
Negotiating Privacy Constraints in Online Social
Networks∗

Yavuz Mester, Nadin Kökciyan, and Pınar Yolum

Department of Computer Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey
{yavuz.mester, nadin.kokciyan, pinar.yolum}@boun.edu.tr

Abstract. Privacy is a major concern of Web systems. Traditional Web systems
employ static privacy agreements to notify its users of how their information will
be used. Recent social networks allow users to specify some privacy concerns,
thus providing a partially personalized privacy setting. However, still privacy vi-
olations are taking place because of different privacy concerns, based on context,
audience, or content that cannot be enumerated by a user up front. Accordingly,
we propose that privacy should be handled per post and on demand among all that
might be affected. To realize this, we envision a multiagent system where each
user in a social network is represented by an agent. When a user engages in an ac-
tivity that could jeopardize a user’s privacy (e.g., publishing a picture), agents of
the users negotiate on the privacy concerns that will govern the content. We em-
ploy a negotiation protocol and use it to settle differences in privacy expectations.
We develop a novel agent that represents its user’s preferences semantically and
reason on privacy concerns effectively. Execution of our agent on privacy sce-
narios from the literature show that our approach can handle and resolve realistic
privacy violations before they occur.

1 Introduction

Privacy has long been accepted as an important concept in developing and running
software. A typical software publishes its privacy agreement, which a user accepts. A
similar pattern applies to online social networks, with additional settings for customiz-
ing the policy. For example, a user can choose to share content only with her friends,
whereas another user may choose to share content with everyone in the system.

Users’ privacy requirements or expectations are often conflicting. While this is not
a problem in regular software in which transactions are independent from each other,
it creates concerns in social networks where users can manipulate content by tagging
other users, resharing, and so on. Thus, content could become available to a broad au-
dience without the consent of some of the people involved. Consider a user who posts
a picture of herself with one of her friends. The posting, apparently harmless to the
former, may be considered inappropriate by the latter [1]. Facebook, for instance, deals
with such issue by allowing users to report pictures as inappropriate and by informing
a user that the tagged person is unhappy about the content and would prefer to see it
removed. However, the informed user is free to decide what to do about it. This process

∗ This work has been supported by TUBITAK under grant 113E543.



2

of reporting inappropriate content and removing it requires human interaction, takes
time, and often does not prevent the content from being exposed to a large audience
before it is removed [7]. This example illustrates various desirable properties of privacy
protection:

Automation: Privacy protection calls for automated methods. Considering the volume
of social media transactions that are done every hour, it is not plausible for humans to
discuss every content that is related to them in person. Hence, an agent that represents
a user is needed to keep track of its user’s preferences and policies and act on behalf of
them, accordingly.

Fairness: If a particular post is deemed private for a user, one approach is to take it
down from the system completely. This all-or-nothing approach is simple but leaves the
party who wants to keep the post up in a disadvantaged position. Instead, it is best if
the users identify what is wrong with the post (in terms of privacy) and improve those
aspects only. For example, if the text of a picture post is causing a privacy violation, the
text can be removed while keeping the picture.

Concealment of privacy concerns: Privacy preferences may reveal personal informa-
tion that should be kept private from others. That is, a user might say that she does not
like the text of a post, but she does not need to identify why that is the case. Ideally,
a proposed approach to privacy protection should keep users’ privacy concerns private,
without revealing users’ privacy concerns as a whole.

Protection before exposure: Contrary to existing systems, such as Facebook, where a
privacy violation is caught after it happens, the fact that a content is private should be
identified before the content is put up online. Otherwise, there is a risk that the content
reaches unintended audience. Hence, a proposed approach should be in place before the
content is put up rather than after.

Accordingly, this paper proposes an agreement platform for privacy protection that
addresses the above properties. One recent study has shown that many times invading
a friend’s privacy on a social network is accidental and the user actually invading the
privacy is not aware of it. When the user is notified for the situation, many of them
choose to put down a content rather than breaching their friend’s privacy [12]. This
naturally suggests that if the users could have agreed on the content before it went up,
then many privacy leakages could have been avoided to begin with. We exploit this idea
by developing a platform where the agents interact to reach a consensus on a post to
be published. We assume that each user is helped by a software agent to manage her
privacy. The agent is aware of the user’s privacy concerns and expectations but also
knows about the user’s social network, such as her friends. When a user is about to
post a new content, she delegates the task to her agent. The agent reasons on behalf of
the user to decide which other users would be affected by the post and contacts those
users’ agents. The negotiation protocol we develop enables agents to discuss their users’
constraints and agree on a suitable way to post the content such that none of the users’
privacy is violated. We show the applicability of our approach on example scenarios
from the literature.

The rest of this paper is organized as follows: Section 2 develops our negotiation
framework and shows how the agents use it to reach agreements. Section 3 describes



3

our agent architecture with an emphasis on semantic representation and reasoning that
it can do for its user. Section 4 evaluates our approach first by using different scenarios
from the literature and then comparing it to prominent approaches from the literature
based on the defined criteria above. Finally, Section 5 discusses our work in relation to
recent work on negotiation and privacy.

