Probabilistic Motion Models*

Prof. Mohan Sridharan Chair in Robot Systems

University of Edinburgh, UK https://homepages.inf.ed.ac.uk/msridhar/

<u>m.sridharan@ed.ac.uk</u>

*Revised original slides that accompany the book: PR by Thrun, Burgard and Fox.

Robot Motion

Robot motion is inherently uncertain.

• How can we model this uncertainty?

Dynamic Bayesian Network for Controls, States, and Sensations

Probabilistic Motion Models

• To implement the Bayes Filter, we need the transition model $p(x \mid x', u)$.

• The term $p(x \mid x', u)$ is the posterior probability that action u carries the robot from x' to x.

 In this chapter we consider how p(x | x', u) can be modeled based on the motion equations.

Coordinate Systems

- In general the configuration of a robot can be described by six parameters.
- Three-dimensional Cartesian coordinates plus three Euler angles pitch, roll, and tilt.
- We will consider robots operating on a planar surface.
- State space of such systems is 3D (x,y,θ) .

Typical Motion Models

- Two types of motion models are typically considered:
 - Odometry-based
 - Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Example Wheel Encoders

These modules require +5V and GND to power them, and provide a 0 to 5V output. They provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Dead Reckoning

Term derived from "deduced reckoning."

• Mathematical procedure for determining the present location of a vehicle.

• Calculate the current pose of the vehicle based on its velocities and the time elapsed.

Reasons for Motion Errors

ideal case

bump

and many more ...

different wheel diameters

Odometry Model

- Robot moves from $\overline{x}_{t-1} = \langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\overline{x}_t = \langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$ (internal coordinates).
- Compute exact odometry parameters:

$$\left<\delta_{\textit{rot1}},\delta_{\textit{rot2}},\delta_{\textit{trans}}\right>$$

$$\begin{split} \delta_{trans} &= \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2} \\ \delta_{rot1} &= \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta} \\ \delta_{rot2} &= \overline{\theta}' - \overline{\theta} - \delta_{rot1} \\ & \delta_{rot2} \\ & \delta_{rot2} \\ \hline & \delta_{rot2} \\ \end{split}$$

The atan2 Function

• Extends the inverse tangent and correctly copes with the signs of x and y.

$$\operatorname{atan}(y,x) = \begin{cases} \operatorname{atan}(y/x) & \text{if } x > 0\\ \operatorname{sign}(y) (\pi - \operatorname{atan}(|y/x|)) & \text{if } x < 0\\ 0 & \text{if } x = y = 0\\ \operatorname{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0 \end{cases}$$

Noise Model for Odometry

Computed motion is given by the true motion corrupted with noise.

$$\hat{\delta}_{rot1} = \delta_{rot1} + \varepsilon_{\alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans}}$$
$$\hat{\delta}_{trans} = \delta_{trans} + \varepsilon_{\alpha_3 \delta^2_{trans} + \alpha_4 \delta^2_{rot1} + \alpha_4 \delta^2_{rot2}}$$
$$\hat{\delta}_{rot2} = \delta_{rot2} + \varepsilon_{\alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans}}$$

Typical Distributions for Probabilistic Motion Models

Normal distribution

Calculating the Probability of argument 'a'

- For a normal distribution:
 - 1. Algorithm **prob_normal_distribution(***a*,*b*²**)**:

2. return
$$\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$$

- For a triangular distribution:
 - 1. Algorithm **prob_triangular_distribution**(*a*,*b*²):

2. return max
$$\left\{0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2}\right\}$$

Algorithm to compute $p(x_t|u_t, x_{t-1})$

Compute odometry parameters from u_t in internal coordinates.

• Compute displacement based on desired transition from $x_{t-1} = \langle x \ y \ \theta \rangle$ to $x_t = \langle x' \ y' \ \theta' \rangle$

 Compute probability of desired state transition by matching measured odometry with desired displacement.

Calculating the Posterior Given x_{t} , x_{t-1} , and u_{t}

Algorithm motion_model_odometry(x_t, u_t, x_{t-1}) 1. $\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$ 2. compute odometry 3. $\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$ (u) $\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$ 4. 5. $\hat{\delta}_{trans} = \sqrt{(x-x')^2 + (y-y')^2}$ displacement based $\hat{\delta}_{rot} = \operatorname{atan2}(y'-y, x'-x) - \theta$ 6. on state transition (X_{+}, X_{+-1}) $\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$ 7. $p_1 = \operatorname{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}^2_{trans} + \alpha_4 \hat{\delta}^2_{rot1} + \alpha_4 \hat{\delta}^2_{rot2})$ 8. $p_2 = \text{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}^2_{rot1} + \alpha_2 \hat{\delta}^2_{trans})$ probability of state 9. transition $p_2 = \operatorname{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$ 10. 11. return $p_1 p_2 p_3$

Application

- Repeated application of the sensor model for short movements.
- Typical banana-shaped distributions obtained for 2D projection of 3D posterior.

