Partially Observable Markov Decision Processes*

Prof. Mohan Sridharan Chair in Robot Systems

University of Edinburgh, UK <https://homepages.inf.ed.ac.uk/msridhar/>

m.sridharan@ed.ac.uk

*Revised original slides that accompany the book by Thrun, Burgard and Fox.

POMDPs

- **State is not observable** agent has to make decisions based on belief state which is a **posterior distribution over states**.
- Let *b* be the belief of the agent about the state under consideration.
- POMDPs compute a **value function over belief space**:

$$
V_T(b) = \gamma \max_{u} \left\{ r(b, u) + \int_{T-1}^{1} (b') p(b' | u, b) db' \right\}
$$

$$
\pi_T(b) = \arg \max_{u} \left\{ r(b, u) + \int_{T-1}^{1} (b') p(b' | u, b) db' \right\}
$$

$$
V_T(x) = \gamma \max_{u} \left\{ r(x, u) + \int_{T-1}^{1} (x') p(x' | u, x) dx' \right\}
$$

- \blacksquare Belief is a probability distribution each value in a POMDP is a function of an entire probability distribution!
- **Probability distributions are continuous.**
- Huge complexity of belief spaces.
- For **finite worlds** with finite state, action, and observation spaces and finite horizons, we can **effectively represent the value functions by piecewise linear functions**.

An Illustrative Example

The Parameters of the Example

- **The actions** u_1 **and** u_2 **are terminal actions.**
- **The action** u_3 is a sensing action that potentially leads to a state transition.
- **•** The horizon is finite and $\gamma=1$.

$$
r(x_1, u_1) = -100, \quad r(x_2, u_1) = 100
$$

\n
$$
r(x_1, u_2) = 100, \quad r(x_2, u_2) = -50
$$

\n
$$
r(x_1, u_3) = -1, \quad r(x_2, u_3) = -1
$$

\n
$$
p(x_1 | x_1, u_3) = 0.2 \quad p(x_2 | x_1, u_3) = 0.8
$$

\n
$$
p(x_1 | x_2, u_3) = 0.8 \quad p(x_2 | x_2, u_3) = 0.2
$$

\n
$$
p(z_1 | x_1) = 0.7 \quad p(z_2 | x_1) = 0.3
$$

\n
$$
p(z_1 | x_2) = 0.3 \quad p(z_2 | x_2) = 0.7
$$

$$
p_1 = b(x_1), p_2 = b(x_2), p_2 = 1 - p_1
$$

Policy $\pi : [0, 1] \rightarrow u$

Payoff in POMDPs

- In MDPs, the payoff (or return) depends on the state of the system.
- In POMDPs, the true state is not known.
- **EXTED THEREFORM** Therefore, we compute the **expected payoff** by **integrating over all states**:

$$
r(b, u) = E_x[r(x, u)]
$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example (1)

- **If** we are certain that we are in state x_1 and execute action u_1 we receive reward of -100 .
- **If we definitely know that we are in** x_2 **and execute** u_1 **the** reward is $+100$.
- In between it is the linear combination of the extreme values weighted by the probabilities:

$$
r(b, u_1) = -100 p_1 + 100 p_2
$$

= -100 p₁ + 100 (1 - p₁)

$$
r(b, u_2) = 100 p_1 - 50 (1 - p_1)
$$

$$
r(b,u_3) = -1
$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given we have a finite POMDP with $T=1$, we would use $V_I(b)$ to determine the optimal policy.
- In our example, the optimal policy for $T=1$ is:

$$
\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}
$$

■ This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

The resulting value function $V_1(b)$ is the maximum of the three functions at each point:

$$
V_1(b) = \max_{u} r(b, u)
$$

= max $\begin{cases} -100 p_1 + 100 (1 - p_1) \\ 100 p_1 - 50 (1 - p_1) \\ -1 \end{cases}$

■ It is piecewise linear and convex.

Pruning

Carefully consider $V_1(b)$ – only the first two components contribute.

The third component can be pruned away from $V_1(b)$ **:**

$$
V_1(b) = \max \left\{ \begin{array}{cl} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}
$$

Increasing the Time Horizon

■ Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- **BUDER Suppose the robot perceives** z_j **for which:**

 $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.

Given the observation $z₁$ we update the belief using Bayes rule:

$$
p'_{1} = p(x_{1} | z) = \frac{p(z_{1} | x_{1})p(x_{1})}{p(z_{1})} = \frac{0.7 p_{1}}{p(z_{1})}
$$

$$
p'_{2} = \frac{0.3(1-p_{1})}{p(z_{1})}
$$

$$
p(z_{1}) = 0.7 p_{1} + 0.3(1-p_{1}) = 0.4 p_{1} + 0.3
$$

Value Function

Increasing the Time Horizon

- Coming back to our assumption that robot can make an observation before deciding on an action.
- **If the robot perceives** z_1 **:** $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- **We update the belief** $V_1(b \mid z_1)$ using Bayes rule to obtain:

$$
V_1(b \mid z_1) = \max \left\{ \begin{array}{r} -100 \cdot \frac{0.7 p_1}{p(z_1)} + 100 \cdot \frac{0.3 (1-p_1)}{p(z_1)} \\ 100 \cdot \frac{0.7 p_1}{p(z_1)} - 50 \cdot \frac{0.3 (1-p_1)}{p(z_1)} \end{array} \right\}
$$

= $\frac{1}{p(z_1)}$ max $\left\{ \begin{array}{r} -70 p_1 + 30 (1-p_1) \\ 70 p_1 - 15 (1-p_1) \end{array} \right\}$