2 Negotiation Framework

We propose a negotiation framework for privacy, PRINEGO, where users are represented
by agents. An agent is responsible for keeping track of its user’s privacy constraints
and managing its user’s privacy dealings with others. Before sharing a post, an agent
decides if a post could violate other users’ privacy (e.g., those involved in a picture).
For this, an agent interacts with other agents to negotiate on a mutually acceptable post.
When an agent receives a post request from a negotiator agent, it evaluates if the content
would be acceptable for its user in terms of the media it contains, post audience, and
so on. If the post request is not acceptable, that agent returns a rejection reason (e.g.,
audience should not contain a certain individual) to help the negotiator agent in revising
its initial request. Once the negotiator agent collects all the rejection reasons from other
agents, it revises its post request accordingly (e.g., removing the mentioned individual
from the audience). A post negotiation terminates when all agents agree on a content or
it reaches the maximum number of iterations set by the negotiator agent.

2.1 A Negotiation Protocol

Agents negotiate by employing a negotiation protocol. Our proposed negotiation pro-
tocol is in principle similar to existing negotiation protocols, which are used in e-
commerce [6]. However, there are two major differences. First, contrary to negotia-
tions in e-commerce, the utility of each offer is difficult to judge. For example, in e-
commerce, a seller could expect a buyer to put a counter-offer with a lower price than
that it actually made in the first place. Here, however it is not easy to compare two of-
fers based on how private they are. Second, partly as a result of this, counter-offers are
not formulated by the other agents but instead the negotiator agent collects the rejection
reasons from other agents to update its initial offer.

There are two important components in our negotiation protocol: a post request and
a response. A post request is essentially a post, which can include media, text, location,
tagged people, audience and so on. Since this post has not been finalized yet (i.e., put
up online), we consider this as being requested. Hence, agents try to negotiate on a post
request. A post request must contain information about: (1) owner of the post request,
(2) a post content (text, medium and so on) to be published, and (3) a target audience. A
response is generated when an agent receives a post request. A response must contain:
(1) owner of the response, (2) a response code (“Y” for accept, “N” for reject), and (3)
a rejection reason, which is optional. We explain rejection reason types in Section 2.3.
We use Example 1 that is inspired from Wishart et al. [14] as our running example.

Example 1 Alice would like to share a party picture with her friends. In this picture,
Bob and Carol appear as well. However, both of them have some privacy concerns. Bob



4

does not want to show party pictures to his family as he thinks that they are embarrass-
ing. Carol does not want Filipo to see this picture because she did not tell him that she
is a bartender.

In Example 1, Alice instructs her agent to share a post by specifying her party
picture where she tags Bob and Carol, and sets the audience to her friends. Alice’s agent
may decide to negotiate the post content with Bob and Carol as they are tagged in the
picture. Then Alice’s agent should initialize a post request (i.e., offer in our negotiation
protocol) and send it to agents of Bob and Carol. These agents should then evaluate
that post request with respect to their respective owner’s privacy concerns, and create a
response. Their responses should make it clear whether Bob and Carol accept or reject
that post request, and ideally specify a reason in case of a rejection.

Algorithm 1 p NEGOTIATE(p, altM, c,m)

Require: p, the post request to be negotiated
Require: altM , the owner’s choice of alternative media
Require: c, current iteration index
Require: m, maximum number of iterations
Return: the final post request resulting from the negotiation
1: if c > m then
2: return p
3: else
4: responses← ∅
5: for all agent ∈ DECIDEAGENTSTONEGOTIATE(p) do
6: response← agent.ASK(p)
7: responses← responses ∪ {response}
8: end for
9: if ∀r ∈ responses, r.responseCode = “Y” then

10: return p
11: else
12: p′ ← REVISE(p, altM, c,m, responses)
13: if p′ 6= NULL then
14: return NEGOTIATE(p′, altM, c+ 1,m)
15: else
16: return NULL
17: end if
18: end if
19: end if

2.2 NEGOTIATE Algorithm

Algorithm 1 presents our algorithm for negotiating privacy constraints. The algorithm
tries to finalize a post request iteratively, while negotiating with other agents. Basically,
at each iteration, the negotiator agent decides which agents to negotiate with, collects
their responses after that they evaluate the corresponding post request, and revises the



5

initial post request if any rejection response is received and the negotiation continues
with the revised post request. Whenever all agents agree, our algorithm returns a post
request to be shared on the social network. If an agreement cannot be reached after a
predefined maximum number of iterations, then the negotiator agent returns the latest
post request without negotiating it further.

Our algorithm takes four parameters as input: (1) the newly created post request (p),
(2) the media selected by the owner as alternatives to the original medium (altM ), (3)
the current iteration index (c), (4) the maximum number of negotiation iterations (m).
When the algorithm is first invoked, p should contain the owner’s original post request.
If the owner specifies any alternative media, altM should contain them. c should be
1, and m can be configured by the owner. Our algorithm returns the final post request
resulting from the negotiation. We use responses to keep the incoming responses of
other agents. If responses contain a rejection, the negotiator agent inspects the reasons
included in responses to revise its initial post request (p′)1. There are three auxiliary
functions used in our algorithm, each of which can be realized differently by agents:

– DECIDEAGENTSTONEGOTIATE takes p and decides which agents to negotiate
with. A privacy-conscious agent may decide to negotiate with every agent men-
tioned or included in the post text and medium components of a post request2,
whereas a more relaxed agent may skip some of them. We provide more details of
DECIDEAGENTSTONEGOTIATE function in Section 3.2.

– ASK is used to ask agents to either accept or reject p. Each agent evaluates p accord-
ing to their owners’ privacy concerns. We explain how our semantic agent evaluates
a post request in Section 3.3.

