Reinforcement Learning*

Prof. Mohan Sridharan
Chair in Robot Systems

University of Edinburgh, UK
https://homepages.inf.ed.ac.uk/msridhar/
m.sridharan@ed.ac.uk

*Slides adapted from Dan Klein’s lectures.

https://homepages.inf.ed.ac.uk/msridhar/
mailto:m.sridharan@ed.ac.uk

Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards.
= Agent’s utility is defined by the reward function.
= Must learn to act so as to maximize expected rewards.

>[Agent

l’eward action
r
; o,

state

Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards.
= Agent’s utility is defined by the reward function.
= Must learn to act so as to maximize expected rewards.
= Change the rewards, change the learned behavior!

= Examples:

= Playing a game, reward at the end for winning / losing
= Vacuuming a house, reward for each piece of dirt picked up
= Automated taxi, reward for each passenger delivered

= First: Need to master MDPs.

Grid World

The agent lives in a grid.
Walls block the agent’s path.

The agent’s actions do not always
go as planned:
= 80% of the time, the action North

takes the agent North (if there is
no wall there).

= 10% of the time, North takes the
agent West; 10% East.

= |f there is a wall in the direction the
agent would have been taken, the
agent stays put.

Big rewards come at the end.

START

+ 1

Markov Decision Processes

An MDP is defined by:

= A setof statess € S. 3 +1

= A set of actions a € A.

A transition function T(s, a, s’):

= Probability that a from s leadsto s’. 2

= P(s’| s, a) — also called the model.

A reward function R(s, a, s’):
= Sometimes just R(s) or R(s). 1 START
A start state (or distribution).

Maybe a terminal state.

MDPs are a family of non-deterministic
search problems:

= Reinforcement learning: MDPs where
the T and R are unknown.

0.1 0.1

What is Markov about MDPs?

Andrey Markov (1856-1922)

“Markov” generally means that given the
present state, the future and the past are
conditionally independent.

For MDPs, “Markov” means:

P(St—l—l — 3/|St = s, Ay = at, Si—1 = S4—1, Ag—1,...50 = 80)

= P(St+1 — 8'|St = 54, Ay = at)

Solving MDPs

= |n deterministic single-agent search problem, want an
optimal plan, or sequence of actions, from start to goal.

= |In an MDP, we want an optimal policy n*: S — A.
= Apolicy n gives an action for each state.
= An optimal policy maximizes expected utility if followed.
= Defines a reflex agent.

3 —_— — —

Optimal policy when 2 |} =
R(s, a, s’) =-0.03 for all
non-terminals s. 1

Example Optimal Policies

| | > -

AH«- u A A |=;
R(s) = -0.01 R(s) = -0.03

| | - -

A A |= A =

R(s)=-0.4 R(s) = -2.0

Example: High-Low

= Three card types: 2, 3, 4.
= Infinite deck, twice as many 2’s.

= Start with 3 showing.
= Say “high” or “low” after each card.

= New card is flipped:

= If you are right, you win the points shown on
the new card.

= |f you are wrong, game ends.
= Ties are no-ops.

= Some key features:
= #1: get rewards as you go.
= #2: you might play forever!

High-Low

= States: 2, 3, 4, done. Start: 3.

= Actions: High, Low.
= Model: T(s, a, s'):
P(s’=done | 4, High) = 3/4
P(s’=2 | 4, High) =0
P(s’=3 | 4, High) =0
P(s'=4 | 4, High) = 1/4
P(s’=done | 4, Low) =0
P(s’=2 | 4, Low) = 1/2
P(s’=3 | 4, Low) = 1/4
P(s’=4 | 4, Low) = 1/4

n Rewards: R(s, a, s'):
= Number shownons’'ifs #s’.
= (0 otherwise.

Note: could choose actions
with search. How?

