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Abstract—This paper summarizes work on an architecture for
robots that combines the complementary strengths of knowledge-
based reasoning and data-driven learning. The architecture
supports non-monotonic logical reasoning and probabilistic rea-
soning with incomplete commonsense domain knowledge. Rea-
soning triggers and guides learning of previously unknown
domain knowledge when needed based on deep learning and
reinforcement learning methods. Furthermore, the architecture
enables the robot to provide relational descriptions of its decisions
and the evolution of beliefs during reasoning and learning.
The architecture’s capabilities are illustrated and evaluated in
simulation and on physical robots.

I. MOTIVATION

Consider an illustrative robot assistant (RA) domain in
which a robot has to: (a) deliver target objects to particular
people or rooms; and (b) estimate and revise the occlusion of
objects and stability of object configurations in a particular
room. There is uncertainty in the robot’s perception and
actuation. The robot’s incomplete domain knowledge includes
commonsense knowledge, e.g., statements such as “books are
usually in the study” that hold in all but a few exceptional
circumstances, e.g., cookbooks are in the kitchen. The robot
also extracts information from noisy sensor inputs, with quan-
titative measures of uncertainty, e.g., “I am 90% certain I saw
the robotics book in office-1". In addition, the robot has some
prior knowledge of object attributes such as size, surface,
and shape; some spatial relations between objects; and some
axioms governing domain dynamics:

o Placing an object on top of another with an irregular
surface results in instability.

« An object can only be in one location at a time.

o An object below another object cannot be picked up.

The robot reasons with the knowledge and observations for
inference, planning, and diagnostics. In any practical domain,
it will have to revise this knowledge over time; this is often
accomplished by data-driven (e.g., deep, reinforcement) learn-
ing methods that process observations, labeled datasets, and/or
human input. Also, enabling the robot to describe its decisions
and the evolution of beliefs at different levels of abstraction
will lead to more effective collaboration with humans. Our ar-
chitecture seeks to support these capabilities by exploiting the
complementary strengths of declarative logic programming,
probabilistic reasoning, and data-driven interactive learning.
We briefly describe the architecture’s components below.

II. ARCHITECTURE OVERVIEW

Our baseline architecture for knowledge representation,
explainable reasoning and interactive learning, is based on
tightly-coupled transition diagrams at different resolutions.
It may be viewed as a logician, statistician, and a creative
explorer working together; see Figure [I] (left). The different
transition diagrams are described using an action language
ALy [3l, which has a sorted signature with statics, fluents,
and actions, and supports three types of statements: causal
laws, state constraints, and executability conditions; the fluents
can be non-Boolean and axioms can be non-deterministic.
Depending on the domain and tasks at hand, the robot chooses
to plan and execute actions at two specific resolutions, but
can construct explanations at other resolutions; we limit our
discussion to two resolutions in this paper.

Knowledge representation and reasoning: The coarse res-
olution domain description comprises system description D,
of transition diagram 7., a collection of AL, statements, and
history H.. D, comprises sorted signature 3. and axioms.
For RA domain, ¥, includes basic sorts such as place,
thing, robot, person, object, cup, size, sur face, and step;
statics such as mext_to(place, place) and obj_surface(obyj,
surface); fluents such as loc(thing, place), obj_rel(relation,
object, object), and in_hand(entity, object); and actions such
as move(robot, place), pickup(robot, object), putdown(robot,
object, location), and give(robot, object, person). Axioms in
D, include statements such as:

move(roby, P) causes loc(roby, P)
loc(O, P) if loc(roby, P), in_hand(rob;,O)
impossible give(roby, O, P) if loc(roby, L1) # loc(P, Ls)

that correspond to a causal law, state constraint, and exe-
cutability condition respectively.

The history H. of a dynamic domain is typically a record
of fluents observed to be true or false at a particular time step,
and the occurrence of actions at a particular time step. This
definition is expanded to represent prioritized defaults describ-
ing the values of fluents in the initial state, i.e., statements such
as “books are usually in the library; if not there, they are in
the office” with the exception “cookbooks are in the kitchen”.

