Markov Decision Process*

Prof. Mohan Sridharan Chair in Robot Systems

University of Edinburgh, UK <https://homepages.inf.ed.ac.uk/msridhar/>

m.sridharan@ed.ac.uk

*Revised original slides that accompany the book: PR by Thrun, Burgard and Fox.

Motivation

- Robot perception not the ultimate goal:
	- Choose right sequence of actions to achieve goal.
- Planning/control applications:
	- Navigation, Surveillance, Monitoring, Collaboration etc.
	- Ground, air, sea, underground!
- Action selection non-trivial in real-world problems:
	- State non-observable.
	- Action non-deterministic.
	- Require dynamic performance.

Problem Classes

- Deterministic vs. stochastic actions.
	- Classical approaches assume known action outcomes. Actions typically non-deterministic. Can only predict *likelihoods* of outcomes.
- Full vs. partial observability.
	- State of the system completely observable never happens in real-world applications.
	- Build representation of the world by performing actions and observing outcomes.
- Current and anticipated uncertainty.

Deterministic, Fully Observable

Stochastic, Fully Observable

• No noise in Motion models.

• Noisy motion models.

Stochastic, Partially Observable

Markov Decision Process (MDP)

Markov Decision Process (MDP)

• Given:

- **States:** $X = \{x_1, x_2, ..., x_N\}$
- Actions: $A = {u_1, u_2, ..., u_N}$
- Transition probabilities: $p(x_{t+1} = x' | x_t = x, u_t = u)$
- Reward / payoff function: $r(x, u, x') = E[r_{u+1} | x_t = x, u_t = u, x_{u+1} = x']$

• Wanted:

• Policy π that maximizes future expected reward.

Policies

- Policy (general case):
	- All past data mapped to control commands.

$$
\pi: z_{1:t-1}, u_{1:t-1} \rightarrow u_t
$$

- Policy (fully observable case):
	- State mapped to control commands.

$$
\pi: x_t \to u_t
$$

Rewards

• Expected cumulative payoff:

$$
R_t = E \left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau+1} \right]
$$

- Maximize sum of future payoffs!
- Discount factor $\gamma \in [0,1]$: future reward is worth less!
- T=1: greedy policy. Discount does not matter as long as $\gamma > 0!$
- 1<T<∞: finite horizon case, typically no discount.
- T=∞: infinite-horizon case, finite reward if $\gamma < 1$:

$$
|r| < r_{\text{max}}, \quad R_{\infty} = r_{\text{max}} + \gamma r_{\text{max}} + \gamma^2 r_{\text{max}} + ... = \frac{r_{\text{max}}}{1 - \gamma}
$$

Optimal Policies

• Expected cumulative payoff of policy:

$$
R_t^{\pi}(x_t) = E \left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau+1} | u_{t+\tau} = \pi(x_t) \right]
$$

• Optimal policy:
$$
\pi^* = \operatorname*{argmax}_{\pi} R_t^{\pi}(x_t)
$$

- 1-step optimal policy: $\pi_1(x) = \argmax r(x, u)$ \boldsymbol{u}
- Value function of 1-step optimal policy:

$$
V_1(x) = \max_u r(x, u)
$$

Value Functions

• Value function for specific policy (Bellman equation for V^{\prime})

$$
V^{\pi}(x) = E_{\pi} \left[\sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+1} | x_{t} = x \right]
$$

\n
$$
= E_{\pi} \left[r_{t+1} + \gamma \sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+2} | x_{t} = x \right]
$$

\n
$$
= \sum_{u} \pi(x, u) \sum_{x'} p(x' | x, u) \left[r(x, u, x') + \gamma E_{\pi} \left\{ \sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+2} | x_{t+1} = x' \right\} \right]
$$

\n
$$
= \sum_{u} \pi(x, u) \sum_{x'} p(x' | x, u) \left[r(x, u, x') + \gamma V^{\pi}(x') \right]
$$

$$
Q^{\pi}(x, u) = E_{\pi} \left[\sum_{\tau=1}^{\infty} \gamma^{\tau} r_{t+\tau} \mid x_t = x, u_t = u \right]
$$

Optimal Value Functions

• Optimal policy:

$$
V^*(x) = \max_{\pi} V^{\pi}(x)
$$

$$
Q^*(x, u) = \max_{\pi} Q^{\pi}(x, u) = E[r_{t+1} + \gamma V^*(x_{t+1}) | x_t = x, u_t = u]
$$

• Bellman optimality equations.

$$
V^*(x) = \max_{u \in u(x)} Q^{\pi^*}(x, u)
$$

\n
$$
= \max_{u} E[r_{t+1} + \gamma V^*(x_{t+1}) | x_t = x, u_t = u]
$$

\n
$$
= \max_{u} \sum_{x'} p(x' | x, u) [r(x, u, x') + \gamma V^*(x')]
$$

\n
$$
Q^*(x, u) = E[r_{t+1} + \gamma \max_{u'} Q^*(x_{t+1}, u') | x_t = x, u_t = u]
$$

\n
$$
= \sum_{x'} p(x' | x, u) [r(x, u, x') + \gamma \max_{u'} Q^*(x', u')]
$$

• Necessary and sufficient condition for optimal policy.

Value Iteration – Discrete Case

• For all *x* do

$$
V(x) \leftarrow r_{\min}
$$

 EndFor

- Repeat until convergence
	- For all *x* do

$$
V(x) \leftarrow \max_{u} \sum_{x'} p(x'|x, u) \big[r(x, u, x') + \gamma V(x') \big]
$$

• EndFor

- EndRepeat
- Action choice:

$$
\pi(x) = \underset{u}{\operatorname{argmax}} \sum_{x'} p(x'|x, u) \big[r(x, u, x') + \gamma V(x') \big]
$$

Value Iteration

• For all *x* do

$$
V(x) \leftarrow r_{\min}
$$

 EndFor

- Repeat until convergence
	- For all *x* do

$$
V(x) \leftarrow \max_{u} \int p(x' | x, u) [r(x, u, x') + \gamma V(x')] dx'
$$

- EndFor
- EndRepeat
- Action choice:

$$
\pi(x) = \underset{u}{\operatorname{argmax}} \int p(x'|x, u) \Big[r(x, u, x') + \gamma V(x') \Big] dx'
$$

Value Iteration for Motion Planning

Value Function and Policy Iteration

- Often the optimal policy has been reached long before the value function has converged.
- Policy iteration calculates a new policy based on the current value function and then calculates a new value function based on this policy.
- This process often converges faster to the optimal policy.

Value-Iteration Game ☺

- Move from start state (color1) to end state (color2).
- Maximize reward.

- Four actions.
- Twelve colors.
- Exploration and exploitation.

Value Iteration

• Explore first and then exploit!

- One-step look ahead values?
- N-step look ahead?
- Optimal policy?

More Information

• Chapters 3-4 of Reinforcement Learning textbook by Sutton and Barto (second edition).

<http://incompleteideas.net/book/the-book-2nd.html>