10

Utilities of Sequences

In order to formalize optimality of a policy, need to understand

utilities of sequences of rewards.
Temporarily

= Typically consider stationary preferences:)
assuming that

[P 755 105 = = -] &= [P #5 5755 - =] reward only
depends on

&
state!
[T07 1,72, ..] ~ [767 T{]_) TJQ) %]
= Theorem: only two ways to define stationary utilities ©
= Additive utility:
V([s0,51,52,-..]) = R(s0) + R(s1) + R(s2) + -~

= Discounted utility:
V([807 $1,82;, -]) — R(SO)+7R(81)—|—72R(32) Y

11

Infinite Utilities™!

= Problem: infinite sequences with infinite rewards.

= Solutions:

= Finite horizon:
= Terminate after a fixed T steps.
= Gives non-stationary policy (= depends on time left).

= Absorbing state(s): guarantee that for every policy, agent will
eventually “die” (like “done” for High-Low).

= Discounting: for0 <y < 1.

©.@)
V([s0,---500]) = Y ¥'R(st) < Rmax/(1 —7)
t=0
= Smaller y means smaller “horizon” — shorter term focus.

12

Discounting

= Typically discount rewards by

v < 1 in each time step: -

]_ -
» Rewards that come sooner
have higher utility than
rewards that come later.
"y —
= Also helps the algorithms _
converge!
Wz |

Socch

13

Optimal Utilities

Fundamental operation: compute
the optimal utilities of states s.

Define the utility of a state s:

V'(s) = expected return starting in s and
acting optimally.

Define the utility of a g-state (s,a):

Q’(s,a) = expected return starting in s, :
taking action a and thereafter acting
optimally. 1

Define the optimal policy:
n (s) = optimal action from state s.

14

Optimal Policies and Ultilities

= Expected utility with executing & starting in s:

U™ ()=V"(s)= E{Z y’R(S»}
=0
= Optimal policy: 7. =argmax V7" (s)

= One-step: choose action to maximize expected utility of

next state:
n(s) = argmax Z P(s'|s,a)V (s")

acA(s) g'

15

The Bellman Equations

Definition of “optimal utility” leads to a simple one-step
look-ahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and
then follow optimal policy.

Formal definition of optimal functions:
Vi) = max Q" (5, a)
V(8) = maXZT(s a,s’) {R(s a,s’) —I—’yV*(s’)}
Qs m) = ZT(S a s)[R(s a, s)—l—'yV*(s)]

How to choose actions? how to compute optimal policy?

16

Computing Actions

= Which action should we chose from state s:
= Given optimal values V?

arg max Z T(s,a,s)[R(s,a,s) +~vV*(s)]

S

= Given optimal g-values Q7?

arg max Q*(s, a)
a

= Lesson: actions are easier to select from Q’s!

17

Why Not Search Trees?

= Why not just solve search tree?

= Problems:
= This tree is usually infinite (why?).
= Same states appear over and over (why?).
= \We search once per state (why?).

» |dea: Value iteration ©®

= Compute optimal values for all states all at
once using successive approximations.

= Will be a bottom-up dynamic program.
= Do all planning offline, no re-planning!

ES
P
A

18

Value Estimates

» Calculate estimates V, (s)

= Not the optimal value of s. Considers only next k
time steps.

= Optimal value as k - <.

= Why does this work?
= With discounting, distant rewards negligible.
= |[f terminal states reachable from everywhere,
fraction of episodes not ending becomes
A

negligible.
= Otherwise, can get infinite expected utility.
Then this approach will not work! =

19

Value lteration

= |dea:
= Start with V(s) = 0, which we know is right (why?)
= Given V. calculate the values for all states for depth i+1:

Voa1(s) « maxZT(s a,s’) {R(s a,s’) +~Vi(s)}

= This 1s canea a vaiue upoate or oellmadan upaadate.
= Repeat until convergence.

= Theorem: will converge to unique optimal values!

= Basic idea: approximations get refined towards optimal values.

= Policy may converge long before values do!

20

Example: y=0.9, living
reward=0, noise=0.2.

