
Abstract

This paper makes the case for the use of XOR-based placement
functions for cache memories. It shows that these XOR-mapping
schemes can eliminate many conflict misses for direct-mapped and
victim caches and practically all of them for (pseudo) two-way
associative organizations. The paper evaluates the performance of
XOR-mapping schemes for a number of different cache
organizations: direct-mapped, set-associative, victim, hash-rehash,
column-associative and skewed-associative. It also proposes novel
replacement policies for some of these cache organizations. In
particular, it presents a low-cost implementation of a LRU
replacement policy which demonstrates a significant improvement
over the pseudo-LRU replacement previously proposed. The paper
shows that for a 8 Kbyte data cache, XOR-mapping schemes
approximately halve the miss ratio for two-way associative and
column-associative organizations. Skewed-associative caches,
which already make use of XOR-mapping functions, can benefit
from the LRU replacement and also from the use of more
sophisticated mapping functions. For two-way associative, column-
associative and two-way skewed-associative organizations, XOR-
mapping schemes achieve a miss ratio that is not higher than 1.10
times that of a fully-associative cache. XOR mapping schemes also
provide a very significant reduction in the miss ratio for the other
cache organizations, including the direct-mapped cache.
Ultimately, the conclusion of this study is that XOR-based
placement functions unequivocally provide highly significant
performance benefits to most cache organizations.

Keywords: cache memory, XOR-based placement functions,
conflict misses.

1 Introduction
The use of XOR functions to map memory addresses onto a set of
memory modules has been studied extensively in the last decade;
for example, see [8], [15], [21], [11], [16], [10], [17] and [23]. It has
proven to be an effective way to distribute memory addresses to
memory modules in a pseudo-random way. In that context, the aim
is to allow multiple memory references to proceed in parallel by
maximizing the probability that they will access different memory
modules. The effect of random distribution can be also beneficial
for cache memories if it is used to map memory addresses onto

cache data sets. In this case, the desired effect would be the removal
of conflict misses. In fact, a cache memory with a pure random
placement would be equivalent in terms of hit ratio to a fully-
associative cache with a random replacement. This paper shows
that this can be achieved with simple XOR-mapping schemes
together with a (pseudo) two-way associative organization. For
direct-mapped and victim caches, the reduction in number of
conflict misses is also very high although they are not completely
removed.

Despite the potential benefits of XOR-mapping schemes, there
are very few proposals in the literature using these schemes for
cache memories. The most notable are the skewed-associative
cache [18] [19] and the cache memory of the HP 7100 [5].

In this paper, we present a study of the use of XOR-mapping
schemes on a number of different cache organizations: direct-
mapped [20], set-associative [20], victim[14], hash-rehash [3],
column-associative [4] and skewed-associative [19]. The paper also
proposes a low-cost implementation of the LRU replacement policy
for use with XOR-mapping functions. It is shown that this
replacement policy provides a significant improvement for the
column-associative and the two-way skewed-associative cache.

Two different types of XOR-mapping schemes have been
evaluated: a simple bitwise XOR of two fields of the address and
the polynomial mapping proposed by B. Rau [17].

For the bitwise XOR scheme, a column-associative cache with
LRU replacement, and without swapping, has the lowest miss ratio.
This miss ratio is significantly lower than that of a four-way set
associative cache and very close to that of a fully-associative cache.
A two-way associative cache with an XOR-mapping function
yields almost the same hit ratio. We found that a two-way skewed-
associative cache has a significantly higher miss ratio when it uses
the replacement policy originally proposed by its author. This miss
ratio is about the same as that of a victim cache with a bitwise XOR-
mapping. However, when using the LRU replacement policy
proposed in this paper, the skewed-associative cache achieves a
miss ratio very similar to the column-associative and the two-way
associative organizations. When swapping is incorporated in a
column-associative cache, the overall miss ratio increases slightly,
due to the use of the XOR-mapping. However, in this case most of
the hits are obtained with a single probe, which may reduce the
average access time. A direct-mapped cache exhibits the highest
miss ratio, but even in this case, an XOR-mapping function yields
very significant improvement.

Polynomial mapping provides marginal advantages for the
column-associative and for the two-way associative organizations.
However, it is more effective for the two-way skewed associative
cache. With this type of mapping, the two-way skewed-associative
cache achieves the lowest miss ratio, which is practically identical
to that of a fully associative cache (0.8% higher).

