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Robot Motion

® Robot motion is inherently uncertain.

® How can we model this uncertainty?
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Dynamic Bayesian Network for
Controls, States, and Sensations




Probabilistic Motion Models

e To implement the Bayes Filter, we need the
transition model p(x | x’, u).

® The term p(x|x’, u) is the posterior probability
that action u carries the robot from x’ to x.

® In this chapter we consider how p(x|x’, u) can be
modeled based on the motion equations.



Coordinate Systems

® In general the configuration of a robot can be described
by six parameters.

® Three-dimensional Cartesian coordinates plus three Euler
angles pitch, roll, and tilt.

e We will consider robots operating on a planar surface.

e State space of such systems is 3D (X,y,90).



Typical Motion Models

e Two types of motion models are typically considered:

e Odometry-based
e Velocity-based (dead reckoning)

e Odometry-based models are used when systems are
equipped with wheel encoders.

® \elocity-based models have to be applied when no wheel
encoders are given.

® They calculate the new pose based on the velocities and the
time elapsed.



Example Wheel Encoders
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Dead Reckoning

e Term derived from “deduced reckoning.”

e Mathematical procedure for determining the present
location of a vehicle.

e (Calculate the current pose of the vehicle based on its
velocities and the time elapsed.



Reasons for Motion Errors
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Odometry Model

® Robot moves from x,_

coordinates).

e Compute exact odometry parameters: <5
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The atan2 Function

e Extends the inverse tangent and correctly copes with the

signs of x and .

atan2(y,z) = ¢

(atan(y/x)

sign(y) (w —atan(ly/z[))
0
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Noise Model for Odometry

e Computed motion is given by the true motion
corrupted with noise.
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Typical Distributions for
Probabilistic Motion Models

Normal distribution Triangular
distribution
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Calculating the Probability of
argument ‘a’

® For a normal distribution:

1. Algorithm prob_normal_distribution(q5°):

1 1a?
2. return o—3 P72

e For a triangular distribution:

1. Algorithm prob_triangular_distribution(q,5?):

1 al
2. return max{o, J6b 6 bz}
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Algorithm to compute p(x.|u,, x,_,)

¢ Compute odometry parameters from u, in internal
coordinates.

e Compute displacement based on desired transition from
X, =<x Y 9> to x, =<x' ' 9'>

e Compute probability of desired state transition by
matching measured odometry with desired displacement.
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Calculating the Posterior
Given x,, X, ,, and u,

1. Algorithm motion model_odometry(xt, u, X.,)
2' trans \/( —X) +( t d t
v ¥y — > compute oaometry
3- 6r0t1 = atanz(y y > ) 9 (U)
4. 6r0t2 = 9 '_9 _5r0t1
3 _ o 2 )2
5. Atrans —\/(X X) (y y) > displacement based
6. 0,y =atan2(y'-y,x'-x)-0 on state transition
7' 8r0t2_9' 9 5rot1 (Xt’Xt-l)
8. _prOb(6trans 6trans> 5 trans T O 6,\27”01‘1 +0 gzrotZ)
9. , =prob(o, ., — mﬂ,a 5o +00 52,,«mns <\probability of state
transition
10. prOb(6r0t2 6r0t27a 6 rot2 T O 5 trans)

1. teturn p.p,p; 16



Application

® Repeated application of the sensor model for short
movements.

e Typical banana-shaped distributions obtained for 2D
projection of 3D posterior.

pxu,x, ;)

\\
x’ Si

17



Sample-based Density Representation
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Sample-based Density Representation
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How to Sample from Normal
or Triangular Distributions?

e Sampling from a normal distribution

1. Algorithm sample_normal_distribution(5?):

;] 12
2. return 2. Z rand(—b,b)

e Sampling from a triangular distribution

1. Algorithm sample_triangular_distribution(#?):

§)
7 return g [rand(—b,b) 4+ rand(—b, b)]
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Normally Distributed Samples
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For Triangular Distribution
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Rejection Sampling

e Sampling from arbitrary distributions:

Algorithm sample_distribution(f?°):

repeat

rand(—b, b)
y = rand(0,max{f(z) |z € (=b,b)})

until y < f(x)
return «

X

AN e
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Example

e Sampling from:
f(x) = {

abs(x) z € [-1;1]
O otherwise

-5 -4 -3
1.89550, 0,00400370

=2 =1 0 1 2 3
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Algorithm to sample from p(x |u.,x. _,)

e Compute odometry parameters <5,,0t1,5mt2,5tmns>

e Compute noisy odometry parameters as odometry
parameters + sample from noise distribution:

(8,18 2581

rotl® ~rot2 2 ™~ trans

e Compute new sample pose as previous sample pose +
noisy displacement.
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Sample Odometry Motion Model

Algorithm sample_motion_model_odometry(u, X, ,):
u, —<5 0,750 >,xt1 <x y,9>

rotl?® ~rot2 ™~ trans

2 2
& ot = O o1 —SAMPIELRt; O ot + 0y O rrans)
S 2 2
2. Opuns = Oprams —SAMPIE(ANG “trans + 0y O “rort + @y O " ror2)
2
3. 6 ,=6, ,—sample(a ay O trans)
4. x'=x+ 5mms cos(0 + SMI)

5  Y=y+ 5, sin(@+6, ) sample_normal_distribution

6. 0'=0+5 +6

rotl rot2

7. Return Xt=<x',y',9'>T
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Sampling from Motion Model

10 meters
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Examples (Odometry-Based)
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Velocity-Based Model
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Exact Motion Model

e Control as translational and rotational velocities: u, :( t j
(Dl‘

e Take as input the initial pose: x,_, :<x y 9>
control signal ¥, and successor pose: X, =<x' ) 9'>

e Compute probability: p(x, |u,,x, ;)
® \elocity measurements are true values + added noise.

.
® Derive in noise free case; motion on a circle with: V=g

® \/elocities fixed in the time interval of one step.
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Equation for the Velocity Model

® Derivation of exact motion (using basic trigonometry) in
Section 5.3.3.

® Also see derivation for real motion.
e Compute probability of specific state transitions.

® (Can also estimate current state given previous state and
control signal.
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Probability of Velocity Model: p(x.|x,_,, u,)

Algorithm motion_model velocity(x,,u,,x, ;)

1 (x—x'")cosO +(y—')sinb

B (y-y) cosB - (x - x')sin®
5 x+x s Y+ ,
X 5 +u(y—y), ¥y = 5 + p(x—x')

r=x-x) - (- y)’
AG =atan2(y'—y", x'—x )—atan2(y -y ,x—x')
~ A0 L A6 0'-9 .

L= O = y=———

Ar ’ At ’ At

return prob(v -0, av’ +a,m”).prob(® —d, a v’ +a,n”).

prob(7, av’ +a.w’)
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Sampling from Velocity Model
to obtain x,

Algorithm sample_motion_model_velocity(u,, x,_,)
O =v +sample(o,v’ +o,07)
® = o +sample(c,v’ +o,0°)

y =sample(a.v” +a,m”)

N N

U . U . N
x'=x-—sin 0 +—sin(0 + wAr)
0 0
, ¥ O .
V'= y-—cosO ——cos(0 + vAf)
0 0)

0'=0 + oAt + yAt
return x, =(x',1',0')
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Examples (velocity based)
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Map-Consistent Motion Model

~+— (¥)

\ S

O i

p(x|u,x'") + p(x|u,x',m)

Approximation p(x|u,x',m)=n p(x|m) p(x|u,x")
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Optional tasks...

e Derive motion model equations:

e Without noise (exact motion).

e With noise (real motion).
e Section 5.3.3, PR.

e Section 5.4.3, PR.
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Summary

e Discussed odometry-based and velocity-based motion models.
e Discussed ways to calculate posterior probability: p@x| x’, u).

e Described how to sample from p(x| x’, u).

o Typically calculations are done in fixed time intervals At.

e In practice, parameters of the models have to be learned.

e Discussed extended motion model that takes map into account.
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