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Reinforcement Learning
▪ Basic idea:

▪ Receive feedback in the form of rewards.
▪ Agent’s utility is defined by the reward function.
▪ Must learn to act so as to maximize expected rewards.
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Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards.
▪ Agent’s utility is defined by the reward function.
▪ Must learn to act so as to maximize expected rewards.
▪ Change the rewards, change the learned behavior!

▪ Examples:
▪ Playing a game, reward at the end for winning / losing
▪ Vacuuming a house, reward for each piece of dirt picked up
▪ Automated taxi, reward for each passenger delivered

▪ First: Need to master MDPs.
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Grid World
▪ The agent lives in a grid.
▪ Walls block the agent’s path.
▪ The agent’s actions do not always 

go as planned:
▪ 80% of the time, the action North 

takes the agent North (if there is 
no wall there).

▪ 10% of the time, North takes the 
agent West; 10% East.

▪ If there is a wall in the direction the 
agent would have been taken, the 
agent stays put.

▪ Big rewards come at the end.
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Markov Decision Processes
▪ An MDP is defined by:

▪ A set of states s ∈ S.
▪ A set of actions a ∈ A.
▪ A transition function T(s, a, s’):

▪ Probability that a from s leads to s’.
▪ P(s’ | s, a) – also called the model.

▪ A reward function R(s, a, s’):
▪ Sometimes just R(s) or R(s’).

▪ A start state (or distribution).
▪ Maybe a terminal state.

▪ MDPs are a family of non-deterministic 
search problems:
▪ Reinforcement learning: MDPs where 

the T and R are unknown.
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What is Markov about MDPs?
▪ Andrey Markov (1856-1922)

▪ “Markov” generally means that given the 
present state, the future and the past are 
conditionally independent.

▪ For MDPs, “Markov” means:
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Solving MDPs
▪ In deterministic single-agent search problem, want an 

optimal plan, or sequence of actions, from start to goal.

▪ In an MDP, we want an optimal policy π*: S → A.
▪ A policy π gives an action for each state.
▪ An optimal policy maximizes expected utility if followed.
▪ Defines a reflex agent.

Optimal policy when 
R(s, a, s’) = -0.03 for all 
non-terminals s.
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Example Optimal Policies

R(s) = -0.01
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R(s) = -0.03

R(s) = -0.4 R(s) = -2.0



Example: High-Low
▪ Three card types: 2, 3, 4.
▪ Infinite deck, twice as many 2’s.
▪ Start with 3 showing.
▪ Say “high” or “low” after each card.

▪ New card is flipped:
▪ If you are right, you win the points shown on 

the new card.
▪ If you are wrong, game ends.
▪ Ties are no-ops.

▪ Some key features: 
▪ #1: get rewards as you go.
▪ #2: you might play forever!

2

3
2

4

9



High-Low
▪ States: 2, 3, 4, done. Start: 3.
▪ Actions: High, Low.
▪ Model: T(s, a, s’):

▪ P(s’=done | 4, High) = 3/4
▪ P(s’=2 | 4, High) = 0
▪ P(s’=3 | 4, High) = 0
▪ P(s’=4 | 4, High) = 1/4 
▪ P(s’=done | 4, Low) = 0
▪ P(s’=2 | 4, Low) = 1/2
▪ P(s’=3 | 4, Low) = 1/4
▪ P(s’=4 | 4, Low) = 1/4 
▪ …

▪ Rewards: R(s, a, s’):
▪ Number shown on s’ if s ≠ s’.
▪ 0 otherwise.

Note: could choose actions 
with search.  How?

4
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Utilities of Sequences
▪ In order to formalize optimality of a policy, need to understand 

utilities of sequences of rewards.
▪ Typically consider stationary preferences:

▪ Theorem: only two ways to define stationary utilities ☺
▪ Additive utility:

▪ Discounted utility:

Temporarily 
assuming that 
reward only 
depends on 

state!
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Infinite Utilities?!

▪ Problem: infinite sequences with infinite rewards.

▪ Solutions:
▪ Finite horizon:

▪ Terminate after a fixed T steps.
▪ Gives non-stationary policy (π depends on time left).