Eliminating Cache Conflict Misses Through XOR-Based Placement Functions

Antonio González*, Mateo Valero*, Nigel Topham† and Joan M. Parcerisa*

* Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

c/ Jordi Girona 1-3, 08034 Barcelona (Spain)

Email:{antonio,mateo,jmanel}@ac.upc.es

† Department of Computer Science
University of Edinburgh

JCMB, Kings Buildings, Edinburgh (UK)

Email:npt@dcs.ed.ac.uk

Overall, the two-way skewed-associative, column-associative
and two-way associative organizations exhibit a similar miss ratio.
Miss ratio is not the only parameter to consider when evaluating a
cache memory. The most relevant performance metric is the
average memory access time, which depends on the access time of
the cache memory, the miss ratio and the miss penalty. Genuinely
set-associative caches have higher hit times than pseudo-
associative caches, though the latter may require two probes to
detect a hit. In addition, LRU replacement requires more hardware
for the column-associative and skewed-associative organizations.
Thus, the most effective organization in practice will depend on the
hardware implementation.

The rest of this paper is organized as follows. Section 2
summarizes related work. Some basic concepts are reviewed in
section 3, which also describes the evaluation methodology. The
performance of conventional mapping functions is evaluated in
section 4 for a selection of cache configurations. Section 5 explores
the benefits of using XOR-mapping functions in those cache
organizations. The implementation of LRU replacement in the
presence of an XOR mapping is discussed and evaluated in section
6. The effectiveness of polynomial mapping is analyzed in section
7. Section 8 evaluates the effect of swapping in the column-
associative cache. Finally, the main conclusions of this work are
summarized in section 9.

2 Related work
There are remarkably few papers on the use of alternative mapping
schemes for cache memories. The first computers based on the HP
Precision Architecture Processor [7] made use of XOR-mapping
functions in order to index the TLB. In these machines, the 11-bit
TLB index was obtained by the exclusive OR of two 9-bit fields,
one from the virtual page number and the other from the space ID,
appended to two other bits of the space ID. Earlier machines that
used a XOR-mapping function to index the TLB were the IBM
3033 [13] and the Amdahl 470 [1].

The use of XOR-mapping schemes in order to obtain a pseudo-
random placement has been suggested by other authors as reported
in [20]. In [20], a comparison of a pseudo-random placement
against a set-associative one was performed. It concluded that
random mapping had a small advantage in most cases, but that the
advantage was not significant. We will show in this paper that for
current workloads and cache organizations, this advantage can be
very large.

Hashing the process ID with the address bits in order to index the
cache memory was evaluated in [2] for a multiprogrammed
environment. Results were provided for just one trace, which
shown that this scheme could reduce the miss ratio.

In practical systems, like the HP PA 7100, limited and
undocumented use of XOR-mapping schemes has occurred, but
there is currently no established body of published results analyzing
the true benefits of alternative mapping schemes.

More recently, the use of XOR-mapping functions was proposed
in skewed-associative caches [18] [19]. A two-way skewed-
associative cache consists of two banks of the same size that are
accessed simultaneously with two different hashing functions. In
that paper, a family of mapping functions was defined as follows.
Assume that the cache memory consists of a2l lines of 2b bytes
each. A memory addressA=<an–1,an–2,..., a0> comprises the
following fields: A=(A3, A2, A1, A0) such thatA0=<a b–1,..., a0> ;
A1=<a l+b–2,..., ab> ; A2=<a 2l+b–3,..., al+b–1> ; and A3=<a n–1,...,
a2l+b–2>. Let ⊕ denote the bitwise exclusive OR; let • denote the
bitwise AND operation and let be any(l–1)-bit number (a good
choice for would be 1010...10); letT = 2l–1–T. The family of
twin XOR-based placement functions are defined as:

f0
T: {0...2n–1} → {0...2l–1–1}

A=(A3, A2, A1, A0) → ((A2•T)⊕A1, A0)

T
T

f1
T: {0...2n–1} → {0...2l–1–1}

A=(A3, A2, A1, A0) → ((A2•T)⊕A1, A0)
In [18], it was proposed a pseudo-LRU replacement by

associating a one-bit flag to each line in bank 0. If the requested data
is found in bank 0, the corresponding line flag is set, whereas it is
reset if the data is found in bank 1. On a miss, the flag of the line
selected in bank 0 is read and its value determines the bank where
the missing data is to be placed.

Using a different workload from that used in this paper, it was
observed that the miss ratio of the two-way skewed-associative
cache was lower than that of a victim cache (with four lines in the
victim buffer) and similar to the miss ratio of a four-way set
associative cache.

