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I am broadly interested in cognition and control in robots1 and humans. My primary research interests
include knowledge representation and reasoning, cognitive systems, machine learning, and control systems. I
develop algorithms and architectures that: (a) represent, reason, and act reliably and efficiently with qualita-
tive and quantitative descriptions of commonsense domain knowledge and uncertainty; (b) learn interactively
and cumulatively from noisy multimodal sensor cues; and (c) enable designers to understand the behavior
of robots and humans, and to establish that this behavior satisfies desired properties. I pursue an integrated
cognitive systems approach, jointly addressing the underlying challenges by drawing on and deepening our
understanding of human cognition and control. Furthermore, I develop such algorithms to enhance autonomy
in non-robotics application domains.

Knowledge representation and reasoning: Robots often have to make decisions over long time horizons
based on prior knowledge and the information extracted from noisy multimodal data streams. This includes
qualitative descriptions of commonsense knowledge, e.g., default statements such as “books are usually in
the library” that hold true in all but a few exceptional circumstances, and quantitative descriptions that
associate probabilities with the information extracted from sensor observations, e.g., “I am 90% certain the
robotics book is in the library”. I have developed architectures that leverage the complementary strengths
of non-monotonic logics and probabilistic reasoning to represent and reason with these descriptions.
These architectures encode cognitive theories, e.g., of intention and affordance, and are based on transition
diagrams of the domain at two resolutions, with a fine-resolution transition diagram defined formally as a
refinement of a coarse-resolution transition diagram. For any given goal, non-monotonic logical reasoning
with commonsense knowledge at the coarse-resolution provides a sequence of abstract actions. Each abstract
action is implemented and executed as a sequence of concrete actions by automatically zooming to and
reasoning with the relevant part of the fine-resolution diagram, using probabilistic models of uncertainty
(if available) and suitable methods, e.g., hierarchical partially observable Markov decision processes. The
fine-resolution outcomes are automatically propagated to the coarse-resolution for subsequent reasoning. I
am currently extending this methodology to explore new representations and processing mechanisms, using
the learning algorithms described below to identify relevant representations for different tasks.

Interactive Learning and Explainable Agency: My research poses the acquisition of previously un-
known knowledge as an interactive learning problem, with the information needed for knowledge revision
obtained from humans or the environment. Although humans can provide rich information about tasks
and the domain, humans are unlikely to have the time and expertise to interpret raw sensor inputs or to
provide comprehensive feedback. My research enables robots to learn associations between multimodal
cues (e.g., images, verbal descriptions), building rich object representations to ground words describing ob-
ject attributes and relations between objects. The learned representations also help identify inconsistencies
(e.g., unexpected outcomes, ambiguous task description), and to solicit human feedback by automatically
constructing and posing clarification questions based on need and availability.

Learning from observing or interacting with the domain is challenging because it is difficult to obtain
a large number of labeled training examples in complex domains. In my architectures, the robot reasons
with domain knowledge to automatically guide learning to objects and events relevant to tasks at hand.
Specifically, non-monotonic logical reasoning with domain knowledge triggers learning when necessary,
e.g., when unexpected outcomes are observed. Reasoning also guides the use of different machine learning
algorithms, e.g., relational reinforcement learning, inductive learning, or deep learning, to automatically

1I use the terms “robot” and “agent” interchangeably in my research.
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learn and revise relevant domain knowledge, e.g., previously unknown actions and axioms governing domain
dynamics, from a small number of training examples. Much of this work is illustrated and evaluated in the
context of vision-based planning, scene understanding, and question answering tasks.

The interplay between representation, reasoning, and learning is leveraged to implement a theory of
explanation and achieve key functional capabilities of explainable agency. In particular, the robot is able
to provide on-demand relational descriptions as explanation or justification of decisions made before, during,
or after planning and execution by considering alternative choices. It is able to run mental simulations to
identify and present information at a suitable level of abstraction in response to different types of questions
(e.g., causal, contrastive, counterfactual), and to use adaptive theory of mind models to communicate
information such that it makes contact with human concepts such as beliefs and goals.

Robot Manipulation and Control: Similar to my work on reasoning and learning, the algorithms and
architectures I develop for dexterous robot manipulation are inspired by findings in human motor control.
My recent work has explored changing-contact manipulation tasks, which require the robot to make and
break contact with different objects and surfaces. These tasks are representative of many robot (and human)
manipulation tasks, and are characterized by piecewise continuous interaction dynamics that can damage
the robot and the domain objects. In a departure from existing work, my recent architecture enabled a
robot manipulator to incrementally learn forward (predictive) models of the end-effector measurements.
The prediction errors are used to automatically revise the forward models, guide the use of transition-phase
controllers, and to and vary the impedance (i.e., stiffness, damping) parameters of hybrid force-motion
controllers in order to follow a desired motion pattern. More recent work has developed an architecture that
combines parameterized human muscle-tendon models with variable impedance controllers toward achieving
adaptive control of upper-limb prostheses.

Human-agent/Multiagent Collaboration: The challenges described above are more pronounced when
we consider robots collaborating with other robots or humans. I am particularly interested in ad hoc
teamwork, i.e., enabling an agent to collaborate with others without prior coordination, which is represen-
tative of many practical applications. State of the art methods include a data-driven component to model
the behavior of other agents and optimize the behavior of the ad hoc agent based on a long history of
prior experiences. My research, on the other hand, combines knowledge-based reasoning and data-driven
learning, embedding the principle of ecological rationality and an algorithmic model of heuristics in a
refinement-based architecture that focuses on adaptive satisficing instead of optimization. As a result,
each ad hoc agent automatically identifies and uses relevant heuristic methods to rapidly build predictive
models of the behavior of others (teammates, opponents) from limited examples. The agent then reasons
with prior knowledge and these learned behavior models to make decisions and adapt to unforeseen changes.

Practical Applications: The architectures and algorithms I develop are grounded in practical applications
in the context of robots assisting humans in offices and homes, or in applications such as agricultural
automation and automated exploration. In addition, I have designed and adapted algorithms and archi-
tectures to address automation challenges in non-robotics domains such as climate informatics, transporta-
tion, agricultural irrigation management, and software testing For example, in collaboration with Auckland
Transport, I adapted machine learning algorithms for short-term traffic prediction on the motorways in
Auckland (NZ). Also, in collaboration with researchers at the U.S. Department of Agriculture’s Agricultural
Research Service, I developed methods to accurately estimate reference evapotranspiration values for irri-
gation scheduling, and to estimate crop yield from satellite images. Another research project developed
computational models for predicting extreme weather events and for understanding the relationships
between global and regional climate models under climate change scenarios.

To summarize, my research jointly investigates fundamental knowledge representation, reasoning, control,
and learning challenges in the context of robots and humans. I pursue an integrated cognitive systems
approach to address these challenges, motivated by the goal of enabling widespread use of robots and
software systems that assist and collaborate with humans. I seek to pursue my research objectives in a
vibrant multi-disciplinary atmosphere in collaboration with colleagues and students. Additional details and
publications are available online: https://www.cs.bham.ac.uk/~sridharm/
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