To reason with the domain description, we construct pro-
gram II(D,, H.) in CR-Prolog, a variant of Answer Set Prolog
(ASP) that incorporates consistency restoring (CR) rules [2].
ASP is based on stable model semantics, and supports default
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(left) Architecture combines strengths of declarative programming, probabilistic reasoning, and interactive learning to represent, reason, act, and learn

at different resolutions; (center) Non-monotonic logical reasoning triggers and guides deep (and inductive) learning to revise knowledge and provide relational
descriptions as explanation; (right) Example images of simulated scene for execution traces.

negation and epistemic disjunction, e.g., unlike “—a” that
states a is believed to be false, “not a” only implies a is
not believed to be true, i.e., each literal can be true, false or
“unknown”. ASP represents constructs difficult to express in
classical logic formalisms and supports non-monotonic logical
reasoning. An answer set of II represents the beliefs of the
robot associated with II. Tasks such as computing entailment,
planning, and diagnostics can be reduced to computing answer
sets of 1I; we do so using the SPARC system [L]].

For any given goal, reasoning at the coarse-resolution pro-
vides a plan of abstract actions. To implement the abstract
actions, we construct a fine-resolution system description Dy
defined as a refinement of D.. This definition ensures that for
any given abstract transition between two states € 7., there is
a path in 7; between a refinement of the two states. In the RA
domain, the robot would (for example) reason about grid cells
in rooms and parts of objects, attributes that were previously
abstracted away by the designer. Since the robot interacts
with the physical world at the finer resolution, we introduce a
theory of observation in Dy, specifically knowledge-producing
actions and fluents to sense the value of domain fluents. Next,
Dy is randomized to model non-determinism (Dy,.). Since
reasoning with Dy, becomes computationally unfeasible for
complex domains, we enable the robot to automatically zoom
to Dy, (T), the part of Dy, relevant to any given abstract
transition T'. Reasoning with Dy,(T") provides a sequence
of concrete actions that implement 7'. This reasoning also
incorporates relevant probabilistic models of the uncertainty
in perception and actuation, e.g., we have used hierarchical
probabilistic sequential decision making algorithms. Fine-
resolution outcomes with a high probability are committed
as statements known with complete certainty. Reasoning with
these outcomes provides coarse-resolution outcomes that are
added to H. for further reasoning. Please see [[11]] for details.

Interactive learning: Reasoning with incomplete domain
knowledge to achieve desired goals (e.g., fetch target objects)
or perform desired estimation tasks (e.g., classifying occlusion
of objects or stability of object structures) can result in
incorrect/suboptimal outcomes. State of the art methods for
learning previously unknown actions and axioms, or object
models for estimation tasks, are based on deep networks.
They often require many labeled examples; it is difficult to

provide such examples in complex domains or to interpret the
decisions of such “end to end” data-driven methods.

Figure [Ifcenter) is an overview of the interactive learning
and explainable reasoning components. The main sensor in-
puts for these components (and the architecture) are RGB/D
images. These images are processed to extract spatial relations
(based on learned grounding of prepositions [3]) and other
attributes that are encoded as ASP statements. The robot first
uses ASP-based logical reasoning to complete the desired (e.g.,
planning, estimation) tasks. If this reasoning does not provide
any outcome (e.g., no plan to reach goal), or provides an in-
correct outcome (e.g., incorrect classification label on training
image), this is considered to indicate that the knowledge is
incomplete or incorrect, which triggers learning.

The architecture has two schemes for learning and knowl-
edge revision. The first scheme is used in the context of
planning; relational reinforcement learning and decision-tree
induction are used to learn actions and axioms from human
descriptions of desired behavior, or observations obtained
through active exploration or reactive action execution in
response to the unexpected outcomes. Reasoning automatically
limits this learning to states, actions, and observations relevant
to the task(s) and goal(s) at hand; see [9] for details. The
second scheme is used in the context of estimation tasks
on input images. Reasoning with domain knowledge helps
the robot automatically identify relevant regions of interest
(ROIs) from the corresponding images, using information from
these ROIs to efficiently train a deep neural network for the
estimation tasks. This information is also used to incrementally
learn decision trees summarizing the robot’s experiences, with
axioms induced from branches of these trees being merged
with existing axioms for reasoning; see [8] for details.

Explainable reasoning: We consider an “explanation” to be
a relational description of the robot’s decisions or beliefs
in terms of the domain attributes and robot actions. The
explainable reasoning component of our architecture is based
on a theory of explanations that comprises (i) claims about
representing, reasoning with, and learning knowledge to sup-
port explanations; (ii) a characterization of explanations along
three axes based on abstraction, specificity, and verbosity; and
(iii) a methodology for constructing explanations [10].

