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Probabilistic Robotics
Key idea: 

Explicit representation of uncertainty using the 
calculus of probability theory

• Perception = state estimation
• Action = utility optimization
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Pr(A) or P(A) denotes probability that proposition A 
is true.

•  

•
 

•  

Axioms of Probability Theory
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A Closer Look at Axiom 3

B
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Using the Axioms
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Discrete Random Variables

• X denotes a random variable.

• X can take on a countable number of values in:

{x1, x2, …, xn}.

• P(X=xi), or P(xi), is the probability that the random 
variable X takes on value xi. 

• P(.) is called probability mass function.

• E.g.



7

Continuous Random Variables

• X takes on values in the continuum.

• p(X=x), or p(x), is a probability density function.

• E.g.

x

p(x)
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Joint and Conditional Probability

• P(X=x and Y=y) = P(x,y)

• If X and Y are independent then: 
P(x, y) = P(x) P(y)

• P(x | y) is the probability of x given y:
P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

• If X and Y are independent then:
P(x | y) = P(x)
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Law of Total Probability, Marginals

Discrete case Continuous case
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Bayes Formula
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Normalization

• Denominator of Bayes rule is a “normalizer”.
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Conditioning

• Law of total probability:



13

Bayes Rule with Background 
Knowledge

• Bayes rule can take into account background 
knowledge:

• Essential condition on background knowledge.
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Conditional Independence

• X and Y conditionally independent given Z:

equivalent to:
   



• Two coins; one fair, one biased (always shows heads).

• Pick coin at random and toss twice.

• Define three events:
○ X = Heads on first throw.
○ Y = Heads on second throw.
○ Z = first (fair) coin was selected.

• Compute the following:
○ P(X|Z), P(Y|Z), P(X, Y|Z), P(X), P(Y), P(X, Y).

Conditional Independence Example



Formal Definitions (Section 2.3, PR)

• State: all aspects of robot and environment that can impact 
the future (x or s).

• Static and dynamic state; complete state. Discrete and 
continuous state.

• Pose: position + orientation.

• Markov assumption: past and future data independent given 
current state.

• Environment interaction:
• Sensor measurements (z or o). Increase knowledge.
• Control actions (u or a). Increase uncertainty.

• Belief (or belief/information state) bel(xt) = p(xt|z1:t, u1:t) 

16



17

Simple Example of State Estimation

• Suppose a robot obtains measurement z

• What is P(open|z)?
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Causal vs. Diagnostic Reasoning

• P(open|z) is diagnostic.

• P(z|open) is causal.

• Often causal knowledge is easier to obtain.

• Bayes rule allows us to use causal knowledge:

count frequencies?
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Example

• P(z|open) = 0.6 P(z|¬open) = 0.3

• P(open) = P(¬open) = 0.5

Measurement z raises probability that the door is open.
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Combining Evidence

• Suppose robot obtains another observation z2.

• How can we integrate this new information?

• How can we estimate the result of a series of 
measurements/observations?

P(x| z1...zn ) = ?
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Recursive Bayesian Updating

Use Markov assumption: zn is independent of z1,...,zn-1 if x known.



22

Example: Second Measurement 

• P(z2|open) = 0.5 P(z2|¬open) = 0.6

• P(open|z1)=2/3

z2 lowers the probability that the door is open.
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Actions

• Often the world is dynamic since:
• actions carried out by the robot,
• actions carried out by other agents,
• or just the world changes over the passage of time.

• How can we incorporate such actions?
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Typical Actions

• The robot turns its wheels to move.

• Robot uses its manipulator to grasp an object

• Plants grow over time … ☺

• Actions are never carried out with certainty.

• In contrast to measurements, actions generally 
increase uncertainty. 
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Modeling Actions

• To incorporate the outcome of an action u into 
the current “belief”, we use the conditional pdf: 

P(x|u,x’)

• This term specifies the pdf that executing u 
changes the state from x’ to x.
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Example: Closing the door
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State Transitions

P(x|u,x’) for u = “close door”:

If the door is open, the action “close door” succeeds 
in 90% of the cases.
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Integrating the Outcome of Actions

Continuous 
case:

Discrete case:
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Example: The Resulting Belief
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Another Example: Four Rooms

• Four rooms arranged in a square; four actions 
(up, down, left, right). Simple transition 
probabilities: 

P(x|u,x’) = 0.8/0.2 for valid actions
   = 0 otherwise

• How do we compute updated probabilities given 
u=up has been executed?
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Bayes Filters: Framework
• Given:

• Stream of observations z and action data u:

• Sensor model P(z|x).
• Action model P(x|u,x’).
• Prior probability of the system state P(x).

• Wanted: 
• Estimate of the state X of a dynamical system.
• The posterior of the state is also called Belief:
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Markov Assumption

Underlying Assumptions:
• Static world.
• Independent noise.
• Perfect model, no approximation errors.
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Bayes Filters

Bayes

z  = observation
u  = action
x  = state

Markov

Markov

Total prob.

Markov
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Bayes Filter Algorithm 

1. Algorithm Bayes_filter(               ):
2. For all    do
3.  
4.  
5. End for
6. Return      

Two key steps: prediction and correction.
Also known as control update and measurement update.
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Bayes Filters are Familiar!

• Kalman filters.
• Particle filters.

• Hidden Markov models.
• Dynamic Bayesian networks.
• Partially Observable Markov Decision Processes.



36

Summary

• Bayes rule allows us to compute probabilities that 
are hard to assess otherwise.

• Under the Markov assumption, recursive Bayesian 
updating can be used to efficiently combine 
evidence.

• Bayes filters are a probabilistic tool for estimating 
the state of dynamic systems.


