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Classification Basics

Broad categories: supervised (labeled samples);
unsupervised (no labeled samples).
Group data based on similarity measures.

Many sophisticated methods:
Supervised: decision trees, support vector machines,
neural networks.
Unsupervised: nearest neighbors, clustering.

Choice of classifier based on data and application.
Probabilistic methods model the noise in input data!
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Clustering Data Samples

K-Means clustering of input data samples.
Data grouped into three clusters.
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Bayesian Classification

Bayes’ rule (once again):

p(x , y) = p(x |y) · p(y) = p(y |x) · p(x)

p(x |y) =
p(y |x) · p(x)

p(y)
=

likelihood . prior
normalizer

Classify based on Bayes decision rule:
p(C1|x) > p(C2|x) =⇒ choose C1; else choose C2

Decision rule extends to multiple classes:
p(Ci |x) > p(Cj |x) ∀j 6= i =⇒ choose Ci
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Illustrative Example 1

C1 : room1; C2 : room2; x : data (e.g., specific door).
p(C1) = p(C2) = 0.5; p(x |C1) = 0.6; p(x |C2) = 0.3
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Multi-Class Extension

Model likelihoods and priors based on training samples.
Update belief incrementally based on evidence.
Use multi-class Decision rule:

p(Ci |x) > p(Cj |x) ∀j 6= i =⇒ choose Ci

Question: representation to use for likelihoods?
Answer: use functions with well-understood properties,
e.g., Gaussians.
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Illustrative Example 2

Four-class problem; ten training data samples per class.
Model individual class likelihoods as Gaussians.
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Illustrative Example 2: Modeling

Compute Gaussian means and covariances:
µ1 = [2.16,2.49]; µ2 = [3.95,−0.84]

µ3 = [−1.57,3.5]; µ4 = [−6,−6.14]

Σ1 =

(
9.32 10.12

10.12 11.85

)

Σ2 =

(
8.36 8.87
8.87 13.02

)

Σ3 =

(
7.63 2.98
2.98 9.78

)

Σ4 =

(
8.62 −5.71
−5.71 9.26

)
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Illustrative Example 2: Classification

Decision boundaries for all four classes:
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Summary

Elegant belief update and decision rule for classification.
Little or no tuning of arbitrary thresholds.

Bayes error: minimum classification error that cannot be
eliminated.

Challenge 1: what function and parameters to use for
modeling likelihoods and priors?

Challenge 2: how to obtain enough data to model the
likelihoods and priors?
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For more information

C. Bishop. Pattern Recognition and Machine Learning. Springer
publishing house, 2007.

R. Duda and P. Hart and D. Stork. Pattern Classification.
Wiley-Interscience, 2000.

D. Stork and E. Yom-Tov. Computer Manual in MATLAB to
accompany Pattern Classification. Wiley-Interscience, 2004.

Weka 3: Data Mining Software in Java, 2010.
http://www.cs.waikato.ac.nz/ml/weka/.

MATLAB Statistics Toolbox.
http://www.mathworks.com/products/statistics/
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The Framework

Inputs:
Stream of observations z and actions u: {u1, z1, . . . ,ut , zt}
Sensor model: p(z|x)
Action model: p(x ′|u, x)
Prior probability of system state: p(x)

Outputs:
Estimate the state x of a dynamical system.
Posterior of state, called the belief:

bel(xt ) = p(xt |u1, z1, . . . ,ut , zt )
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Markov Assumption

First-order Markov (conditional independence) assumption:

p(xt |x0, . . . , xt−1) = p(xt |xt−1)

Bayesian filtering:
p(zt |x0:t , z1:t ,u1:t ) = p(zt |xt )

p(xt |x1:t−1, z1:t ,u1:t ) = p(xt |xt−1,ut )
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Bayes Filters 1

Bayes rule:

bel(xt ) = p(xt |u1:t , z1:t )

∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

Markov assumption:

bel(xt ) ∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt ) p(xt |u1, z1, . . . ,ut )
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Bayes Filters 2

Probability expansion:

bel(xt ) ∝ p(zt |xt ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt )

∫
p(xt |u1:t , z1:t−1, xt−1)p(xt−1|u1:t , z1:t−1) dxt−1

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1
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Bayes Filters 3

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . , zt−1) dxt−1

Recursion:

bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1
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Bayes Filters Summary

Recursive belief update based on Markov assumption:
bel(xt ) = p(xt |u1:t , z1:t )

∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt )

∫
p(xt |u1:t , z1:t−1, xt−1)p(xt−1|u1:t , z1:t−1) dxt−1

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . , zt−1) dxt−1

bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1
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Bayes Inference

Bayes prediction and correction:
∀xt : bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1

∀k : pk,t = η p(zt |Xt = xk )
∑

i

p(Xt = xk |ut ,Xt−1 = xi ) pi,t−1

Bayes filter:
∀xt :bel(xt ) =

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1

bel(xt ) = η p(zt |xt ) bel(xt )

Discrete Bayes filter:
∀k :pk,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi ) pi,t−1

pk,j = η p(zt |Xt = xk ) pk,j
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Examples

Pictorial representation of discrete Bayes:
∀k :pk,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi ) pi,t−1

pk,j = η p(zt |Xt = xk ) pk,j

Many instances: Kalman filters, Particle filters, Bayesian
Networks, Partially Observable Markov Decision
Processes (POMDPs), Hidden Markov Models (HMMs)...
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Summary

Bayesian inference is a general framework for probabilistic
state estimation.

Markov assumption, although not always true, allows for
elegant belief updates.

Incorporates changes in system dynamics independent of
the observations of the system.

Applications: computer vision, robotics, agricultural
estimation, climate informatics, and many more....
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