Example: Bellman Updates

1 O O O 0 1 0 O O 0

1 2 3 4 1 2 3 4

Vig1(s) = maXZT(s a,s') [R(s a,s’) -I—’yV(s/)}

Va((3,3)) = ZT((3,3), right, s') [R(<3 3)) + 0. 9V1(s’)}

Max happens for s/
a=right, other actions

not shown. = 0.9 [0.8 -1 —|— 0.1-0 —|— 0.1 O]

21

Example: Value lteration

+1

+ 1 3 0

1 2 3 4 1 2 3 4

= [nformation propagates outward from terminal states and eventually
all states have correct value estimates.

22

Eventually: Correct Values

V, (when R=0, y=0.9)

0.52

0.78

V* (when R=-.04, y=1)

+ 1

0.812

0.71

4

0.868

0.655

0.918

+1

0.611

0.388

1

2

3

= This is the unique solution to the Bellman Equations!

23

Computing Actions

= \WWhich action should we chose from state s:
= Given optimal values V?

arg max Z T(s,a,s)[R(s,a,s) +~vV*(s)]

S

= Given optimal g-values Q7?

arg maxQ*(s,a)
a

= Lesson: actions are easier to select from Q’s!
= How do we compute policies based on Q-values?

24

Policy Evaluation

= How do we calculate the V’s for a fixed policy?

= |dea 1: turn recursive equations into updates:
Vi(s) =0

Vz’7—T|—1(S) — Z T sat(5); S/) [R(s,7(s), S/) e ’VVZ'W<S/)]

= |dea 2: it is just a linear system, solve with Matlab (or
whatever).

= Both ideas are valid solutions.

25

Policy lteration

= Problem with value iteration:

= Consider all actions in each iteration: takes |A| times longer than policy evaluation.
= But policy does not change each iteration, i.e., time is wasted ©

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!)
until convergence (fast!).

= Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities (slow but infrequent).

= Repeat steps until policy converges.

= This is policy iteration:
= |t is still optimal! Can converge faster under some conditions ©

26

Policy lteration

= Policy evaluation: with fixed current policy «, find values
with simplified Bellman updates:
= |terate until values converge.

VL) = LT mil(s),) [R(s, mi(s), 8) + 7 V()]

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead.

re41(s) = argmax > T(s,a,") [R(s,a,s') + 7V (s')
+ a

S/

27

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy).

= |n policy iteration:
= Several passes to update utilities with frozen policy.
= QOccasional passes to update policies.

= Hybrid approaches (asynchronous policy iteration):

= Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often.

28

Recap: Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards.
= Agent’s utility is defined by the reward function.
= Must learn to act so as to maximize expected rewards.

,[Agent

l’eward action
)
; o,

state

29

Reinforcement Learning

= Reinforcement learning:
= Still have an MDP:

= Asetof statess € S)
= A set of actions (per state) A e /

= Amodel T(s, a, s')
= Areward function R(s, a, s’)

= Still looking for a policy n(s)

= New twist: don’t know T or R.
= |.e. don’t know which states are good or what the actions do.
= Must actually try actions and states out to learn.

30

Reinforcement Learning

Known Unknown Assumed

*Current state *Transition model Markov transitions
*Available actions <Reward structure Fixed reward for (s,a,s’)
*Experienced

rewards

Problem: Find optimal policy.
Model-based learning: Learn the model, solve for values.

Model-free learning: Solve for values directly (by sampling).

31

Three Threads of RL

Thread 1: Trial and error approach; origins in psychology.

Thread 2: Dynamic programming to solve general stochastic optimal
control problems; curse of dimensionality! (Chapter 4, RL book)

Thread 3: temporal difference methods; driven by difference
between temporally successive estimates. (Chapter 6, RL book)

Common problems: credit assignment, reward specification, model
design or learning.

Consider a fixed policy first...

32

Example: Direct Estimation

= Episodes:
(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(4,3) exit +100
(

done)

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(4,2) exit -100
(

done)

y
—_— —p — +10
0
2 | Y
1 ' e e o
1 2 3 4 X

V(2,3) ~ (96 +-103) /2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

33

Model-Based Learning

» |dea:
= Learn the model empirically through experience.
= Solve for values as if the learned model were correct.

