visual feature is assigned the
label obtained by grouping the labels corresponding to the closest match obtained with
each object property. Figure 5 shows an example of this labeling process based on just

13



Features used Classification accuracy percentage
Visual+ Verbal + Category 97.5
Visual 75
Verbal 72.5
Visual + Verbal 77.5

Table 1: Accuracy results for object category classification. The results shown are for
five-fold cross validation.

the color property. The feature distribution over the color classes for the object under
consideration is closest in distance to the group of objects labeled with the color red.
Similar performance was obtained over repeated trials. The feature vectors were also
used successfully to identify instances where the test objects were not a close match
with any of the existing property labels.

To evaluate hypothesis IV, the visual and verbal features for different objects, along
with the verbal category labels, were used to learn a SVM classifier [7]. The learning
and classification was done on the 40 objects with five-fold cross validation, and results
are summarized in Table 1.

In these experiments, certain object property combinations were considered to be
suspicious in the training data, e.g., red rectangle and red circle and evaluated the clas-
sifier’s ability to accurately detect it. The results show that the category features play
an important role in the classification with the best accuracy results obtained when they
are included. At this time, the text in the annotations consists of simple representations
for category either directly implying a category or negating a category. For instance,
the phrase looks standard has the word standard which indicates it is normal and the
phrase does not look standard is an example of negation, which implies that the object
is suspicious. We believe that more complex structures in the annotations may make
inference and classification more difficult. Also, the category features provide absolute
information, whereas the visual and verbal features have more variations since they are
more complex representations of the object and are harder to learn. Yet another reason
for the drop in performance when only the visual and verbal features are considered is
that object property labels are independent of each other. This means that the object
property labels for size, color and shape seen in objects in the training data need not be
repeated in the exact combinations in the test data. For instance, a small red rectangle
seen during training is not necessarily a part of the test set. The test set will contain
objects that have one or even two of the same properties but not all (large red rectangle,
small red circle etc.). The classifier thus has to learn the category labels for combina-
tions based on the occurrences of the individual object property labels. This makes
the classification task more challenging and is the reason for most of the classification
errors reported in Table 1. The presence of comment features helps to improve clas-
sification performance by explicitly identifying the object property label combinations
that are normal or suspicious. However, we do observe that combining the visual and
verbal features results in better classification. Therefore a unified framework combin-
ing both visual and verbal cues gives better results for object description, modeling and
classification.
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5 Conclusions and Future Work
This paper describes a framework for robots to use multimodal cues to describe ob-
jects in the domain, resulting in more natural human-robot interaction. Images and
human descriptions of objects were used to learn visual and verbal vocabularies of ob-
ject properties. The learned vocabulary was then used to generate visual and verbal
features as probability distributions over the vocabulary entries. The learning process
is incremental, i.e, it allows for new object properties to be identified and modeled. Ob-
jects characterized by the multimodal features were also assigned labels corresponding
to one of two categories. A set of (category) labeled multimodal feature vectors were
used to learn a classifier that predicted category labels of novel objects. In addition,
the proposed approach provided a mechanism to generate candidate verbal labels cor-
responding to novel visual features, which can be used to formulate natural language
queries for human input, especially when the object is deemed suspicious.

Future work will include characterization of more complex objects with a richer,
more sophisticated annotation vocabulary. Furthermore, natural language processing
algorithms will be developed to formulate queries using the verbal feature descriptions
of objects.
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