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▪ Simultaneous Localization and Mapping.

▪ The task of building a map while estimating 
the pose of the robot relative to this map.

▪ Why is SLAM hard?
Chicken and egg problem: a map is needed to 
localize the robot and a pose estimate is needed to 
build a map.

The SLAM Problem
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Given:
▪ The robot’s controls.
▪ Observations of 

nearby features.

Estimate:
▪ Map of features.
▪ Path of the robot.

The SLAM Problem

A robot moving though an unknown, static environment!



4

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown! 

Robot path error correlates errors in the map.
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Why is SLAM a hard problem?

▪ In the real world, the mapping between observations 
and landmarks is unknown.

▪ Picking wrong data associations can have catastrophic 
consequences.

▪ Pose error correlates data associations.

Robot pose
uncertainty
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Data Association Problem

▪ Data association: assignment of observations to 
landmarks i.e. correspondence.

▪ In general there are more than       (n observations, m 
landmarks) possible associations.

▪ Also called “assignment problem”.
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▪ Represent belief by random samples.

▪ Estimation of non-Gaussian, nonlinear processes.

▪ Sampling Importance Resampling (SIR) principle:
▪ Draw the new generation of particles.

▪ Assign an importance weight to each particle.

▪ Perform re-sampling.

▪ Localization, multi-hypothesis tracking.

Particle Filters
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▪ Particle filters can be used to solve both problems.

▪ Localization: state space  <x, y, θ>

▪ SLAM: state space <x, y, θ, map> 
▪ for landmark maps = <m1, m2, …, mN>

▪ for grid maps = <c11, c12, …, c1n, c21, …, cnm>

▪ Problem: number of particles needed to model a 
posterior is exponential in state-space dimension!

Localization and SLAM
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▪ Target:

▪ Is there a dependency between the dimensions of 
the state space?

▪ If so, can we use the dependency to solve the 
problem more efficiently?

Exploiting Dependencies 
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▪ In the context of SLAM:

▪ The map depends on the poses of the robot.

▪ We know how to build a map if the position of the sensor 
is known.

▪ Given robot pose, we can estimate locations of all 
features independent of each other!

Exploit Dependencies
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Factored Posterior (Landmarks)

SLAM posterior Robot path posterior

 landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations    movements
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Knowledge of the robot’s true path renders landmark 
positions conditionally independent

Mapping using Landmarks
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Factored Posterior

Robot path posterior
(localization problem) Conditionally independent 

landmark positions



14

Rao-Blackwellization

▪ This factorization is called Rao-Blackwellization.

▪ Estimate robot pose as a particle filter.

▪ Each particle associated with a set of Gaussians, one for 
each landmark position.

▪ Landmark positions estimated using EKFs.
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FastSLAM

▪ Rao-Blackwellized particle filtering based on landmarks. 

▪ Each landmark represented by a 2x2 EKF.

▪ Each particle therefore has to maintain N EKFs.

Landmark 1 Landmark 2 Landmark N…x, y, θ

Landmark 1 Landmark 2 Landmark N…x, y, θParticle
#1

Landmark 1 Landmark 2 Landmark N…x, y, θParticle
#2

Particle
M

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1



Update Steps (known correspondence)

▪ Do for M particles:
▪ Retrieve a pose from particle set.

▪ Sample new pose – notice lack of measurement update!

▪ Measurement update - for each observed features, identify 
correspondence and incorporate into appropriate EKF by 
updating mean and covariance.

▪ Compute importance factor – include measurement in pose 
update.

▪ Resample based on importance weights.
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Update Steps (known correspondence)

▪ Do for M particles:
▪ Sample new pose – notice lack of measurement update!

▪ Update posterior over observed landmark/feature (similar 
technique as in EKF-SLAM or even EKF).

▪ Compute importance factor – include measurement in pose 
update:

▪ Resample based on importance weights.

▪ FastSLAM 1.0 (Section 13.3).
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Update Steps (FastSLAM 2.0)

▪ Do for N particles:
▪ Obtain proposal distribution – include measurement in 

computation.

▪ Update posterior over observed landmark/feature.

▪ Compute importance factor.

▪ Resample based on importance weights.

21
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FastSLAM  -  Indoor (Closing the loop)



23

FastSLAM  Complexity

▪ Update robot particles based on 
control ut-1.

▪ Incorporate observation zt into 
Kalman filters.

▪ Resample particle set.

M = Number of particles
N = Number of map features

O(M)
Constant time per particle

O(M•log(N))
Log time per particle

O(M•log(N))

O(M•log(N))
Log time per particle

Log time per particle
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Data Association Problem

▪ Robust SLAM must consider possible data 
associations.

▪ Potential data associations depend also 
on the robot pose.

▪ Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

▪ Data association is done on 
a per-particle basis.