– REVISE is used to revise a post request with respect to responses variable that
includes rejection reasons. This function may also return NULL at any iteration,
which indicates a disagreement. The details of REVISE function are provided in
Section 3.4.

NEGOTIATE is a recursive algorithm, which starts by checking whether the current
iteration index (c) exceeds the allowed maximum number of iterations (m) (line 1). If
this is the case, then the algorithm returns the current p without further evaluation (line
2). Otherwise, the algorithm negotiates p as follows. responses variable is set to an
empty set (line 4). In order to start the negotiation, the algorithm first computes which
agents to negotiate with (line 5). Then, the algorithm asks each such agent to evaluate
p (line 6), and adds each incoming response to responses (line 7). After that, the algo-
rithm checks whether there is an agreement (line 9). This is simply done by inspecting
the response codes; a response code “Y” means an acceptance. If all agents accept p,
then the algorithm returns p (line 10). Otherwise, the algorithm calls the auxiliary func-
tion REVISE to generate the revised post request p′ (line 12). If p′ is not NULL (line
13), then p′ has to be negotiated. Thus, the algorithm makes a recursive call by pro-
viding p′ as the first argument (line 14), and c is incremented by 1 to specify the next

1 p′ is similar to “counter-offer” in other negotiation protocols with the difference that the nego-
tiator agent makes it.

2 We assume that mentioned or included people information can be inferred from post text and
medium by employing textual and facial recognition algorithms.



6

iteration number (line 14). Otherwise (line 15), the algorithm returns NULL (line 16),
which indicates that no agreement has been reached.

2.3 Rejection Reasons

Agents may reject any post request and optionally provide the underneath reason along
with the response. A rejection reason should specify the field of discomfort, such as
audience, post text, and properties of the medium. Providing a reason for rejection is
important because it gives the negotiator agent the opportunity to revise its request to
respect the other agents’ privacy constraints. Generally, an agent may have multiple rea-
sons to reject a post request. We design our protocol to accept the reasons one by one to
ease the processing. For example, a user may not want to reveal her party pictures to her
colleagues. Whenever her agent is asked about a post request including such a medium
and target audience, the agent should choose reasons related to medium or audience,
but not both. This is a design decision to simplify the revision process. The post request
is refined iteratively based on the rejection reasons collected in each iteration. Getting
one reason from each agent may already result in a dramatic change in the issued post
request (e.g. the medium can be altered and the new one may be tagged with a different
set of people, such that different agents has to be consulted in the next iteration). The
other rejection reasons may not be valid after the change, thus no need to be evaluated
up front. If they are still valid, rejections may rise again in the next iterations and be
evaluated. By adopting such a restriction, the privacy rules themselves have some de-
gree of privacy as well. Only an implication of a privacy concern is exposed at a time.
We provide more details about reason selection in Section 3.3.

3 A Semantic PRINEGO Agent

Our negotiation framework, PRINEGO, is open in the sense that it enables agents that are
built by different vendors to operate easily. PRINEGO mainly requires agents to imple-
ment the negotiation protocol given in Algorithm 1 and conform with an agent skeleton.
The agent skeleton is meant to describe the minimal set of functionalities that should be
handled by an agent in order to qualify. The agents should be able to have the following
functionalities: (1) Each agent should represent knowledge about the social network,
in terms of relations among users, context of posts, user preferences, and so on. (2)
Each agent should be able to implement the three methods of Algorithm 1; that is,
DECIDEAGENTSTONEGOTIATE, ASK, and REVISE. Hence, an agent can start a post
negotiation. (3) Each agent should be able to implement the EVALUATE algorithm so
that it can evaluate a post request and decide if it is acceptable. The following sections
explain how these are handled in our semantic PRINEGO agent.

3.1 A Social Network Ontology

We develop PRINEGO ontology to represent the social network as well as the privacy
constraints of users. Each user has her own ontology that keeps information about her
relationships, content and privacy concerns. An agent has access to its user’s ontology
and our negotiation framework uses ontologies to model interactions between agents.



7

Alice

Bob

Carol

David

Filipo

Errol

colleague

friend
friend

friend

friend

cousin

friend

friend

Fig. 1. Relation properties in PRINEGO ontology

The Social Network Domain A social network3 consists of users who interact with
each other by sharing some content. Each user is connected to another user via relations
that are initiated and terminated by users. The social network domain is represented as
an ontology using Web Ontology Language (OWL). In our negotiation framework, each
Agent interacts with other agents by sending post requests. A PostRequest consists
of a post that is intended to be seen by a target Audience, hasAudience is used to relate
these two entities. An audience consists of its agents and we use hasAudienceMember
to specify members of an audience. A PostRequest can contain some textual informa-
tion PostText that may mention people or some Location (e.g., Bar). For this, we
use mentionsPerson and mentionsLocation respectively. Moreover, a post request can
include some Medium (e.g., Picture and Video). hasMedium is a property connect-
ing PostRequest and Medium entities. A medium can give information about people
who are in that medium, or location where that medium was taken. Such information is
described by includesPerson and includesLocation properties respectively. Moreover,
isDisliked is a boolean property that a user can use to dislike a medium.