3 Preliminaries
Whenever a line of main memory is brought into cache a decision
must be made on which line, or set of lines, in the cache will be
candidates for storing that memory line. Thisline placement policy
is one of the least researched aspects of cache design. Direct-
mapped caches typically extract a field of bits from the address
and use this to select one line from a set of . Whilst simple, and
trivial to implement, this mapping function is not robust. The
principal weakness of this function is its susceptibility to repetitive
conflict misses. For example, if is the cache capacity and is
the line size, then addresses and map to the same cache line
if = . If and map to the
same cache line, then addresses and are guaranteed
to also map to identical cache lines, for any integer . There are
two common cases when this happens:

• when accessing a stream of addresses
 if collides with , then there

may be up to conflict misses in this stream.

• when accessing elements of two distinct arrays and , if
 collides with then will collide with

, for any integer .

-way associativity can be used to alleviate such conflicts.
However, if a working set contains conflicts on some cache
line, set associativity can only eliminate at most of those
conflicts. Our studies suggest that when conflict misses dominate,
the critical factor is not a lack of associativity, but a defective line
placement algorithm which fails to disperse data equitably between
the available cache lines.

3.1 XOR-mapping schemes

The use of XOR-mapping schemes has been studied extensively in
the context of interleaved memories [8], [15], [21], [11], [16], [10],
[17] and [23] among others. In this paper we consider two types of
XOR-based mapping schemes; those chosen in an ad hoc way
based on common intuitive notions of how such schemes behave,
and a scheme proposed by Rau [17] which describes a method for
constructing XOR mapping schemes based on polynomial
arithmetic.

The former type of XOR-mapping computes a cache index by
performing a bitwise XOR of two fields of the address of the
requested data. We will refer to this type of schemes asbitwise XOR
mapping. The family of mapping functions proposed in [18] belong
to this category.

In this paper we refer to Rau’s scheme simply aspolynomial
mapping. Polynomial mapping can be understood by first
considering address as a polynomial

, the coefficients of which are in
the Galois Field GF(2). The use of polynomial arithmetic, with
coefficients restricted in this way, ensures that multiplication and
addition of coefficients takes place modulo 2, and thus can be

l
2l

C B
a1 a2

a1 B⁄ mod C a2 B⁄ mod C a1 a2
a1 k+ a2 k+

k B≥

A a0 a1 … am, , ,{ }= ai a
i k+

m k–()

b0 b1
b0 i[] b1 j[] b0 i k+[]
b1 j k+[] k B≥

w
p w>

w

A an 1– … a1 a0, , ,〈 〉=
A x() an 1– xn 1– … a1x1 a0, , ,=

implemented as logical AND and exclusive-OR respectively. The
mapping from an address to an -bit cache index is determined by
the polynomial defined by ,
where is an irreducible polynomial of order and is
such that generates all polynomials of order lower
than . The polynomials that fulfill the previous requirements are
called I-Poly polynomials. Rau shows how the computation of

 can be accomplished by the vector-matrix product of the
address and an matrix of single-bit coefficients. In GF(2),
this product is computed by a network of AND and XOR gates, and
if the -matrix is constant the AND gates can be omitted and the
mapping then requires just XOR gates with fan-in from 2 to .

The choice of an I-poly polynomial yields properties similar to
prime integer modulus functions. Whereas a prime integer modulus
function would be prohibitively complex, the I-poly polynomial
modulus function has very low complexity; suitable even for
computing a cache index.

The use of XOR-mapping schemes requires the computation of
several XOR operations to obtain the cache index. Since all the
XOR can be done in parallel, the delay of this computation is just
one XOR gate. The XOR gates have just two inputs for the bitwise
XOR scheme and a few more for the polynomial mapping scheme.
However, the computation of these XOR operations can be done at
the end of the address computation stage of the pipeline. In many
current microprocessors, this stage is not the critical stage of the
pipeline and therefore this delay may not affect the pipeline cycle
time. In addition, if some kind of carry propagate adder is used, the
address computation unit computes the address bits from least-
significant to most-significant. Since the XOR-mapping schemes
only use some of the least-significant bits of the address, the XOR
gates can operate in parallel with the computation of the most
significant-bits and their delay could be completely hidden even if
the address computation stage was the critical stage of the pipeline.
In other situations, the addition of this small additional delay can
affect the critical path, but even in these cases, a net benefit could
be obtained since the reduction in miss ratio achieved by XOR-
mapping schemes is very high as we will show in this paper. An
accurate timing evaluation is required in these cases to consider the
additional delay, which is beyond the scope of this paper.