= Simple empirical model learning:
= Count outcomes for each s, a.
= Normalize to give estimate of T(s, a, s’).
= Discover R(s, a, s’) when we experience (s, a, s’).

= Solving the MDP with the learned model:

= [terative policy evaluation, for example:

Vii1(s) «— Y2 T(s,m(s), HR(s, w(s), 8") + 4V (s)]

34

Example: Model-Based Learning

= Episodes:

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(
(

done)

4,3) exit +100

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1

(

(

4,2) exit -100

done)

y

— ey e +10

0

-10

2 t t j
1 ' e e o
1 2 3 4

y=1

T(<3,3>, right, <4,3>)=1/3

T(<2,3>, right, <3,3>)=2/2

35

Model-Free Learning

Want to compute an expectation weighted by P(x):

Elf(z)] = 2., P(z)f(z)

Model-based: estimate P(x) from samples, compute expectation.
x; ~ P(x)]5(33) = count(z)/k E|f(z)]~). P(z)f(x)

Model-free: estimate expectation directly from samples.

z; ~ P(x) Elf(x)] = £ >, fa)

Why does this work? Because samples appear with the right
frequencies!

36

Sample-Based Policy Evaluation?

V1(s) — Y T(s,m(s),) [R(s, m(s), 8) + Vi (s))]

= Who needs T and R? Approximate the expectation
with samples (drawn from T).

sample; = R(s,m(s),s1) + vV;"(s1)

sampley = R(s,m(s), sb) + YVi" (sh)
sampley, = R(s,m(s), s}) + V7 (s;)

1
Vii1(s) « E Z sample;
7

37

Temporal-Difference Learning

= Big idea: learn from every experience!

= Update V(s) each time we experience (s,a,s’,r) S
= Likely s’ will contribute to updates more often. 7(s)
S, 1(S)
= Temporal difference learning:
= Policy can still be fixed! ,
= Move values toward value of whatever A s
successor occurs: running average!
Sample of V(s): sample = R(s,7(s), 3/) B VVW(S/)
Update to V(s): VT(s) +— (1 —a)V"™(s) + (a)sample
Same update: VT (s) «— V™(s) + a(sample — V" (s))

38

Example: TD Policy Evaluation

V7(s) — (1 —a)V™(s) +a |R(s,m(s),s") + 4V (s

(1,1) up -1 (1,1) up -1 i | = | | =
(1,2) up -1 (1,2) up -1 [t =
(1,2) up -1 (1,3) right -1 i F || = |-
(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 3

(3,3) right -1 (3,2) up -1

(3,2) up -1 (4,2) exit -100 .

(3,3) right -1 (done)

(4,3) exit +100 ’

(done)

Takey=1,0=0.5

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation.

However, if we want to turn values into
a (new) policy, we are sunk:

w(s) = argmaxQ*(s,a)
Q*(s,a) =Y T(s,a,8) |[R(s,a,s") +yV*(s)]

Idea: learn Q-values directly.
Makes action selection model-free too!

40

Model-Based Active Learning

= |n general, want to learn the optimal policy, not evaluate
a fixed policy.

= |ldea: adaptive dynamic programming ©
= Learn an initial model of the environment.
= Solve for optimal policy for this model (value or policy iteration).
= Refine model through experience and repeat.
= Ensure we actually learn about all of the model.

41

Example: Greedy ADP

Imagine we find the lower path to
the good exit first.

Some states will never be visited
following this policy from (1,1).

+ 1

Can keep re-using this policy but
following it never explores the

regions of the model we need in
order to learn the optimal policy .

42

What Went Wrong?

Problem with following optimal policy
for current model:

= Never learns about better regions of
space if current policy neglects them.

Fundamental tradeoff: exploration vs.
exploitation.
= Exploration: take actions with

suboptimal estimates to discover new
rewards and increase eventual utility.