▪ Absorbing state(s): guarantee that for every policy, agent will 
eventually “die” (like “done” for High-Low).

▪ Discounting: for 0 < γ < 1.

▪ Smaller γ means smaller “horizon” – shorter term focus.
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Discounting

▪ Typically discount rewards by 
γ < 1 in each time step:

▪ Rewards that come sooner 
have higher utility than 
rewards that come later.

▪ Also helps the algorithms 
converge!
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Optimal Utilities
▪ Fundamental operation: compute 

the optimal utilities of states s.

▪ Define the utility of a state s:
V*(s) = expected return starting in s and 

acting optimally.

▪ Define the utility of a q-state (s,a):
Q*(s,a) = expected return starting in s, 

taking action a and thereafter acting 
optimally.

▪ Define the optimal policy:
π*(s) = optimal action from state s.

a

s

s, a

s,a,s’
’s
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Optimal Policies and Utilities

▪ Expected utility with executing π starting in s:

▪ Optimal policy:

▪ One-step: choose action to maximize expected utility of 
next state:
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The Bellman Equations
▪ Definition of “optimal utility” leads to a simple one-step 

look-ahead relationship amongst optimal utility values:
Optimal rewards = maximize over first action and 
then follow optimal policy.

▪ Formal definition of optimal functions:

▪ How to choose actions? how to compute optimal policy?

a

s

s, a

s,a,s’
’s
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Computing Actions

▪ Which action should we chose from state s:
▪ Given optimal values V?

▪ Given optimal q-values Q?

▪ Lesson: actions are easier to select from Q’s!
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Why Not Search Trees?
▪ Why not just solve search tree?

▪ Problems:
▪ This tree is usually infinite (why?).
▪ Same states appear over and over (why?).
▪ We search once per state (why?).

▪ Idea: Value iteration ☺
▪ Compute optimal values for all states all at 

once using successive approximations.
▪ Will be a bottom-up dynamic program.
▪ Do all planning offline, no re-planning!
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Value Estimates
▪ Calculate estimates Vk

*(s)
▪ Not the optimal value of s. Considers only next k 

time steps.

▪ Optimal value as k → ∞.

▪ Why does this work?
▪  With discounting, distant rewards negligible.
▪ If terminal states reachable from everywhere, 

fraction of episodes not ending becomes 
negligible.
▪ Otherwise, can get infinite expected utility. 

Then this approach will not work! ☹
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Value Iteration
▪ Idea:

▪ Start with V0(s) = 0, which we know is right (why?)
▪ Given Vi calculate the values for all states for depth i+1:

▪ This is called a value update or Bellman update.
▪ Repeat until convergence.

▪ Theorem: will converge to unique optimal values!
▪ Basic idea: approximations get refined towards optimal values.
▪ Policy may converge long before values do!
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Example: Bellman Updates
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Max happens for 
a=right, other actions 

not shown.

Example: γ=0.9, living 
reward=0, noise=0.2.



Example: Value Iteration

▪ Information propagates outward from terminal states and eventually 
all states have correct value estimates.

V2 V3
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Eventually:  Correct Values

▪ This is the unique solution to the Bellman Equations!

0.71

V3 (when R=0, γ=0.9) V* (when R=-.04, γ=1)
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Computing Actions

▪ Which action should we chose from state s:
▪ Given optimal values V?

▪ Given optimal q-values Q?

▪ Lesson: actions are easier to select from Q’s!
▪ How do we compute policies based on Q-values?
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Policy Evaluation
▪ How do we calculate the V’s for a fixed policy?

▪ Idea 1: turn recursive equations into updates:

▪ Idea 2: it is just a linear system, solve with Matlab (or 
whatever).

▪ Both ideas are valid solutions.
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Policy Iteration
▪ Problem with value iteration:

▪ Consider all actions in each iteration: takes |A| times longer than policy evaluation.
▪ But policy does not change each iteration, i.e., time is wasted ☹

▪ Alternative to value iteration:
▪ Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) 

until convergence (fast!).
▪ Step 2: Policy improvement: update policy using one-step look-ahead with 

resulting converged (but not optimal!) utilities (slow but infrequent).
▪ Repeat steps until policy converges.