Expected Value after Measuring

■ Since we do not know what the next measurement will be, we have to compute the expected belief:

$$
\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^{2} p(z_i) V_1(b \mid z_i)
$$

$$
= \sum_{i=1}^{2} p(z_i) V_1\left(\frac{p(z_i \mid x_1) p_1}{p(z_i)}\right)
$$

$$
= \sum_{i=1}^{2} V_1\left(p(z_i \mid x_1) p_1\right)
$$

Expected Value after Measuring

■ Since we do not know what the next measurement will be, we have to compute the expected belief:

$$
\begin{aligned}\n\bar{V}_1(b) &= E_z[V_1(b \mid z)] \\
&= \sum_{i=1}^2 p(z_i) \, V_1(b \mid z_i) \\
&= \max \left\{ \begin{array}{ll} -70 \, p_1 & +30 \, (1 - p_1) \\
70 \, p_1 & -15 \, (1 - p_1) \end{array} \right\} \\
&+ \max \left\{ \begin{array}{ll} -30 \, p_1 & +70 \, (1 - p_1) \\
30 \, p_1 & -35 \, (1 - p_1) \end{array} \right\}\n\end{aligned}
$$

Resulting Value Function

■ The four possible combinations yield the following function which then can be simplified and pruned:

$$
\bar{V}_1(b) = \max \begin{cases}\n-70 \ p_1 + 30 (1 - p_1) - 30 \ p_1 + 70 (1 - p_1) \\
-70 \ p_1 + 30 (1 - p_1) + 30 \ p_1 - 35 (1 - p_1) \\
+70 \ p_1 - 15 (1 - p_1) - 30 \ p_1 + 70 (1 - p_1) \\
+70 \ p_1 - 15 (1 - p_1) + 30 \ p_1 - 35 (1 - p_1)\n\end{cases}
$$
\n
$$
= \max \begin{cases}\n-100 \ p_1 + 100 (1 - p_1) \\
+40 \ p_1 + 55 (1 - p_1) \\
+100 \ p_1 - 50 (1 - p_1)\n\end{cases}
$$

Value Function

Value Function

State Transitions (Prediction)

- \blacksquare When the agent selects u_j its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$
p_1 = E_x [p(x_1 | x, u_3)]
$$

=
$$
\sum_{i=1}^{2} p(x_1 | x_i, u_3) p_i
$$

= 0.2 p₁ + 0.8(1 – p₁)
= 0.8 – 0.6 p₁

State Transitions (Prediction)

Value Function after executing *u*₃

■ Taking the state transitions into account:

$$
\bar{V}_1(b) = \max \begin{cases}\n-70 \ p_1 + 30 (1 - p_1) - 30 \ p_1 + 70 (1 - p_1) \\
-70 \ p_1 + 30 (1 - p_1) + 30 \ p_1 - 35 (1 - p_1) \\
+ 70 \ p_1 - 15 (1 - p_1) - 30 \ p_1 + 70 (1 - p_1) \\
+ 70 \ p_1 - 15 (1 - p_1) + 30 \ p_1 - 35 (1 - p_1)\n\end{cases}
$$
\n
$$
= \max \begin{cases}\n-100 \ p_1 + 100 (1 - p_1) \\
+ 40 \ p_1 + 55 (1 - p_1) \\
+ 100 \ p_1 - 50 (1 - p_1)\n\end{cases}
$$
\n
$$
\bar{V}_1(b \mid u_3) = \max \begin{cases}\n60 \ p_1 - 60 (1 - p_1) \\
52 \ p_1 + 43 (1 - p_1) \\
-20 \ p_1 + 70 (1 - p_1)\n\end{cases}
$$

Value Function after executing *u*₃

24

Value Function for T=2

■ Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_{2} , we obtain (after pruning).

$$
\bar{V}_2(b) \,\,=\,\, \max \left\{ \begin{array}{cl} -100 \; p_1 & +100 \; (1-p_1) \\ 100 \; p_1 & -50 \; (1-p_1) \\ 51 \; p_1 & +42 \; (1-p_1) \end{array} \right\}
$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for $T=10$ and $T=20$:

Deep Horizons and Pruning

Why Pruning is Essential

- Each update adds additional linear components to *V*.
- Each measurement squares number of linear components.
- **Unpruned value function for T=20 has more than** $10^{547,864}$ linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- **The pruned value functions at T=20, in comparison,** contains only 12 linear components.
- The combinatorial explosion of linear components in the value function is the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

POMDP Approximations

■ Point-based value iteration.

■ QMDPs.

■ AMDPs.

■ MC-POMDP.

Point-based Value Iteration

- Maintains a set of example beliefs.
- Only considers constraints that maximize value function for at least one of the examples.

Point-based Value Iteration

Value functions for T=30

Exact value function The PBVI

- QMDPs only consider state uncertainty in the first step.
- After that, the world becomes fully observable!
- Planning only marginally less efficient than MDPs, but performance significantly better!

Monte Carlo POMDPs

■ Represent beliefs by samples.

■ Estimate value function on sample sets.

■ Simulate control and observation transitions between beliefs.

Summary

- POMDPs ideal for modeling systems with partially observable state and non-deterministic actions.
- Exponential state space explosion is a problem!
- **Methods exist to make the problem more tractable not** good enough for real-world robot problems.
- Possible solutions:
	- Impose hierarchy by exploiting inherent structure.
	- Speed up POMDP solution techniques.