Introduction to Mobile Robotics Graphs and Bayes Nets¹

Prof. Mohan Sridharan Chair in Robot Systems School of Informatics, University of Edinburgh, UK https://homepages.inf.ed.ac.uk/msridhar/ m.sridharan@ed.ac.uk

Fall 2024

¹Based on material from "Probabilistic Graphical Models: Principles and Techniques" by Koller and Friedman

Nodes and Edges Paths and Trails Cycles and Loops

Lecture Outline

Graphs:

- Nodes and edges.
- Paths and trails.
- Cycles and loops.

• Bayes nets:

- Basic concepts.
- Reasoning patterns.
- Markov networks.

Nodes and Edges Paths and Trails Cycles and Loops

Nodes and Edges 1

• A *Graph* is a data structure consisting of a set of nodes and edges:

$$\mathcal{K} = (\mathcal{X}, \mathcal{E}); \quad \mathcal{X} = \{X_1, \dots, X_n\}$$

- Edges can be *directed*: $X_i \rightarrow X_j$ or *undirected*: $X_i X_j$.
- Directed graph \mathcal{G} : all edges are directed.
- Undirected graph \mathcal{H} : all edges are undirected.

Nodes and Edges Paths and Trails Cycles and Loops

Nodes and Edges 2

- If X_i → X_j ∈ E, X_i is the parent and X_j is the child.
- If X_i−X_j ∈ E, X_i and X_j are neighbors.
- $X \rightleftharpoons Y$ are adjacent.
- Boundary_X = $Pa_X \cup Nb_X$.

- Subgraph over **X** is complete if every two nodes in **X** are connected by an edge. Also called a *clique*.
- Clique **X** is maximal is any $\mathbf{Y} \supset \mathbf{X}$ is not a clique.

Nodes and Edges Paths and Trails Cycles and Loops

Paths and Trails 1

- X_1, \ldots, X_k form a path in graph $\mathcal{K} = (\mathcal{X}, \mathcal{E})$ if for every $i = 1, \ldots, k - 1$, either $X_i \rightarrow X_{i+1}$ or $X_i \neg X_{i+1}$.
- Directed path: for at least one $i, X_i \rightarrow X_{i+1}$.

• X_1, \ldots, X_k form a trail in graph $\mathcal{K} = (\mathcal{X}, \mathcal{E})$ if for every $i = 1, \ldots, k - 1, X_i \rightleftharpoons X_{i+1}$.

Nodes and Edges Paths and Trails Cycles and Loops

Paths and Trails 2

- A graph is connected if there is a trail between every *X_i* and *X_j*.
- If there exists a directed path X_1, \ldots, X_k in $\mathcal{K} = (\mathcal{X}, \mathcal{E})$ with $X_1 = X, X_k = Y, X$ is an ancestor of Y and Y is a descendant of X.

- Descendants_A =?, NonDescendants_B =?
- X₁,..., X_k form a topological ordering in graph K = (X, E) if for every X_i → X_j ∈ E, we have i < j.

Graphs Bayes Nets Bayes Nets

Cycles and Loops 1

• A cycle in \mathcal{K} is a directed path X_1, \ldots, X_k where $X_1 = X_k$.

• A graph is acyclic if it contains no cycles. *Bayesian Network* is a directed acyclic graph (DAG).

• A loop in \mathcal{K} is a trail X_1, \ldots, X_k where $X_1 = X_k$.

• A graph is singly connected if it has no loops.

Nodes and Edges Paths and Trails Cycles and Loops

Cycles and Loops 2 (Extra)

• Polytree: singly-connected directed graph.

• Leaf: node in singly-connected graph with exactly one adjacent node.

• Forest: singly-connected undirected graph. Also, directed graph where each node has at most one parent.

• Tree: connected forest.

Basic Definitions D-Separation Markov Networks

Lecture Outline

• Graphs:

- Nodes and edges.
- Paths and trails.
- Cycles and loops.

Bayes nets:

- Basic concepts.
- Reasoning patterns.
- Markov networks.

Basic Definitions D-Separation Markov Networks

Bayesian Network

• Bayesian Network (BN): directed acyclic graph (DAG) *G* whose nodes are RVs and edges represent the influence of one node on another.

Two viewpoints:

- Data structure that is the skeleton for representing a joint probability distribution compactly in a factorized manner.
- Compact representation for the conditional independence assumptions about a distribution.
- Two viewpoints are equivalent!