The robot processes human verbal or textual input using



existing natural language processing tools and an underlying
controlled vocabulary to identify the type of query (e.g., de-
scriptive, contrastive, counterfactual). The architecture enables
the robot to automatically trace the evolution of desired beliefs
(and the application of relevant axioms) to identify literals
relevant to the query; these are used to construct the answer
presented to the human user. The human can interactively
obtain the answer at the desired level of abstraction [10]],
and the robot can construct and pose clarification questions
to resolve ambiguities in the human query [7].

ITI. EXECUTION TRACES
Consider the following execution traces of our architecture.

Execution Example 1. [Planning and Learning]
The robot in the RA domain is in the study; it is asked
to bring a cup to the study, i.e., the goal state contains:
loc(C, study), not in_hand(roby,C), where C' is a cup.
o The computed plan of abstract actions is:
move(roby, kitchen), pickup(roby,C),

move(rob, study), putdown(rob;,C)

where C' is a cup. This plan uses the default knowledge
that cups are usually in the kitchen that is next to study.

« To implement each abstract transition 7, the robot zooms
to Dy, (T). For instance, only cells in the study and the
kitchen are relevant to the first move action; irrelevant
objects and locations are ignored.

o The zoomed description is used to obtain a probabilistic
policy that is invoked repeatedly to execute a sequence
of concrete actions that implements the abstract action,
e.g., robot is in a cell in the kitchen after first mowve.
Other actions are executed in a similar manner.

o Suppose that the robot’s attempt to pick up a cup in
the kitchen failed. The robot observes that the cup is
heavy while its arm is light. The robot can then learn
the executability condition:

impossible pickup(roby, C) if arm(roby, light),
obj_weight(C, heavy)

It is also possible to learn and merge other kinds of
axioms with the existing knowledge.

Next, consider the robot’s ability to provide explanations.

Execution Example 2. [Explanation and Disambiguation]
Consider a robot that has executed the plan from the previous
example. When asked to provide a more detailed description,
the robot revises the abstraction level, e.g., uses the fine-
resolution description.

o Human: “Please describe the executed plan in detail.”
Robot: “T moved to cell cq in the kitchen. I picked the
large cup by its handle from the counter [...] I moved to
cell ¢4 of the study. I put the cup down on the red table.”

Consider the simulated scenario in Figure [T(right, bottom).

o Human: “Move the yellow object on the green cube.”
There is ambiguity in the reference to an yellow object.
Since the yellow cube is already on the green cube, and

the yellow cylinder is below other objects, the robot poses
the clarification question.
Robot: “Should I move yellow duck on the green cube?”
Human: “No. Move yellow cylinder on the green cube.”
« The robot computes the plan: pick up the green mug; put
the green mug on the table; pick up the red cube; put the
red cube on the table; pick up the yellow cube; put the
yellow cube on the table; pick up the yellow cylinder, put
the yellow cylinder on the green cube.
Human: “Why do you want to pick up the green mug?”
Robot: “T have to place the yellow cylinder on the green
cube, and the yellow cylinder is below the green mug.”
e The robot can also trace beliefs and axioms to answer
questions after plan execution.
Human: “Why did you not pick up red cube at stepl?”
Robot: “Because the red cube is below the green mug.”
Human: “Why did you move yellow cube to the table?”
Robot: “I had to put the yellow cylinder on top of the
green cube. The green cube was below the yellow cube.”

Experimental results in simulation and on physical robots, are
described in [4} |6, (8 9, (10} [11]].

IV. DISCUSSION
The examples illustrate some advantages of our architecture.

« First, once the designer has provided the domain-specific
information (e.g., for refinement), planning, diagnos-
tics, and plan execution can be automated. The formal
coupling between the resolutions helps introduce more
complex theories in the coarse-resolution, and to exploit
the complementary strengths of non-monotonic logical
reasoning and probabilistic reasoning.

o Second, exploiting the interplay between knowledge-
based reasoning and data-driven learning helps focus
attention automatically to the relevant knowledge at the
appropriate resolution, thus improving the reliability and
efficiency of reasoning and learning.

o Third, it is easier to understand and modify the observed
behavior than with architectures that consider all the
available knowledge or only support probabilistic reason-
ing. The robot is able to provide relational descriptions of
its decisions and the evolution of beliefs, automatically
resolving any ambiguities in the human query.

o Fourth, there is smooth transfer of control and relevant
knowledge between components of the architecture, and
confidence in the correctness of the robot’s behavior.
Also, the underlying methodology can be used with
different robots and domains.
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