Relation Properties In a social network, users are connected to each other via various
relationships. Each user labels his social network using a set of relationships. We use
isConnectedTo to describe relations between agents. This property only states that an
agent is connected to another one. The sub-properties of isConnectedTo are defined to
specify relations in a fine-grained way. isColleagueOf , isFriendOf and isPartOfFami-
lyOf are properties connecting agents to each other in the social network of a user. They
are used to specify agents who are colleagues, friends and family respectively. Figure 1
depicts the social network for our motivating and evaluation examples. Here, a node
represents an agent and the edges are the relations between agents. Each edge is labeled
with a relation type. For simplicity, we use friend, cousin and colleague keywords in
the figure. All edges are undirected as the relations between agents are symmetric. For
example, Alice and Carol are friends of each other.

Context Context is an essential concept in understanding privacy. Many times, con-
text is simply interpreted as location. The idea being that your context can be inferred

3 We denote a Concept with text in mono-spaced format, a relationship with italic text, and an
:instance with a colon followed by text in mono-spaced format.



8

from your location; e.g., if you are in a bar, then your context can be summarized as
leisurely. Sometimes, the location is combined with time to approximate the context
better. However, even location and time combined does not suffice to understand con-
text [9]. Contrast a businessman going to a bar at night and the bartender being there
at the same time. Time and location-wise their situation is identical, but most probably
their contexts are different as the first one might be there to relax; the second to work.

This idea of context applies similarly on the content that is shared. A context of a
picture might be radically different for two people who are in the picture. Hence, it is
not enough to associate a context based on location only. Further information about a
particular person needs to be factored in to come up with a context. Our ontology con-
tains various Contexts that can be associated with a post request for a given person.
Hence, each agent infers context information according to the context semantics asso-
ciated with its user. Following the above example, a medium taken in a bar may reveal
EatAndDrink context for the businessman and Work context for the bartender. We use
isInContext to associate context information to a medium.

Protocol Properties Each post request is owned by an agent that sends a post request
to other agents. In a post negotiation, an agent may accept or reject a post request ac-
cording to its user’s privacy concerns. In the case where an agent rejects a post request,
rejectedIn defines which concept (Medium, Audience or Post text) causes the rejec-
tion. The user can provide more detailed information about the rejection reasons by
the use of rejectedBecauseOf and rejectedBecauseOfDate properties. In OWL, there
is a distinction between object and data properties. Object properties connect pairs of
concept instances while data properties connect instances with literals. Hence, rejected-
BecauseOf is used if a post is rejected because of a concept (e.g., Audience) while we
use rejectedBecauseOfDate to refer to a date literal (e.g., 2014-05-01). For example, a
user can reject a post request because of an audience which includes undesired people
or a medium where the user did not like herself. We explain protocol properties in detail
in Section 3.3.

3.2 DECIDEAGENTSTONEGOTIATE Algorithm

In many negotiation problems, an agent already knows with whom to negotiate. How-
ever, in the social network domain, an agent can decide with whom to negotiate. Con-
sider a picture of Alice and Bob taken in Charlie’s office. When Alice’s agent is consid-
ering of putting this up, it might find it useful to negotiate with Bob only but not with
Charlie. A different agent might have found it necessary to also negotiate with Charlie;
even though he is not in the picture himself, his personal information (e.g., workplace)
will be revealed.

The choice to pick agents to negotiate with can also be context-dependent. In certain
contexts, an agent can prefer to be more picky about privacy and attempt to negotiate
with all that are part of a post. For example, if the post contains information that could
reveal medical conditions about certain people, an agent might be more careful in get-
ting permissions from others beforehand. In our case, our agent chooses to negotiate
with everyone that is tagged in a post.



9

3.3 EVALUATE Algorithm

Once an agent receives a post request, it evaluates whether it complies with its user’s
privacy concerns. A post request includes various types of information: media, post text,
target audience, and so on. Essentially, any of these points could be unacceptable for
the agent that receives the request, which provides information about rejected attributes
of the post request in case of a rejection. This can be considered as an explanation for
the negotiator agent who revises its post request as accurately as possible so that it may
be accepted by other agents in the following iterations.

Privacy Rules The privacy rules reflect the privacy concerns of a user. In a privacy
rule, the user declares what type of post requests should be rejected at negotiation time.
A privacy rule may depend on a specific location, context, relationship or any combi-
nation of these. Each agent is aware of the privacy concerns of its user. At negotiation
time, the privacy rules are processed by an agent in order to decide how to respond to
incoming post requests. For this, we augment PRINEGO with the privacy rules by the use
of Semantic Web Rule Language (SWRL) rules for more expressiveness [5]. Descrip-
tion Logic reasoners can reason on ontologies augmented with SWRL rules. Each rule
consists of a Head and a Body and is of the form Body =⇒ Head. Both the body and
head consist of positive predicates. If all the predicates in the body are true, then the
predicates in the head are also true. We use SWRL rules to specify Privacy Rules (P ) in
our negotiation framework. In a privacy rule, concepts and properties that are already
defined in PRINEGO are used as predicates in rules. Moreover, we use protocol proper-
ties in the head of a rule. Here, we consider privacy rules to specify why a particular
post request would be rejected. Any post request that is not rejected according to the
privacy rules is automatically accepted by an agent. An agent can reject a post request
without providing any reason. In this case, rejects is the only predicate observed in the
head of a privacy rule. On the other hand, if an agent would like to give reasons about a
rejection, then rejectedIn property is used to declare whether the rejection is caused by
a medium, a post text or an audience. Furthermore, rejectedBecauseOf is used to spec-
ify more details about the rejection. For example, an audience can be rejected in a post
request because of an undesired person in the audience. Or a medium can be rejected in
a post request because of the location where the medium was taken. Here, we assume
that privacy concerns of a user are already represented as privacy rules in her ontology.