3

2

= Exploitation: once true optimal policy 4

is learned, exploration reduces utility.
= Systems must explore in the

beginning and exploit in the limit.

Epsilon-greedy policies.

+ 1

43

Detour; Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V'(s) = 0, which we know is right (why?)
= Given Vi*, calculate the values for all states for depth i+1:

Vig1(s) — max}_ T(s,a,s') |R(s,a,s') +vVi(s)]

= But Q-values are more useful!
= Start with Q, (s,a) = 0, which we know is right (why?)
= Given Qi*, calculate the g-values for all g-states for depth i+1:

a

Qi-|—1(87 CL) = Z T(‘Sa a, Sl) [R(Sa a, 8/) g m?X Qi(s/a CL/)

44

Q-Learning (Off-policy TD)

= \We would like to do Q-value updates to each Q-state:

Qit1(s,0) = S T(s,0,8) |R(s,a,8) +7 maxQi(s',a)

= But cannot compute this update without knowing T, R.

= |nstead, compute average as we go:
= Receive a sample transition (s,a,r,s’).
= This sample suggests: Q(s,a) ~ r + v max Q(s',d")
a

= But we want to average over results from (s,a) (Why?)
= So keep a running average:

Q(s,0) — (1 —2)Q(s,a) + (a) |r +ymax Q(s',a")

45

Q-Learning Properties

Will converge to optimal policy:

= |If you explore enough (i.e. visit each g-state many times).
= If you make the learning rate small enough.
= Basically does not matter how you select actions!

On-policy methods: attempt to improve or evaluate policy used to
make decisions. Provide “soft” policies.

Off-policy methods: evaluate or improve a policy different from that
used to make decisions.

On-policy vs. off-policy: Chapter 5 on RL textbook.

46

Q-Learning

(Exploration / Exploitation)

Several schemes for forcing exploration:

= Simplest: random actions (e greedy).
= Every time step, flip a coin.
= With probability €, act randomly.
= With probability 1-¢, act according to current policy.

= Regret: expected gap between rewards during learning
and rewards from optimal action.

= Q-learning with random actions will converge to optimal values,

but possibly very slowly, and will get low rewards on the way.
= Results will be optimal but regret will be large.
= How to make regret small?

47

Q-Learning

(Generalization and Abstraction)

= |n realistic situations, we cannot possibly learn about
every single state!
= Too many states to visit them all in training.
= Too many states to hold the g-tables in memory.

= |nstead, we want to generalize:

= Learn about small number of training states from experience.

= (Generalize that experience to new, similar states.
= This is a fundamental idea in machine learning!

48

Example: Pacman

= Let's say we discover
through experience that
this state is bad.

= |n naive Q-learning, we
know nothing about this
state or its g-states.

= Or even this one!

49

Feature-Based Representations

Solution: describe a state using a vector
of features (properties).
= Features map from states to real numbers

that capture important properties of the
state.

*

*

= Example features:

Distance to closest ghost/dot.
Number of ghosts.

1/ (dist to dot)?

Is Pacman in a tunnel? (0/1)

Is it the exact state on this slide?

*

*
*
*
*
*
*
*
*
®

= Can also describe (s, a) with features (e.g.
action moves closer to food).

50

Policy Search

Problem: often the feature-based policies that work well are not the
ones that approximate V or Q best.

= E.g. value functions may provide horrible estimates of future rewards, but they
can still produce good decisions.

= Will see distinction between modeling and prediction again later in the course.

Solution: learn the policy that maximizes rewards rather than the
value that predicts rewards.

This is the idea behind policy search, which has been used to
control an upside-down helicopter!

51

Policy Search

= Simplest policy search:
= Start with an initial linear value function or g-function.

= Nudge each feature weight up and down and see if
your policy is better than before.

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical ®

52

Take a Deep Breath...
= We are done MDPs and RL!

= Next: Decision-theoretic planning (POMDPs).

53