3.2 Cache memories

This paper evaluates the performance of XOR-mapping schemes
for a number of cache organizations: direct-mapped, two-way
associative, victim, hash-rehash, column-associative and two-way
skewed-associative. Direct-mapped and set-associative organi-
zations [20] are the most popular in current microprocessors and we
assume that the reader is familiar with them. The two-way skewed-
associative cache was described in section 2. Below there is a short
outline of the victim, hash-rehash and column-associative caches.

The hash-rehash cache, proposed by Agarwalet al. [3], consists
of a conventional direct-mapped cache for which up to two tag
probes may be required to find the requested data. First, the cache
is accessed with the conventional modulo function, that is usingl
bits of the address<ab+l–1,ab+l–2,..., ab> (2l is the number of cache
lines and2b is the line size). If the data is not found, the cache is
probed again but with the most significant bit inverted. Thus, the
second probe checks the tag for line<ab+l–1,ab+l–2,..., ab> . In case
of a second probe hit, the two lines are swapped. Otherwise, the
data is brought from the next memory level and it is placed in the
first-probe location, whereas the data already there is moved to the
second-probe location.

The column-associative cache [4] improves the disappointing
miss ratio of the hash-rehash cache by introducing a rehash bit
associated with each line. This bit indicates whether the line
contains rehashed data, that is, data that is reached in the second
probe. When the first probe finds rehashed data, the corresponding

l
R x() A x() V x() P x() R x()+=

P x() l P x()
xi mod P x()

l

R x()
n l× H

H
l n

line is chosen for replacement. If the rehash bit is zero, then upon a
first-time miss the cache is accessed again with the second function.
In the case of a second-time hit, the lines are swapped. Otherwise,
the data retrieved from memory is placed in the first line and the
data already in that line is moved to the line accessed with the
second function.

A victim cache [14] consists of a conventional direct-mapped
cache with a small fully-associative buffer in the refill path to a
second-level cache or main memory. On a cache miss, the line that
is evicted from the direct-mapped cache is placed in the victim
cache. In the case of a miss in the direct-mapped cache that hits in
the victim cache, the lines accessed in both caches are swapped. In
the experiments performed in this paper, we assume a victim cache
with four lines.

3.3 Evaluation methodology

The results presented in this paper have been obtained through
simulation of various data cache organizations using the SPEC 95
floating point benchmark suite. We focus on the floating point
benchmarks because they exhibit a much higher conflict miss ratio
than the integer benchmarks, and thus the XOR-mapping schemes
have more potential benefits for them. Integer benchmarks will also
benefit from XOR-mapping schemes although to less extent. The
performance metrics used for comparison of different schemes are
the total miss ratio and conflict miss ratio. Since the compared
schemes only differ on the placement function, a reduction in the
miss ratio will result in a reduction in the average memory access
time.

The programs were compiled with the maximum optimization
level and instrumented with the ATOM tool [22]. A data cache
memory similar to the first-level cache of the Alpha 21164
microprocessor has been assumed: 8 Kilobytes capacity, 32 bytes
per line, write-through and no write allocate. For each benchmark
we have simulated the first billion (230) load operations. Because of
the no write allocate feature, the performance metrics computed
below refer only to load operations.

4 Performance of conventional mapping schemes
Table 1 shows the miss ratio for the following cache organizations:
direct-mapped, two-way associative, four-way associative, hash-
rehash, column-associative victim and two-way skewed-
associative. Of these schemes, only the two-way skewed-
associative cache uses an XOR-mapping scheme, as proposed by its
author. For comparison, the miss ratio of a fully-associative cache
is shown in the penultimate column. For each organization, the
difference between its miss ratio and that of a fully-associative
cache, which is shown in brackets in Table 1, represents the conflict
miss ratio [12]. In fact, this difference is slightly negative in the case
of 104.hydro2d and 141.apsi for some organizations, due to sub-
optimality of LRU replacement in a fully-associative cache for
these particular programs. Effectively the conflict miss ratio
represents the target reduction in miss ratio that we hope to achieve
through improved mapping schemes. The other type of misses,
compulsory and capacity, will remain unchanged by the use of the
XOR-mapping schemes.

From the results in Table 1, we can conclude that set
associativity reduces the miss ratio, as expected, although the
improvement of a two-way associative cache over a direct-mapped
cache is rather low. Comparing the direct-mapped and two-way
associative cache with the fully-associative cache suggests that,
several benchmarks (e.g. 101.tomcatv, 102.swim, 125.turb3d,
146.wave) show significant clustering in the mapping of memory
lines to cache lines under the conventional mapping scheme.