▪ This is policy iteration:
▪ It is still optimal! Can converge faster under some conditions ☺
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Policy Iteration

▪ Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates:
▪ Iterate until values converge.

▪ Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead.
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Comparison
▪ In value iteration:

▪ Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy).

▪ In policy iteration:
▪ Several passes to update utilities with frozen policy.
▪ Occasional passes to update policies.

▪ Hybrid approaches (asynchronous policy iteration):
▪ Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often.
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Recap: Reinforcement Learning
▪ Basic idea:

▪ Receive feedback in the form of rewards.
▪ Agent’s utility is defined by the reward function.
▪ Must learn to act so as to maximize expected rewards.
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Reinforcement Learning

▪ Reinforcement learning:
▪ Still have an MDP:

▪ A set of states s ∈ S
▪ A set of actions (per state) A
▪ A model T(s, a, s’)
▪ A reward function R(s, a, s’)

▪ Still looking for a policy π(s)

▪ New twist: don’t know T or R.
▪ I.e. don’t know which states are good or what the actions do.
▪ Must actually try actions and states out to learn.
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Reinforcement Learning

31

Known Unknown Assumed
•Current state
•Available actions

•Experienced     

rewards

•Transition model
•Reward structure

•Markov transitions
•Fixed reward for (s,a,s’)

Problem: Find optimal policy.

Model-based learning: Learn the model, solve for values.

Model-free learning: Solve for values directly (by sampling).



Three Threads of RL
▪ Thread 1: Trial and error approach; origins in psychology.

▪ Thread 2: Dynamic programming to solve general stochastic optimal 
control problems; curse of dimensionality! (Chapter 4, RL book)

▪ Thread 3: temporal difference methods; driven by difference 
between temporally successive estimates. (Chapter 6, RL book)

▪ Common problems: credit assignment, reward specification, model 
design or learning.

▪ Consider a fixed policy first...
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Example: Direct Estimation

▪ Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done) V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1 

+10
0

-10
0
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Model-Based Learning
▪ Idea:

▪ Learn the model empirically through experience.
▪ Solve for values as if the learned model were correct.

▪ Simple empirical model learning:
▪ Count outcomes for each s, a.
▪ Normalize to give estimate of T(s, a, s’).
▪ Discover R(s, a, s’) when we experience (s, a, s’).

▪ Solving the MDP with the learned model:
▪ Iterative policy evaluation, for example:
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Example: Model-Based Learning

▪ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+10
0

-10
0

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100 

(done)
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Model-Free Learning
▪ Want to compute an expectation weighted by P(x):

▪ Model-based: estimate P(x) from samples, compute expectation.

▪ Model-free: estimate expectation directly from samples.

▪ Why does this work?  Because samples appear with the right 
frequencies!
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Sample-Based Policy Evaluation?

▪ Who needs T and R?  Approximate the expectation 
with samples (drawn from T).
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Temporal-Difference Learning
▪ Big idea: learn from every experience!

▪ Update V(s) each time we experience (s,a,s’,r)
▪ Likely s’ will contribute to updates more often.

▪ Temporal difference learning:
▪ Policy can still  be fixed!
▪ Move values toward value of whatever 

successor occurs: running average!
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π(s)

s

s, π(s)

’s

Sample of V(s):
Update to V(s):
Same update:



Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
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Problems with TD Value Learning

▪ TD value leaning is a model-free way 
to do policy evaluation.

▪ However, if we want to turn values into 
a (new) policy, we are sunk:

▪ Idea: learn Q-values directly.
▪ Makes action selection model-free too!

a

s

s, a

s,a,s’
’s
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Model-Based Active Learning

▪ In general, want to learn the optimal policy, not evaluate 
a fixed policy.

▪ Idea: adaptive dynamic programming ☺
▪ Learn an initial model of the environment.
▪ Solve for optimal policy for this model (value or policy iteration).
▪ Refine model through experience and repeat.
▪ Ensure we actually learn about all of the model.
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Example: Greedy ADP
▪ Imagine we find the lower path to 

the good exit first.

▪ Some states will never be visited 
following this policy from (1,1).

▪ Can keep re-using this policy but 
following it never explores the 
regions of the model we need in 
order to learn the optimal policy .

