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Sample-based Localization (sonar)



▪ Represent belief by random samples.

▪ Estimation of non-Gaussian, nonlinear processes.

▪ Monte Carlo filter, survival of the fittest, I-condensation, 
bootstrap filter, particle filter.

▪ Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96].

▪ Computer vision: [Isard and Blake 96, 98]. 

▪ Dynamic Bayesian Networks: [Kanazawa et al., 95].

Particle Filters



Algorithm particle_filter(            ):

1.  

2.  For m = 1… M

3.  Sample 

4.  

5.   

6.  For m=1…M

7.   Draw i with probability 

8.         Add      to 

9.  Return  

Particle Filter Algorithm (basic)



Weight samples: w = f / g 

Importance Sampling



Importance Sampling
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Function      : target distribution.
Function      : proposal distribution.
Weights:  
Need:
Converges to desired distribution iteratively.

PF derivation (Section 4.3.3, PR)



Importance Sampling with Resampling:
Landmark Detection Example



Distributions
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Distributions

Wanted: samples distributed according to 
p(x| z1, z2, z3)



This is Easy!
We can draw samples from p(x|zl) by adding 
noise to the detection parameters.



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling

Weighted samples After resampling



Particle Filters



Sensor Information: Importance Sampling



 Robot Motion



Sensor Information: Importance Sampling



Robot Motion



draw xi
t−1 from Bel(xt−1)

draw xi
t from p(xt | x

i
t−1,ut)

Importance factor for xi
t:

Particle Filter Algorithm



Resampling

• Given: Set S of weighted samples.

• Wanted : Random sample, where the 
probability of drawing xi is given by wi.

• Typically done M times with replacement to 
generate new sample set S’.



Resampling
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• Roulette wheel

• Binary search, n log n

• Stochastic universal sampling

• Systematic resampling

• Linear time complexity

• Easy to implement, low variance



1.  Algorithm systematic_resampling(S, M):

2.  
3.  For i= 2...M Generate cdf
4.   
5.                   Initialize threshold

6.  For j=1...M Draw samples …
7.   While (            ) Skip until next threshold reached
8.       
9.                      Insert

10.                                         Increment threshold
11.  Return S’

Resampling Algorithm

Also called stochastic universal sampling
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Initial Distribution
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After Incorporating Ten 
Ultrasound Scans
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After Incorporating 65 
Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization



Under a Light

Measurement z: P(z|x):



Next to a Light

Measurement z: P(z|x):



Elsewhere

Measurement z: P(z|x):



Global Localization Using Vision



Localization for AIBO 
robots
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Limitations

• The approach described so far is able to:
• Track the pose of a mobile robot.
• Globally localize the robot.

• Can amplify sampling variance, i.e., variability from 
original distribution due to random sampling.

• Sampling bias and particle deprivation.

• How can we deal with localization errors, e.g., the 
kidnapped robot problem?
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Approaches

• Randomly insert samples; 
• Robot can be “teleported “ at any point in time ☺

• Insert random samples proportional to the average 
likelihood of the particles: 
• Robot has been teleported with higher probability when the 

likelihood of its observations drops. 
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Summary

• Particle filters instance of recursive Bayesian filtering.

• Represent the posterior by a set of weighted samples.

• In the context of localization, particles are propagated 
according to the motion model.

• Particles are then weighted according to the likelihood of 
the observations.

• During re-sampling, new particles are drawn with 
probability proportional to the weights. 



What Next? 
• SLAM!

• EKF-SLAM and Fast-SLAM.

• Probabilistic sequential decision making.
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