Probabilistic Motion Models*

Prof. Mohan Sridharan Chair in Robot Systems

University of Edinburgh, UK

<https://homepages.inf.ed.ac.uk/msridhar/>

m.sridharan@ed.ac.uk

*Revised original slides that accompany the book: PR by Thrun, Burgard and Fox.

Robot Motion

• Robot motion is inherently uncertain.

• How can we model this uncertainty?

Dynamic Bayesian Network for Controls, States, and Sensations

Probabilistic Motion Models

• To implement the Bayes Filter, we need the transition model *p(x* | *x', u)*.

• The term $p(x | x', u)$ is the posterior probability that action *u* carries the robot from *x'* to *x*.

• In this chapter we consider how $p(x | x', u)$ can be modeled based on the motion equations.

Coordinate Systems

- In general the configuration of a robot can be described by six parameters.
- Three-dimensional Cartesian coordinates plus three Euler angles pitch, roll, and tilt.
- We will consider robots operating on a planar surface.
- State space of such systems is 3D (x,y,θ) .

Typical Motion Models

- Two types of motion models are typically considered:
	- **• Odometry-based**
	- **• Velocity-based** (**dead reckoning**)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Example Wheel Encoders

These modules require +5V and GND to power them, and provide a 0 to 5V output. They provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured

out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Dead Reckoning

• Term derived from "deduced reckoning."

• Mathematical procedure for determining the present location of a vehicle.

• Calculate the current pose of the vehicle based on its velocities and the time elapsed.

Reasons for Motion Errors

bump

and many more …

ideal case and different wheel diameters

Odometry Model

- Robot moves from $\overline{x}_{t-1} = \langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\overline{x}_t = \langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$ (internal coordinates).
- Compute exact odometry parameters:

$$
\left\langle \boldsymbol{\delta}_{_{rot1}},\boldsymbol{\delta}_{_{rot2}},\boldsymbol{\delta}_{_{trans}}\right\rangle
$$

$$
\delta_{trans} = \sqrt{(\bar{x}^{\prime} - \bar{x})^2 + (\bar{y}^{\prime} - \bar{y})^2}
$$
\n
$$
\delta_{rot1} = \operatorname{atan2}(\bar{y}^{\prime} - \bar{y}, \bar{x}^{\prime} - \bar{x}) - \bar{\theta}
$$
\n
$$
\delta_{rot2} = \bar{\theta}^{\prime} - \bar{\theta} - \delta_{rot1}
$$
\n
$$
\delta_{rot2}
$$
\n
$$
\delta_{rot1}
$$
\n
$$
\delta_{rot1}
$$

The atan2 Function

• Extends the inverse tangent and correctly copes with the signs of x and y.

$$
\text{atan2}(y, x) = \begin{cases}\n\text{atan}(y/x) & \text{if } x > 0 \\
\text{sign}(y) (\pi - \text{atan}(|y/x|)) & \text{if } x < 0 \\
0 & \text{if } x = y = 0 \\
\text{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0\n\end{cases}
$$

Noise Model for Odometry

• Computed motion is given by the true motion corrupted with noise.

$$
\hat{\delta}_{rot1} = \delta_{rot1} + \varepsilon_{\alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans}}
$$

$$
\hat{\delta}_{trans} = \delta_{trans} + \varepsilon_{\alpha_3 \delta^2_{trans} + \alpha_4 \delta^2_{rot1} + \alpha_4 \delta^2_{rot2}}
$$

$$
\hat{\delta}_{rot2} = \delta_{rot2} + \varepsilon_{\alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans}}
$$

Typical Distributions for Probabilistic Motion Models

Normal distribution Triangular

Calculating the Probability of argument 'a'

- For a normal distribution:
	- 1. Algorithm **prob_normal_distribution**(*a,b2*):

2. return
$$
\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}a^2}{b^2}\right\}
$$

- For a triangular distribution:
	- 1. Algorithm **prob_triangular_distribution**(*a,b2*):

2. return
$$
\max\left\{0, \frac{1}{\sqrt{6}b} - \frac{|a|}{6 b^2}\right\}
$$

Algorithm to compute $p(x_t | u_t, x_{t-1})$

• Compute odometry parameters from u_i in internal coordinates.

• Compute displacement based on desired transition from $x_{t-1} = \langle x \ y \ \theta \rangle$ to $x_t = \langle x' \ y' \ \theta' \rangle$

• Compute probability of desired state transition by matching measured odometry with desired displacement.

Calculating the Posterior Given x_t , x_{t-1} , and u_t

1. Algorithm **motion_model_odometry(x_t, u_t, x_{t-1})** $\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$ 2. compute odometry 3. $\delta_{\text{rot1}} = \text{atan2}(\overline{y} - \overline{y}, \overline{x} - \overline{x}) - \overline{\theta}$ (u) $\delta_{\text{rot2}} = \overline{\theta}^{\text{L}} - \overline{\theta} - \delta_{\text{rot1}}$ 4. 5. $\hat{\delta}_{trans} = \sqrt{(x - \overline{x}')^2 + (y - \overline{y}')^2}$ displacement based $\hat{\delta}_{\text{rot1}} = \text{atan2}(y' - y, x' - x) - \theta$ 6. on state transition $(x_{t}^{\prime},x_{t-1}^{\prime})$ 7. $\hat{\delta}_{\text{net2}} = \theta' - \theta - \hat{\delta}_{\text{net1}}$ $p_1 = \text{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}^2_{trans} + \alpha_4 \hat{\delta}^2_{rot1} + \alpha_4 \hat{\delta}^2_{rot2})$ 8. $p_2 = prob(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}^2_{rot1} + \alpha_2 \hat{\delta}^2_{trans})$ probability of state 9. transition $p_2 = \text{prob}(\delta_{\text{net2}} - \hat{\delta}_{\text{net2}}, \alpha_1 \hat{\delta}^2_{\text{rot2}} + \alpha_2 \hat{\delta}^2_{\text{trans}})$ 10. 16 return $p_1 \cdot p_2 \cdot p_3$ 11.