Basic Definitions D-Separation Markov Networks

Student Example

- Student requests professor to write reference letter.
- Difficulty (of course): $Val(D) = \{d^0, d^1\} = \{easy, hard\}.$
- Intelligence (of student): $Val(I) = \{i^0, i^1\} = \{low, high\}.$
- SAT (scores of student): $Val(S) = \{s^0, s^1\} = \{low, high\}.$
- Grade (in course): $Val(G) = \{g^1, g^2, g^3\} = \{A, B, C\}.$
- Letter (quality): $Val(L) = \{l^0, l^1\} = \{weak, strong\}.$

Basic Definitions D-Separation Markov Networks

Reasoning Patterns 1

- Causal reasoning or prediction: predicting downstream effects of various factors.
- $P_{B^{student}}(I^1|i^0) = ?$
- $P_{\mathcal{B}^{student}}(I^1|i^0, d^0) = ?$
- Compute these values.

Basic Definitions D-Separation Markov Networks

Reasoning Patterns 2

- Evidential reasoning or explanation: reason from effects to causes.
- $P_{\mathcal{B}^{student}}(i^1|g^3) = ?$
- $P_{\mathcal{B}^{student}}(i^1|I^0) = ?$
- $P_{\mathcal{B}^{student}}(i^1|g^3, l^0) = ?$
- Compute these values.

Basic Definitions D-Separation Markov Networks

Reasoning Patterns 3

• Intercausal reasoning or explaining away.

•
$$P_{\mathcal{B}^{student}}(i^1|g^3) \neq P_{\mathcal{B}^{student}}(i^1|g^3, d^1);$$
 why?

• Related to *v-structures*.

• Does *D* influence estimate of *I* through *G* ?

Basic Definitions D-Separation Markov Networks

Local Independencies

- Bayesian network G is a DAG whose nodes represent RVs X₁,..., X_n. Let Pa^G_{X_i} denote parents of X_i in G.
- *G* encodes conditional independence assumptions, called local independencies *I*_l(*G*):
 X_i : (*X_i*⊥*NonDescendants_{Xi}|Pa^G_{Xi}*)

 $X_i : (X_i \perp NONDescendants_{X_i} | Pa_{X_i})$

- Each node is conditionally independent of non-descendants given parents.
- P(I, D, G, S, L) = P(I) P(D) P(G|I, D) P(S|I) P(L|G).

Basic Definitions D-Separation Markov Networks

Two-Edge Trails

- Four possible two-edge trails from X to Y via Z.
- (a) Indirect causal effect; (b) indirect evidential effect.
- (c) A common cause; and (d) a common effect.

• When evidence can flow from X to Y via Z, the trail $X \rightleftharpoons Z \rightleftharpoons Y$ is active.

Basic Definitions D-Separation Markov Networks

Х

Z

Y

(a)

Z

Y

(b)

Active Trails

- (a) Causal trail
 X → Z → Y: active iff Z is not observed.
- (b) Evidential trail
 X ← Z ← Y: active iff Z is not observed.
- (c) Common cause
 X ← Z → Y: active iff Z is not observed.
- (d) Common effect X → Z ← Y: active iff Z or one of its descendants is observed.

(c)

(d)

Y

Z

Х

Basic Definitions D-Separation Markov Networks

D-Separation 1

- Let \mathcal{G} be a BN, $X_1 \rightleftharpoons \ldots \rightleftharpoons X_n$ be a trail in \mathcal{G} and **Z** be a subset of observed variables.
- Trail $X_1 \rightleftharpoons \ldots \rightleftharpoons X_n$ is active if:
 - For any v-structure X_{i-1} → X_i ← X_{i+1}, X_i or one of its descendant is in Z.
 - No other node on the trail is in Z.

Basic Definitions D-Separation Markov Networks

D-Separation 2

- Let X, Y, Z be three sets of nodes in G. If there is no active trail between any node X ∈ X and Y ∈ Y given Z, X and Y are *d-separated* given Z: d-sep_G(X; Y|Z).
- Global Markov independencies: set of independencies that correspond to d-separation (*directed separation*).

$$\mathcal{I}(\mathcal{G}) = \{ (\textbf{X} \bot \textbf{Y} | \textbf{Z}) : \text{d-sep}_{\mathcal{G}}(\textbf{X}; \textbf{Y} | \textbf{Z}) \}$$

Basic Definitions D-Separation Markov Networks

Misconception Example

- Four students work in pairs on homework assignment.
- Only the following pairs meet: A and B; B and C; C and D; D and A—Figure (a).

 Students may have figured out professor's error from textbook. May transmit information to study partners.

Basic Definitions D-Separation Markov Networks

Misconception Example

- For each X ∈ {A, B, C, D}, x¹/x⁰ represent presence/absence of misconception.
- Need to model: $(A \perp C | B, D), (B \perp D | A, C).$
- Cannot represent with Bayesian network—Figures (b), (c).
- Can be modeled as a Markov network.

Graphs Bayes Nets Basic Definitions D-Separation Markov Networks Coming up later...

• Bayes filters: Kalman filter, Particle filter.

• Localization and Mapping (SLAM).

• Decision making: MDPs (RL) and POMDPs.

• Please be prepared!