In Example 1, Bob and Carol have privacy constraints that are shown in Table 1.
PB1 is one of Bob’s privacy rules. It states that if a post request consists of a medium in
Party context and has an audience member from Bob’s family then Bob’s agent rejects
the post request because of the audience and this audience member becomes a rejected
member in the corresponding post request. Carol’s privacy rule (PC1

) states that if a
post request consists of a medium in Work context and if Filipo is an audience member
in the audience of the post request then Carol’s agent rejects the post request because
of two reasons. Filipo is an undesired person in the audience hence her agent rejects the
post request because of the audience and Filipo becomes a rejected member in the post
request. The second reason is that Carol does not want to reveal information about her
work, her agent rejects the post request because of the context as the medium discloses
information about Work context.



10

Table 1. Privacy Rules (P ) as SWRL Rules

PA1 :

hasAudience(?postRequest, ?audience), hasAudienceMember(?audience, ?audienceMember),
Leisure(?context), hasMedium(?postRequest, ?medium), isInContext(?medium, ?context),
isColleagueOf (?audienceMember, :alice) =⇒ rejects(:alice, ?postRequest),
rejectedIn(?audience, ?postRequest), rejectedBecauseOf (?audience, ?audienceMember)

PB1 :

hasAudience(?postRequest, ?audience), hasAudienceMember(?audience, ?audienceMember),
Party(?context), hasMedium(?postRequest, ?medium), isInContext(?medium, ?context),
isPartOfFamilyOf (:bob, ?audienceMember) =⇒ rejects(:bob, ?postRequest),
rejectedIn(?audience, ?postRequest), rejectedBecauseOf (?audience, ?audienceMember)

PB2 :
hasMedium(?postRequest, ?medium), isDisliked(?medium, true) =⇒
rejects(:bob, ?postRequest), rejectedIn(?medium, ?postRequest), rejectedBecauseOf (?medium, :bob)

PC1 :

hasAudience(?postRequest, ?audience), hasAudienceMember(?audience, :filipo)
hasMedium(?postRequest, ?medium), Work(?context), isInContext(?medium, ?context) =⇒
rejects(:carol, ?postRequest) rejectedIn(?medium, ?postRequest), rejectedBecauseOf (?medium, ?context),
rejectedIn(?audience, ?postRequest), rejectedBecauseOf (?audience, :filipo)

PC2 :
hasMedium(?postRequest, ?medium), dateTime(?t), equal(?t, “2014-05-01T00:00:00Z”),
hasDateTaken(?medium, ?t) =⇒ rejects(:carol, ?postRequest), rejectedIn(?medium, ?postRequest),
rejectedBecauseOfDate(?medium, ?t)

As shown in PC1 , multiple components of a post request may be marked as rejected
components in the head of a rule; e.g., medium and audience. Moreover, each com-
ponent may be rejected because of one or more reasons. In PC1

, each component is
rejected because of one reason; e.g., context and audience member respectively. When
multiple components of a post request are marked as rejected as the result of ontologi-
cal reasoning, the agent has to decide on the component to share as a rejection reason.
In this work, we consider reasons that would require minimal change in the initial post
request. For this, we adopt a hierarchy between the components as follows: (i) audi-
ence, (ii) post text and (iii) medium. However, this behavior can vary from agent to
agent. When PC1

fires, the post request will be rejected by the reasoner because of the
medium and the audience. Then, regarding our hierarchy, :carol first checks whether
there is any rejection caused by the audience and she finds one. Hence, it rejects the
audience because of :filipo. In another words, :carol will share this reason (and
not the context reason) with the negotiator agent.

3.4 REVISE Algorithm

In case a post request is rejected by one or more agents, the negotiator agent needs to
revise the post request with respect to the responses received. However, each agent is
free to decide if it wants to credit a rejection reason or to ignore it. This is correlated with
the fact that some people may have more respect to others’ privacy, whereas some may
be more reluctant to it. Moreover, the way the agents honor a rejection reason can vary
as well. For example, consider a case where an agent rejects a post request because its
owner is not pleased with his appearance in the picture. The negotiator agent can either
alter the picture or remove it completely. In case it is altered, the new picture may or
may not include the previously rejecting owner. The agents have the freedom of revising
as they see appropriate.



11

An important thing to note is that the rejection reasons cannot possibly conflict with
each other. This is guaranteed by two design decisions included in PRINEGO. First, the
privacy concerns define only the cases where an agent should reject a post request.
Second, the agents cannot reject a post request because it does not have some desired
attributes (e.g., the audience should have also included some other person). In such a
case, the agent may initiate another negotiation with a new post request that puts that
person into the audience; i.e., resharing through negotiation is possible at any time. In
this manner, a negotiator agent does not need to worry about conflicts and can handle
rejection reasons in a suitable manner. Our semantic agent honors every rejection reason
since we know that it will not create any conflict with other reasons. Our algorithm
discards undesired audience members if any from the audience, and removes the text
content if rejected by some agent. In Section 4.1, we show how our approach works
step by step on Example 1.

