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• Prediction:

• Correction:

Bayes Filter Reminder
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Properties of Gaussians

 



• We stay in the “Gaussian world” as long as we start with 
Gaussians and perform linear transformations.

Multivariate Gaussians
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Discrete Kalman Filter

Estimates the state x of a discrete-time controlled 
process that is governed by the linear stochastic 
difference equation:

with a measurement: 
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Components of a Kalman Filter

Matrix (nxn) that describes how the state evolves 
from t-1 to t without controls or noise.

Matrix (nxl) that describes how the control ut changes 
the state from t-1 to t.

Matrix (kxn) that describes how to map the state xt to 
an observation zt.

Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance 
Rt and Qt respectively.
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Kalman Filter Updates in 1D
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Kalman Filter Control Updates
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Kalman Filter Measurement Updates
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Kalman Filter Updates
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Linear Gaussian system: Initialize

• Initial belief is normally distributed:
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Kalman Filter Algorithm 
1.  Algorithm Kalman_filter( μt-1, Σt-1, ut, zt):

1.  Prediction:

2.       
3.   

 
4. Correction:
5.       
6.  
7.  
8.  Return μt, Σt      
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The Prediction-Correction Cycle

Prediction
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The Prediction-Correction Cycle

Correction
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The Prediction-Correction Cycle

Correction

Prediction
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Kalman Filter Summary

• Highly efficient: Polynomial in measurement dimensionality k 
and state dimensionality n: 

             O(k2.376 + n2) 

• Optimal for linear Gaussian systems!

• Limiting assumptions:
• Observations are linear functions of state. State transition are linear.
• Unimodal beliefs.

• Most robotics systems are nonlinear and beliefs are 
multimodal!
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Extended Kalman Filter (EKF)
• Most realistic robotic problems involve nonlinear 

functions.

• EKF supports such non-linear functions; relaxes linearity 
assumption.

• However, beliefs are no longer Gaussian ☹
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Linearity Assumption Revisited
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Non-linear Function



Linearization in EKF
• Sequence of steps for linearization in EKF.

• Compute tangent to function g() at mean.

• Consider the tangent as the linearized approximation of g().

• Project p(x) through linear approximation.

• Compute mean and covariance of y. This defines the 
Gaussian approximation of the underlying non-linear 
transformation.

21



22

EKF Linearization (1)
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EKF Linearization (2) 
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EKF Linearization (3)



Why Linearize?
• Remember limiting assumptions of KF:

• Observations are linear functions of state. State transition are linear.
• Unimodal beliefs.

• Assumptions do not hold in practice.

• Relax linearity assumption. However, makes beliefs 
non-Gaussian ☹

• EKF computes Gaussian approximation of true belief through 
linearization of non-linear functions g() and h().

• Achieve linearization through (first-order) Taylor expansion 
(Section 3.3.2, PR).
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• Prediction:

• Correction:

• Derivation of EKF (Section 3.3.4, PR).

EKF Linearization: First Order 
Taylor Series Expansion
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EKF Algorithm 
1. Extended_Kalman_filter( μt-1, Σt-1, ut, zt):

1.  Prediction:

2.       
3.   

4.  Correction:
5.       
6.  
7.  
8.  Return μt, Σt      
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Localization

• Given 
• Map of the environment.
• Sequence of sensor measurements.

• Wanted
• Estimate of the robot’s position.

• Problem classes
• Position tracking.
• Global localization.
• Kidnapped robot problem (recovery).

“Using sensory information to locate the robot 
in its environment is the most fundamental 
problem to providing a mobile robot with 
autonomous capabilities.”                 [Cox ’91]
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Landmark-based Localization
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EKF Summary

• Highly efficient: Polynomial in measurement 
dimensionality k and state dimensionality n: 

             O(k2.376 + n2) 

• Not optimal!

• Can diverge if nonlinearities are large!

• Works surprisingly well even when all assumptions 
are violated!



Unscented Kalman Filter
• Stochastic linearization through unscented transform.

• Extract sigma-points from Gaussian.
• Mean and symmetric points along main axes of covariance.
• N-dim Gaussian => 2N+1 sigma points.

• Two weights for each sigma point, one each to compute 
mean and covariance.

• Encode additional knowledge about underlying distribution.

• Project sigma points through g().
• Compute mean and covariance of projected points.
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Unscented Transform
Sigma points                        Weights 

Pass sigma points through nonlinear function:

Recover mean and covariance:
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Linearization via Unscented 
Transform

EKF UKF
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UKF Sigma-Point Estimate (2)

EKF UKF
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UKF Sigma-Point Estimate (3)

EKF UKF
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Prediction Quality

EKF                               UKF 
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UKF Summary

• Highly efficient: Same complexity as EKF, with a 
constant factor slower in typical practical 
applications 

• Better linearization than EKF: Accurate in first two 
terms of Taylor expansion (EKF only first term)

• Derivative-free: No Jacobians needed ☺

• Still not optimal!



38

Hypothesis
Tracking
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• How to represent belief for multiple hypotheses?

• Each hypothesis is tracked by a Kalman filter.

• Additional problems:

• Data association: Which observation corresponds to which 
hypothesis?

• Hypothesis management: When to add / delete hypotheses?

• Lot of work on target tracking, motion correspondence etc. 

Localization With MHT



Summary
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• Gaussian filters.

• Kalman filter: linearity assumption.

• Robot systems non-linear.

• Works well in practice.

• Extended Kalman filters: linearization.

• Tangent at the mean.

• Unscented Kalman filters: better linearization.

• Sigma control points.

• Information filter: dual of KF, uses canonical 
parameterization (Section 3.5, PR).


