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Sensors for Mobile Robots
• Contact sensors: 

• Bumpers

• Internal sensors:
• Accelerometers (spring-mounted masses)
• Gyroscopes (spinning mass, laser light)
• Compasses, inclinometers (earth magnetic field, gravity)

• Proximity sensors:
• Sonar (time of flight)
• Radar (phase and frequency)
• Laser range-finders (triangulation, tof, phase)
• Infrared (intensity)

• Visual sensors: 
• Cameras

• Satellite-based sensors: 
• GPS



3

Proximity Sensors

• The central task is to determine P(z|x), i.e., the probability of 
a measurement z given that the robot is at position x.

• Question: Where do the probabilities come from?

• Approach: Let us try to explain a measurement.
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Beam-based Sensor Model
• Scan z consists of K measurements.

• Individual measurements are independent given the robot 
position.
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Beam-based Sensor Model
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Typical Measurement Errors of 
Range Measurements

1. Beams reflected by 
obstacles

2. Beams reflected by 
persons / caused 
by crosstalk

3. Random 
measurements

4. Maximum range 
measurements
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Proximity Measurement

• Measurement can be caused by:
• a known obstacle.
• cross-talk.
• an unexpected obstacle (people, furniture, …).
• missing all obstacles (total reflection, glass, …).

• Noise is due to uncertainty:
• in measuring distance to known obstacle.
• in position of known obstacles.
• in position of additional obstacles.
• whether obstacle is missed.



8

Beam-based Proximity Model
Measurement noise
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Beam-based Proximity Model
Random measurement Max range
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Resulting Mixture Density

How can we determine the model parameters?

See Table 6.2.
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Raw Sensor Data
Measured distances for expected distance of 300 cm. 

Sonar Laser
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Approximation

• Maximize log likelihood of the data:

• Search space of n-1 parameters.
• Hill climbing
• Gradient descent
• Genetic algorithms
• …

• Deterministically compute the n-th parameter to satisfy 
normalization constraint.
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Approximation Results

Sonar

Laser

300cm 400cm
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Example

z P(z|x,m)
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Summary Beam-based Model
• Assumes independence between beams.
• Models physical causes for measurements.

• Mixture of densities for these causes.
• Assumes independence between causes. Problem?

• Implementation:
– Learn parameters based on real data. Different models for different 

angles at which the sensor beam hits the obstacle.
– Expected distances by ray-tracing; distances precomputed.
– Mathematical derivation: Section 6.3.3, PR.

• Limitations:
– Lack of smoothness; multiple obstacles (clutter) in the beam region.
– Incorrect belief of state, local minima in hill climbing approaches.
– Computational expense of ray tracing; precomputation increases 

storage requirements.
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Scan-based Model

• Beam-based model is:
• not smooth for small obstacles and at edges.
• not very efficient.

• Idea: Instead of following along the beam, just check the 
end point.

• Likelihood fields for range finders (Section 6.4, PR).
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Scan-based Model
• Probability of a range finder scan given the location and 

the map                is based on:
• Measurement noise: Gaussian distribution with mean at distance to 

closest obstacle.
• Unexplained measurements: uniform distribution for random 

measurements.
• Failures: a point mass distribution for max range measurements.

• Desired probability integrates three distributions 
assuming independence between the components.

• Likelihood field: darker a location, less likely it is to 
contain an obstacle.

• See algorithm in Table 6.3 and figures in Section 6.4.
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Example

P(z|x,m)

Map m

Likelihood field
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San Jose Tech Museum

Occupancy grid map Likelihood field



20

Scan Matching
• Extract likelihood field from scan and use it to match 

different scans.
• Correlation-based measurement models (Section 6.5).
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Scan Matching

• Extract likelihood field from first scan and use it 
to match second scan.

• Can formulate scan matching as the task of 
matching or comparing two histograms.

• Many established ways to accomplish this 
comparison.
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Properties of Scan-based Model

• Highly efficient, uses 2D tables only.

• Smooth with regard to small changes in robot position.

• Allows gradient descent, scan matching.

• Ignores physical properties of beams.

• Question: Will it work for ultrasound sensors?
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Additional Models of Proximity Sensors

• Map matching (sonar,laser): generate small, local maps 
from sensor data and match local maps against global 
model.

• Scan matching (laser): map is represented by scan 
endpoints, match scan into this map.

• Features (sonar, laser, vision): Extract features such as 
doors, hallways from sensor data.

• Challenge: data association, especially when landmarks 
or features are not unique.
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Landmarks
• Active beacons (e.g., radio, GPS).

• Passive (e.g., visual, retro-reflective).

• Standard approach is triangulation.

• Sensor provides:
• Distance.
• Bearing.
• Distance and bearing.
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Distance and Bearing



26

Probabilistic Model 
(correspondence known)

1. Algorithm landmark_detection_model(z,x,m):

2.  

3.  

4.  

5. Return  
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Distributions
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Distances Only
No Uncertainty
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Bearings Only With Uncertainty
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Summary of Sensor Models
• Explicitly modeling uncertainty in sensing is key to robustness.

• Good models can typically be found by using the approach:
1. Determine parametric model of noise free measurement.
2. Analyze sources of noise.
3. Add noise to parameters.
4. Learn (and verify) parameters by fitting model to data.
5. Likelihood of measurement is given by “probabilistically comparing” 

the actual with the expected measurement.

• This holds for motion models as well.

• Very important to be aware of the underlying assumptions!