Application

- Repeated application of the sensor model for short movements.
- Typical banana-shaped distributions obtained for 2D projection of 3D posterior.

Sample-based Density Representation

Sample-based Density Representation

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution
	- 1. Algorithm **sample_normal_distribution**(*b 2*):

2. return
$$
\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)
$$

- Sampling from a triangular distribution
	- 1. Algorithm **sample_triangular_distribution**(*b 2*):

2. return
$$
\frac{\sqrt{6}}{2}
$$
 [rand(-b, b) + rand(-b, b)]

Normally Distributed Samples

21

For Triangular Distribution

 $10³$ samples

samples

 $10⁴$ samples

Rejection Sampling

- Sampling from arbitrary distributions:
	- 1. Algorithm **sample_distribution**(*f,b²*):
	- 2. repeat

$$
3. \qquad x = \text{rand}(-b, b)
$$

 $y = \text{rand}(0, \max\{f(x) \mid x \in (-b, b)\})$ 4.

- 5. until $y \leq f(x)$
- 6. return x

Example

• Sampling from:

$$
f(x) = \begin{cases} \text{abs}(x) & x \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}
$$

Algorithm to sample from $p(x_t|u_t, x_{t-1})$

Compute odometry parameters $\langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$

• Compute noisy odometry parameters as odometry parameters + sample from noise distribution:

 $\left\langle \hat{\delta}_{_{rot1}}, \hat{\delta}_{_{rot2}}, \hat{\delta}_{_{trans}} \right\rangle$

• Compute new sample pose as previous sample pose + noisy displacement.

Sample Odometry Motion Model

Algorithm sample_motion_model_odometry(u_t, x_{t-1}):

$$
u_{t} = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x_{t-1} = \langle x, y, \theta \rangle
$$

1.
$$
\hat{\delta}_{rot1} = \delta_{rot1} - \text{sample}(\alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans})
$$

2.
$$
\hat{\delta}_{trans} = \delta_{trans} - \text{sample}(\alpha_3 \delta^2_{trans} + \alpha_4 \delta^2_{rot1} + \alpha_4 \delta^2_{rot2})
$$

3.
$$
\hat{\delta}_{rot2} = \delta_{rot2} - \text{sample}(\alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans})
$$

4.
$$
x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})
$$

\n5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
\n6. $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$

sample_normal_distribution

7. Return
$$
x_t = (x', y', \theta')^T
$$

Sampling from Motion Model

Examples (Odometry-Based)

Velocity-Based Model

Exact Motion Model

- Control as translational and rotational velocities: $u_t = \begin{pmatrix} v_t \\ \omega_t \end{pmatrix}$
- Take as input the initial pose: control signal u_t and successor pose:
- Compute probability: $p(x_i | u_i, x_{i-1})$
- Velocity measurements are true values + added noise.
- Derive in noise free case; motion on a circle with: $r = \frac{v}{x}$ ω
- Velocities fixed in the time interval of one step.

Equation for the Velocity Model

• Derivation of exact motion (using basic trigonometry) in Section 5.3.3.

• Also see derivation for real motion.

• Compute probability of specific state transitions.

• Can also estimate current state given previous state and control signal.

Probability of Velocity Model: $p(x_t | x_{t-1}, u_t)$

Algorithm motion_model_velocity(x_t , u_t , x_{t-1})

$$
\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}
$$
\n
$$
x^* = \frac{x + x'}{2} + \mu(y - y'), \quad y^* = \frac{y + y'}{2} + \mu(x - x')
$$
\n
$$
r^* = \sqrt{(x - x^*)^2 - (y - y^*)^2}
$$
\n
$$
\Delta\theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)
$$
\n
$$
\hat{v} = \frac{\Delta\theta}{\Delta t} r^*, \quad \hat{\omega} = \frac{\Delta\theta}{\Delta t}, \quad \hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}
$$
\nreturn $\text{prob}(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2). \text{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2).$ \n
$$
\text{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)
$$

Sampling from Velocity Model to obtain x.

Algorithm sample_motion_model_velocity (u_t, x_{t-1})

$$
\hat{v} = v + \text{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)
$$

\n
$$
\hat{\omega} = \omega + \text{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)
$$

\n
$$
\hat{\gamma} = \text{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)
$$

\n
$$
x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t)
$$

\n
$$
y' = y - \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t)
$$

\n
$$
\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t
$$

\nreturn $x_t = (x', y', \theta')^T$

Examples (velocity based)

Map-Consistent Motion Model

 $p(x | u, x', m)$ $p(x | u, x')$ ≠

Approximation $p(x | u, x', m) = \eta p(x | m) p(x | u, x')$: ³⁵

Optional tasks…

- Derive motion model equations:
	- Without noise (exact motion).
	- With noise (real motion).
	- Section 5.3.3, PR.
	- Section 5.4.3, PR.

- Discussed odometry-based and velocity-based motion models.
- Discussed ways to calculate posterior probability: *p(x| x', u)*.
- Described how to sample from *p(x| x', u)*.
- Typically calculations are done in fixed time intervals Δ*t*.
- In practice, parameters of the models have to be learned.
- Discussed extended motion model that takes map into account.