▪ Robot pose error is factored 
out of data association 
decisions.
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

▪ Two options for per-particle data association:
▪ Pick the most probable match.
▪ Pick random association weighted by the observation likelihoods.

▪ If the probability is small, generate new landmark.
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Results – Victoria Park

▪ 4 km traversed.

▪ < 5 m RMS 
position error.

▪ ~100 particles.

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM



Efficiency and other Issues…

▪ Duplicating map corresponding to same particle.

▪ Evaluating measurement likelihoods for each of the 
N map features.

▪ Efficient data structures – balanced binary trees.

▪ Loop closure is troublesome.
▪ Sections 13.8 and 13.9…

▪ Unknown correspondence – complicated, see 
section 13.5, 13.6…
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▪ Can we solve the SLAM problem if no pre-defined 
landmarks are available?

▪ Can we use the ideas of FastSLAM to build grid 
maps?

▪ As with landmarks, the map depends on the poses of 
the robot during data acquisition.

▪ If the poses are known, grid-based mapping is easy 
(“mapping with known poses”).

Grid-based SLAM
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Rao-Blackwellized Mapping

▪ Each particle represents a possible trajectory of 
the robot.

▪ Each particle:
▪ maintains its own map.
▪ updates it using “mapping with known poses”.

▪ Each particle’s probability is proportional to the 
likelihood of the observations relative to its own 
map.
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A Graphical Model of 
Rao-Blackwellized Mapping
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Particle Filter Example

map of particle 1 map of particle 3

map of particle 2

3 particles
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Problem

▪ Each map is quite big in case of grid maps!
▪ Need to keep the number of particles small ☹

▪ Solution:
Compute better proposal distributions!

▪ Idea:
Improve the pose estimate before applying the 
particle filter.
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Pose Correction Using Scan Matching

Maximize the likelihood of the ith pose and map 
relative to the (i-1)th pose and map

robot 
motion

current measurement

map constructed so far
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FastSLAM with Improved Odometry

▪ Scan-matching provides a locally consistent 
pose correction.

▪ Pre-correct short odometry sequences using 
scan-matching and use them as input to 
FastSLAM.

▪ Fewer particles are needed, since the error in 
the input in smaller.

[Haehnel et al., 2003]
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Graphical Model for Mapping 
with Improved Odometry
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FastSLAM with Scan-Matching

Loop Closure
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Comparison to Standard FastSLAM

▪ Same observation models.

▪ Odometry instead of scan matching as input.

▪ Number of particles varying from 500 to 2000.

▪ Typical result (video).
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Further Improvements

▪ Improved proposal distributions will lead to more 
accurate maps.

▪ They can be achieved by adapting the proposal 
distribution according to the most recent 
observations.

▪ Selective re-sampling steps can further improve 
the accuracy.
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Improved Proposal

▪ The proposal adapts to the structure of the 
environment.

▪ Known measurements taken into account.
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Selective Re-sampling

▪ During re-sampling important samples might get 
lost (particle depletion problem).

▪ In case of suboptimal proposal distributions 
re-sampling is necessary to achieve convergence.

▪ Key question: When should we re-sample?
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Number of Effective Particles

▪ Empirical measure of how well the goal distribution is 
approximated by samples drawn from the proposal.

▪ neff describes “the variance of the particle weights”.
▪ neff is maximal for equal weights. In this case, the distribution 

is close to the proposal.

▪ Only re-sample when neff drops below a given threshold (n/2)
See [Doucet, ’98; Arulampalam, ’01]
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Typical Evolution of neff

visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas
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Intel Lab

▪ 15 particles

▪ four times faster 
than real-time
P4, 2.8GHz

▪ 5cm resolution 
during scan 
matching

▪ 1cm resolution in 
final map
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Intel Lab

▪ 15 particles

▪ Compared to 
FastSLAM with 
Scan-Matching, 
the particles are 
propagated 
closer to the true 
distribution 
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Outdoor Campus Map

▪ 30 particles

▪ 250x250m2

▪ 1.75 km 
(odometry)

▪ 20cm resolution 
during scan 
matching

▪ 30cm resolution 
in final map

▪ 30 particles

▪ 250x250m2

▪ 1.088 miles 
(odometry)

▪ 20cm resolution 
during scan 
matching

▪ 30cm resolution 
in final map
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MIT Killian Court

▪The “infinite-corridor-dataset” at MIT.
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MIT Killian Court
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Conclusion

▪ The ideas of FastSLAM can also be applied in the context of 
grid maps.

▪ Utilizing accurate sensor observation leads to good proposals 
and highly efficient filters.

▪ It is similar to scan-matching on a per-particle basis.

▪ The number of necessary particles and re-sampling steps 
can seriously be reduced.

▪ Improved versions of grid-based FastSLAM can handle larger 
environments than naïve implementations in “real time” 
since they need order of magnitude fewer samples.