When the medium component is rejected, our algorithm inspects all of the rejection
reasons gathered during the negotiation, and clusters them under these five groupings:
undesired included people, locations, and media dates, self-disliked mediums, context-
disliked mediums. Then, our algorithm inspects each medium in the alternative media
selection of the owner to find a suitable medium. The suitable medium should comply
with other agents’ privacy concerns. The approach we use to select a medium comes
in handy for some cases and one such example is carried out in Section 4.2. After a
revision, our algorithm checks whether the resulting post request is still reasonable. A
post request is not reasonable if it does not have any audience or a content (neither
text nor medium content). Thus, it is possible to result in a disagreement not because
the rejection reasons may conflict with each other, but because the sanity of the post
request may be lost after the revision process.

Our algorithm can be extended so that all the iterations for all the negotiations can
be taken into consideration. Machine learning methods may suit here to estimate the
possibility of a post request to be rejected with the help of past experience. Such en-
hancements may lead to intelligent revisions, and thus increase the chance and the speed
of converging to an agreement dramatically. For example, a negotiator agent can learn
the behavior of another agent (e.g., an agent that accepts every post request) and then
decides not to ask that agent as it already knows that it will accept.

4 Evaluation

We implement the semantic PRINEGO agent that was detailed in Section 3 using Java and
the Spring framework. We simulate the communication between the semantic agents
with RESTful web services such that each agent has exactly two web services: one to be
asked by the owner to negotiate a desired post, and the other to be asked by other agents
to evaluate a post request. We use the OWL API [4] to work with ontologies and Pellet
as the reasoner [10]. Each semantic agent uses an ontology as described in Section 3.1.
The ontology is used as a knowledge base and also contributes into the reasoning of
privacy rules (Section 3.3). When asked to evaluate a post request via a web service
call, the agent first puts the incoming post request into its ontology and then makes
ontological reasoning on the post request against the owner’s privacy constraints.



12

The agent can run from a Web browser and additionally it can run as an Android
application that we have developed4. Our mobile application is integrated with a real
social network, Facebook. A user logs into our application by providing her Facebook
credentials. To initialize a post request, she selects a picture from her device and tags
some of her Facebook friends. Moreover, she sets an audience for her post request. Our
application starts a negotiation between the negotiator agent and the agents of tagged
users. Once the negotiation is done, the negotiator agent shares the resulting post.

We evaluate our proposed approach using three scenarios from the literature. For
this, we create six test users on Facebook, each of which has one of the PRINEGO agents
we created, namely :alice, :bob, :carol, :david, :errol, and :filipo. We log
into our mobile application with the appropriate test user and share a post request as
suggested by each scenario. For each post request, PRINEGO is used for negotiating
with other agents and the negotiator agent shares the agreed upon post requests on
Facebook. Then, we examine the results to see how the agents reach agreements. We
provide a walk-through examination of PRINEGO on Example 1 in Section 4.1 and then
discuss two more scenarios in Section 4.2.

4.1 A Walk-through of PRINEGO

In Example 1, Alice wants to share a post request p, which includes a party picture.
Bob and Carol are tagged in this picture. The audience of the post request is set to Bob,
Carol, Errol and Filipo. In order to publish the post request, Alice’s agent (:alice)
would like to negotiate with other agents. :alice does not have any other alterna-
tive media to share and is allowed to finalize a negotiation in five iterations as config-
ured by Alice. :alice invokes NEGOTIATE (p,[],1,5). It decides to negotiate with all
the tagged agents in the post request, namely :bob and :carol, as a result of DE-
CIDEAGENTSTONEGOTIATE (p). Then, :alice asks both of them by invoking ASK
(p). :bob checks whether p is compatible with its privacy rules PB1

and PB2
. It notices

that p includes a picture taken in Party context and Errol, who is part of Bob’s family,
is included in the audience of p. This condition fires one of the rules, PB1

. As a con-
sequence, :bob rejects p, the audience is rejected in p because of Errol, who is in the
audience. :alice keeps :bob’s rejection reason {-Errol}. On the other hand, :carol
has two privacy rules PC1

and PC2
. :carol computes that p violates Carol’s privacy

rule PC1
. p includes a picture, which is in Work context for Carol, moreover Filipo is in

the audience of p hence :carol rejects p because of two reasons. It rejects p because
of: (i) the audience, which includes Filipo, (ii) the Work context. :carol prioritizes
these reasons (see Section 3.3) and chooses {-Filipo} as the rejection reason. The set of
rejected reasons then becomes {-Errol, -Filipo}, and :alice wants to make a revision
on p. :alice invokes REVISE (p,[],1,5,{-Errol, -Filipo}), which in turn revises p by
removing the undesired people from the audience. The audience of p′ (the revised post
request) is set to Bob and Carol. :alice invokes NEGOTIATE (p′,[],2,5) to negotiate
p′. :alice asks :bob and :carol, and finally both of them accept p′, because nei-
ther of their rules are dictating otherwise. Thus, :alice finalizes the negotiation in two
iterations and the resulting post request is harmful for neither Bob’s nor Carol’s privacy.