Sample-based Density Representation

Sample-based Density Representation

How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution
 - 1. Algorithm **sample_normal_distribution(***b*²**)**:

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

- Sampling from a triangular distribution
 - 1. Algorithm **sample_triangular_distribution(***b*²**)**:

2. return
$$\frac{\sqrt{6}}{2}$$
 [rand $(-b,b)$ + rand $(-b,b)$]

Normally Distributed Samples

For Triangular Distribution

10³ samples

samnles

10⁴ samples

Rejection Sampling

- Sampling from arbitrary distributions:
 - 1. Algorithm **sample_distribution**(*f*,*b*²):
 - 2. repeat

3.
$$x = \operatorname{rand}(-b, b)$$

4. $y = rand(0, max\{f(x) \mid x \in (-b, b)\})$

- 5. until $y \leq f(x)$
- 6. return x

Example

• Sampling from:

$$f(x) = \begin{cases} abs(x) & x \in [-1; 1] \\ 0 & otherwise \end{cases}$$

Algorithm to sample from p(x_t|u_t,x_{t-1})

• Compute odometry parameters $\langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$

 Compute noisy odometry parameters as odometry parameters + sample from noise distribution:

 $\left<\hat{\delta}_{rot1},\hat{\delta}_{rot2},\hat{\delta}_{trans}\right>$

 Compute new sample pose as previous sample pose + noisy displacement.

Sample Odometry Motion Model

Algorithm **sample_motion_model_odometry**(u_t, x_{t-1}):

$$u_{t} = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x_{t-1} = \langle x, y, \theta \rangle$$

1.
$$\hat{\delta}_{rot1} = \delta_{rot1} - \text{sample}(\alpha_1 \, \delta^2_{rot1} + \alpha_2 \, \delta^2_{trans})$$

2. $\hat{\delta}_{trans} = \delta_{trans} - \text{sample}(\alpha_3 \, \delta^2_{trans} + \alpha_4 \, \delta^2_{rot1} + \alpha_4 \, \delta^2_{rot2})$

3.
$$\hat{\delta}_{rot2} = \delta_{rot2} - \text{sample}(\alpha_1 \delta_{rot2}^2 + \alpha_2 \delta_{trans}^2)$$

4.
$$x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$$

5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
6. $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$

sample_normal_distribution

7. **Return**
$$x_t = \langle x', y', \theta' \rangle^T$$

Sampling from Motion Model

Examples (Odometry-Based)

Velocity-Based Model

Exact Motion Model

- Control as translational and rotational velocities: $u_t = \begin{pmatrix} v_t \\ \omega_t \end{pmatrix}$
- Take as input the initial pose: $x_{t-1} = \langle x \ y \ \theta \rangle$ control signal u_t and successor pose: $x_t = \langle x' \ y' \ \theta' \rangle$
- Compute probability: $p(x_t | u_t, x_{t-1})$
- Velocity measurements are true values + added noise.
- Derive in noise free case; motion on a circle with: $r = \frac{v}{c}$
- Velocities fixed in the time interval of one step.

Equation for the Velocity Model

 Derivation of exact motion (using basic trigonometry) in Section 5.3.3.

• Also see derivation for real motion.

Compute probability of specific state transitions.

 Can also estimate current state given previous state and control signal.

Probability of Velocity Model: p(x_t|x_{t-1}, u_t)

Algorithm motion_model_velocity(x_t, u_t, x_{t-1})

$$\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}$$

$$x^* = \frac{x + x'}{2} + \mu (y - y'), \quad y^* = \frac{y + y'}{2} + \mu (x - x')$$

$$r^* = \sqrt{(x - x^*)^2 - (y - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

$$\hat{\upsilon} = \frac{\Delta \theta}{\Delta t} r^*, \quad \hat{\omega} = \frac{\Delta \theta}{\Delta t}, \quad \hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$$
return prob $(\upsilon - \hat{\upsilon}, \alpha_1 \upsilon^2 + \alpha_2 \omega^2)$.prob $(\omega - \hat{\omega}, \alpha_3 \upsilon^2 + \alpha_4 \omega^2)$.
prob $(\hat{\gamma}, \alpha_5 \upsilon^2 + \alpha_6 \omega^2)$

Sampling from Velocity Model to obtain x_t

Algorithm sample_motion_model_velocity(u_t, x_{t-1})

$$\hat{\upsilon} = \upsilon + \mathbf{sample}(\alpha_1 \upsilon^2 + \alpha_2 \omega^2)$$

$$\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 \upsilon^2 + \alpha_4 \omega^2)$$

$$\hat{\gamma} = \mathbf{sample}(\alpha_5 \upsilon^2 + \alpha_6 \omega^2)$$

$$x' = x - \frac{\hat{\upsilon}}{\hat{\omega}} \sin \theta + \frac{\hat{\upsilon}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t)$$

$$y' = y - \frac{\hat{\upsilon}}{\hat{\omega}} \cos \theta - \frac{\hat{\upsilon}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t)$$

$$\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t$$
return $x_t = (x', y', \theta')^T$

Examples (velocity based)

Map-Consistent Motion Model

 $p(x | u, x') \neq p(x | u, x', m)$

Approximation $p(x | u, x', m) = \eta p(x | m) p(x | u, x')$

Optional tasks...

- Derive motion model equations:
 - Without noise (exact motion).
 - With noise (real motion).
 - Section 5.3.3, PR.
 - Section 5.4.3, PR.

Summary

- Discussed odometry-based and velocity-based motion models.
- Discussed ways to calculate posterior probability: p(x | x', u).
- Described how to sample from p(x|x', u).
- Typically calculations are done in fixed time intervals Δt .
- In practice, parameters of the models have to be learned.
- Discussed extended motion model that takes map into account.