? ?
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What Went Wrong?
▪ Problem with following optimal policy 

for current model:
▪ Never learns about better regions of 

space if current policy neglects them.

▪ Fundamental tradeoff: exploration vs. 
exploitation.
▪ Exploration: take actions with 

suboptimal estimates to discover new 
rewards and increase eventual utility.

▪ Exploitation: once true optimal policy 
is learned, exploration reduces utility.

▪ Systems must explore in the 
beginning and exploit in the limit. 
Epsilon-greedy policies.

? ?
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Detour: Q-Value Iteration
▪ Value iteration: find successive approx optimal values

▪ Start with V0
*(s) = 0, which we know is right (why?)

▪ Given Vi
*, calculate the values for all states for depth i+1:

▪ But Q-values are more useful!
▪ Start with Q0

*(s,a) = 0, which we know is right (why?)
▪ Given Qi

*, calculate the q-values for all q-states for depth i+1:
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Q-Learning (Off-policy TD)
▪ We would like to do Q-value updates to each Q-state:

▪ But cannot compute this update without knowing T, R.

▪ Instead, compute average as we go:
▪ Receive a sample transition (s,a,r,s’).
▪ This sample suggests:

▪ But we want to average over results from (s,a)  (Why?)
▪ So keep a running average:
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Q-Learning Properties
▪ Will converge to optimal policy:

▪ If you explore enough (i.e. visit each q-state many times).
▪ If you make the learning rate small enough.
▪ Basically does not matter how you select actions!

▪ On-policy methods: attempt to improve or evaluate policy used to 
make decisions. Provide “soft” policies.

▪ Off-policy methods: evaluate or improve a policy different from that 
used to make decisions.

▪ On-policy vs. off-policy: Chapter 5 on RL textbook.
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Q-Learning
(Exploration / Exploitation)

▪ Several schemes for forcing exploration:
▪ Simplest: random actions (ε greedy).

▪ Every time step, flip a coin.
▪ With probability ε, act randomly.
▪ With probability 1-ε, act according to current policy.

▪ Regret: expected gap between rewards during learning 
and rewards from optimal action.
▪ Q-learning with random actions will converge to optimal values, 

but possibly very slowly, and will get low rewards on the way.
▪ Results will be optimal but regret will be large.
▪ How to make regret small?
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Q-Learning
(Generalization and Abstraction)

▪ In realistic situations, we cannot possibly learn about 
every single state!
▪ Too many states to visit them all in training.
▪ Too many states to hold the q-tables in memory.

▪ Instead, we want to generalize:
▪ Learn about small number of training states from experience.
▪ Generalize that experience to new, similar states.
▪ This is a fundamental idea in machine learning!
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Example: Pacman
▪ Let’s say we discover 

through experience that 
this state is bad.

▪ In naïve Q-learning, we 
know nothing about this 
state or its q-states.

▪ Or even this one!
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Feature-Based Representations
▪ Solution: describe a state using a vector 

of features (properties).
▪ Features  map from states to real numbers 

that capture important properties of the 
state.

▪ Example features:
▪ Distance to closest ghost/dot.
▪ Number of ghosts.
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ Is it the exact state on this slide?

▪ Can also describe (s, a) with features (e.g. 
action moves closer to food).
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Policy Search
▪ Problem: often the feature-based policies that work well are not the 

ones that approximate V or Q best.
▪ E.g. value functions  may provide horrible estimates of future rewards, but they 

can still produce good decisions.
▪ Will see distinction between modeling and prediction again later in the course.

▪ Solution: learn the policy that maximizes rewards rather than the 
value that predicts rewards.

▪ This is the idea behind policy search, which has been used to 
control an upside-down helicopter!
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Policy Search

▪ Simplest policy search:
▪ Start with an initial linear value function or q-function.
▪ Nudge each feature weight up and down and see if 

your policy is better than before.

▪ Problems:
▪ How do we tell the policy got better?
▪ Need to run many sample episodes!
▪ If there are a lot of features, this can be impractical ☹

52



Take a Deep Breath…

▪ We are done MDPs and RL!

▪ Next: Decision-theoretic planning (POMDPs).
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