4 PriNego Mobile can be accessed at http://goo.gl/kF9svI.



13

Table 2. Iteration steps for Example 2 where :bob starts the negotiation

Iter. Content Audience Asked Agents Evaluate Response
1 beach picture of Alice A, D, E :alice :alice→ PA1 :alice→ -David
2 beach picture of Alice A, E :alice :alice→ N/A :alice→ 3

Table 3. Iteration steps for Example 3 where :alice starts the negotiation

Iter. Content Audience Asked Agents Evaluate Response
1 pic1 B, C, E, F :carol :carol→ PC2 :carol→ -date
2 pic2 B, C, E, F :carol, :bob :carol→ N/A, :bob→ PB2 :carol→ 3, :bob→ -self
3 pic3 B, C, E, F :carol, :bob :carol→ N/A, :bob→ N/A :carol→ 3, :bob→ 3

4.2 PRINEGO in Action

In this section, we show how our semantic agents negotiate with each other in Exam-
ple 2 and Example 3. Table 2 and Table 3 summarize the negotiation steps. We use
initial letters for users in the audience description (e.g., A represents Alice). Example 2
is inspired from the work of Squicciarini et al. [11]. In this example, a user’s privacy is
compromised because of a friend sharing some content about this user.

Example 2 Alice and David are friends of Bob. Bob organizes a party where Alice and
David meet each other. David offers Alice a job in his company and she accepts. One
day Bob shares a beach picture of Alice with his connections. David could view this
picture. Alice is worried about jeopardizing her position in David’s company and asks
Bob to remove her beach picture.

In Example 2, :bob starts the negotiation as Bob wants to share a beach picture of
Alice. In the first iteration, :bob asks :alice, which rejects this post request according
to PA1

with the reason that the audience includes David. Then, :bob revises the post
request by removing David from the audience (the content remains untouched) and
sends the updated post request to :alice again. This time :alice accepts, and :bob

terminates the negotiation as an agreement is reached.

Example 3 Alice would like to share a picture, which was taken on May 1, 2014 with
her friends. Carol is tagged in this picture and she does not want to show any picture
that was taken on May 1, 2014. Alice decides on sharing another picture where Carol
and Bob are both tagged. This time Bob does not like himself in this picture. Alice finds
another picture of Carol and Bob and finally they all agree to share.

Differently in Example 3, the rejection reasons are about the medium content of
the post request, and the negotiator agent makes use of the alternative media. In the
first iteration, :carol rejects the picture because of its date taken. Then, :alice alters
the picture and the new picture includes Carol as well as Bob. Thus this time :alice
chooses to ask not only :carol but also :bob. However, :bob rejects since Bob marks
the picture as self-disliked, although the new picture does not violate :carol’s privacy
constraints. :alice asks another picture of Bob and Carol in the third iteration and
finally both of them accept. The negotiation terminates with success.



14

5 Discussion

We have developed a framework in which agents can negotiate their privacy constraints.
Our framework can be used by any agent that adheres to the agent skeleton. Our par-
ticular agent makes use of ontologies and semantic rules to reason on its user’s privacy
constraints. Contrary to typical negotiation frameworks, only one agent proposes offers
and the other agents comment on the offer by approving or giving reasons for disap-
proving. Agent itself collects the reasons and creates a new offer if necessary.

Particularly, in various negotiation frameworks, modeling the opponent and learn-
ing from that has been an important concept. Aydogan and Yolum have shown how
agents can negotiate on service descriptions and learn each other’s service preferences
over interactions [2]. In this work, we have not studied learning aspects. However, the
general framework is suitable for building learning agents. Particularly, since the his-
tory of reasons for rejecting a post request is being maintained, a learning algorithm can
generalize over the reasons. The idea of privacy negotiation has been briefly studied in
the context of e-commerce and web-based applications. Bennicke et al. develop an add-
on to P3P to negotiate service properties of a website [3]. Their negotiation scheme is
based on users’ predefined demands without any semantics as we have done here. Sim-
ilarly, Walker et al. propose a privacy negotiation protocol to increase the flexibility of
P3P through privacy negotiations [13]. Their negotiation protocol is expected to termi-
nate within a finite number of iterations and produce Pareto-optimal policies that are
fair to both the client and the server. However, their understanding of privacy is limited
to P3P and do not consider context-based and network-based privacy aspects.

The following three systems are important to consider regarding our purposes. Primma-
Viewer [14] is a privacy-aware content sharing application running on Facebook. It is a
collaborative approach where privacy policies are managed by co-owners of the shared
content. Briefly, a user uploads a content and initializes a privacy policy where she
defines who can access this content. She can invite others to edit the privacy policy
together. Facebook gives its users the ability to report a specific post shared by others.
The user can simply ask her friend to take the post down or provide more information
about why she would like to report the post by selecting predefined text (e.g., “I am in
this photo and I do not like it”) or messaging her friend by using her own words. Face-
Block [8] is a tool that converts regular pictures taken by a Google Glass into privacy-
aware pictures. For this, a user specifies context-based privacy policies that include the
conditions under which her face should be blurred. These policies are automatically
shared with Glass users who enforce the received policies before publishing a picture.
Table 4 compares our approach with these three systems, namely Primma-Viewer [14],
Facebook, and FaceBlock [8] using the four criteria we defined in Section 1.

– Automation refers to the fact that the system actually acts on behalf of the user
to align privacy constraints. Since our approach is agent-based, it is automated.
The agent negotiates the users’ constraints and reaches a conclusion on behalf of
the user. Primma-Viewer allows users themselves to script a joint policy collabo-
ratively; hence it is not automated. Facebook allows users to report conflicts and
deals with them on individual basis. Again, the interactions are done by the users.



15

Table 4. Comparison of Privacy Criteria

Software Automation Fairness Concealment Protection
PRINEGO 3 3 3 3

Primma-Viewer 7 3 7 3

Facebook 7 7 3 7

FaceBlock 3 7 7 3

FaceBlock, on the other hand, acts on behalf of a user to detect potential users that
can take pictures and interacts accordingly. Hence, their solution is automated.

– Fairness refers to how satisfied users are with an agreement. For example, if a user
has to remove an entire post because another user does not like it, it is not fair to
the initial person. Accordingly, our approach tries to negotiate the details of the
post so that only the relevant constraints are resolved. Thus, we say it is fair. In
the same spirit, Primma-Viewer allows user to put together a policy so that various
constraints are resolved cooperatively. In Facebook, however, the only option is to
request a post to be taken off all together without worrying about what details are
actually violating the user’s privacy. FaceBlock is more fair than Facebook in that
the content is not taken off the system but the person that has privacy concerns is
blurred in the picture. However, still the user might be unhappy about other details
of the picture, such as its date or context, but that cannot be specified or resolved.
Hence, we consider both Facebook and FaceBlock as unfair.

– Concealment refers to whether the users’ privacy constraints become known by
other users. A user might want to say in what ways a post violates her privacy
but may not want to express more. Our approach enables this by allowing users to
respond to post requests with reasons. For example, a user might say that she does
not want Alice to see her pictures but does not need to say why this is the case. In
this respect, our approach conceals the actual privacy concerns. Contrast this with
Primma-Viewer, where the users together construct policies. In that case, all users
will be aware of privacy rules that are important for each one of them; thus, the
privacy constraints will not be concealed. In Facebook, everyone’s privacy setting
is known only by the individual and thus conceals privacy concerns from others. In
FaceBlock, the privacy rules are sent explicitly to the user that is planning to put
up a picture. The user evaluates the privacy rules of others to decide if the picture
would bother them. This contrasts with our approach where privacy rules are private
and only evaluated by the owner of the rules.

– Protection refers to when a system deals with privacy violations. In our work, we
resolve privacy concerns before a content is posted; hence privacy is protected up
front. The same holds for Primma-Viewer since the joint policy is created up front,
whenever a content is posted, it will respect everyone’s privacy policy. In Facebook,
this is the opposite. After a content is posted, if it violates someone’s privacy, that
individual complains and requests it to be taken off. At this time, many people
might have already seen the content. Finally, FaceBlock enforces the privacy rules
before the content is put up; hence protects the privacy.



16

In our future work, we first plan to have adapting agents that can learn the privacy
sensitivities of other agents, in terms of contexts or individuals so that the negotiations
can be handled faster. For example, assume an agent never wants her protest pictures
to be shown online. If her friends’ agents learn about this, they can stop tagging her
in such pictures. Second, we want to improve our revise algorithm to generate better
offers by the use of argumentation approach so that agents can convince each other to
negotiate on a content.

References

1. L. Andrews. I know who you are and I saw what you did: Social networks and the death of
privacy. Simon and Schuster, 2012.

2. R. Aydogan and P. Yolum. Learning opponent’s preferences for effective negotiation: an ap-
proach based on concept learning. Autonomous Agents and Multi-Agent Systems, 24(1):104–
140, 2012.

3. M. Bennicke and P. Langendorfer. Towards automatic negotiation of privacy contracts for
internet services. In Networks, 2003. ICON2003. The 11th IEEE International Conference
on, pages 319–324. IEEE, 2003.

4. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies. Semantic
Web, 2(1):11–21, 2011.

5. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, et al. SWRL:
A semantic web rule language combining OWL and RuleML. W3C Member submission,
21:79, 2004.

6. N. R. Jennings, A. R. L. P. Faratin, S. Parsons, C. Sierra, and M. Wooldridge. Automated
negotiation: Prospects, methods and challenges. International Journal of Group Decision
and Negotiation, 10(2):199–215, 2001.

7. O. Kafalı, A. Günay, and P. Yolum. Detecting and predicting privacy violations in online
social networks. Distributed and Parallel Databases, 32(1):161–190, 2014.

8. P. Pappachan, R. Yus, P. K. Das, T. Finin, E. Mena, and A. Joshi. A Semantic Context-Aware
Privacy Model for FaceBlock. In Second International Workshop on Society, Privacy and
the Semantic Web - Policy and Technology (PrivOn), Riva del Garda (Italy), October 2014.

9. A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location. Com-
puters & Graphics, 23(6):893–901, 1999.

10. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):51–53,
2007.

11. A. C. Squicciarini, H. Xu, and X. L. Zhang. Cope: Enabling collaborative privacy manage-
ment in online social networks. J. Am. Soc. Inf. Sci. Technol., 62(3):521–534, Mar. 2011.

12. M. G. Stewart. How giant websites design for you (and a billion others, too). TED Talk,
2014.

13. D. D. Walker, E. G. Mercer, and K. E. Seamons. Or best offer: A privacy policy negotiation
protocol. In Policies for Distributed Systems and Networks, 2008. POLICY 2008. IEEE
Workshop on, pages 173–180. IEEE, 2008.

14. R. Wishart, D. Corapi, S. Marinovic, and M. Sloman. Collaborative privacy policy authoring
in a social networking context. In Proceedings of the 2010 IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY), pages 1–8, Washington, DC,
USA, 2010. IEEE Computer Society.