The hash-rehash cache has a miss ratio similar to that of a direct-
mapped cache. Although both have similar access times, the hash-

rehash scheme requires two cache probes for some hits. Hence, the
direct-mapped cache will be more effective. This poor behavior of
the hash-rehash cache was also observed in [4]. The column-
associative cache provides a miss ratio similar to that of a two-way
associative cache. Since the former has a lower access time but
requires two cache probes to satisfy some hits, the choice between
these two organization should take into account the particular
implementation parameters (access time and miss penalty). The
victim cache removes many conflict misses and it outperforms a
four-way associative cache. Finally, the two-way skewed-
associative cache offers the lowest miss ratio, which is significantly
lower than that of a four-way associative cache. The results for the
skewed-associative cache are more positive than those observed in
[18], where a miss ratio similar to a four-way associative cache was
claimed, though using a different workload.

5 Bitwise XOR mapping
XOR-mapping schemes exhibit a behavior which is in some way
similar to full associativity but with some restrictions. For instance,
in the two-way skewed-associative cache, the set of all addresses
that are mapped into the same line of bank 0 are distributed over all
the lines in bank 1. Thus, it is similar to having all the lines of bank
1 as alternative locations for a given line in bank 0. However, if one
considers a particular memory address, it can be placed in exactly
two cache locations (one in bank 0, and the other in bank 1). Below
we analyze the performance of bitwise XOR mapping schemes for
the other cache organizations. The mapping functions that are
evaluated are based on the family of functions proposed in [18].
Section 7 evaluates the performance of the polynomial mapping
scheme proposed in [17].

5.1 Direct-mapped

To describe the bitwise XOR mapping function, let us consider a
memory addressA=<an–1,an–2,..., a0> composed of the following

direct 2-way 4-way
hash-

rehash
col.-

assoc.
victim

2-way
skew

fully-
assoc.

101.tomcatv 53.8
(41.3)

48.1
(36.4)

29.5
(17.0)

51.4
(39.1)

47.0
(34.5)

26.6
(14.1)

22.1
(9.6) 12.5

102.swim 56.2
(48.3)

59.1
(51.2)

57.1
(49.2)

57.6
(49.7)

53.7
(45.8)

33.7
(25.8)

15.1
(7.2) 7.9

103.su2cor 11.0
(2.1)

9.1
(0.2)

9.0
(0.1)

11.1
(2.2)

9.3
(0.4)

9.5
(0.6)

9.6
(0.7) 8.9

104.hydro2d 17.6
(0.1)

17.1
(-0.4)

17.3
(-0.2)

17.6
(0.1)

17.2
(-0.3)

17.0
(-0.5)

17.1
(-0.4) 17.5

107.mgrid 3.8
(0.3)

3.6
(0.1)

3.5
(0.0)

6.1
(2.6)

4.2
(0.7)

3.7
(0.2)

4.1
(0.6) 3.5

110.applu 7.6
(1.7)

6.4
(0.5)

6.0
(0.1)

7.8
(1.9)

6.5
(0.6)

6.9
(1.0)

6.7
(0.8) 5.9

125.turb3d 7.5
(4.7)

6.5
(3.7)

5.3
(2.5)

7.7
(4.9)

6.4
(3.6)

7.0
(4.2)

5.4
(2.6) 2.8

141.apsi 15.5
(3.0)

13.3
(0.8)

11.3
(-1.2)

18.0
(5.5)

13.4
(0.9)

10.7
(-1.8)

11.5
(-1.0) 12.5

145.fpppp 8.5
(6.8)

2.7
(1.0)

2.1
(0.4)

5.9
(4.2)

2.7
(1.0)

7.5
(5.8)

2.2
(0.5) 1.7

146.wave 31.8
(17.9)

31.7
(17.8)

23.0
(9.1)

35.4
(21.5)

30.7
(16.8)

20.1
(6.2)

16.8
(2.9) 13.9

Average 21.32
(12.61)

19.76
(11.05)

16.42
(7.71)

21.87
(13.16)

19.11
(10.40)

14.27
(5.56)

11.05
(2.34) 8.71

Table 1 Miss ratios (%) for the original schemes. The conflict miss
ratio is shown in brackets.

fields: A=(A3, A2, A1, A0) such thatA0=<a b–1,..., a0> ; A1=<a l+b–

1,..., ab> ; A2=<a 2l+b–1,..., al+b> ; andA3=<a n–1,..., a2l+b>. Let ⊕
denote the bitwise exclusive OR. The XOR-based mapping
function is defined as follows:

f: {0...2n–1} → {0...2l–1}
A=(A3, A2, A1, A0) → (A2⊕A1, A0)

Figure 1 compares the conflict miss ratio of a direct mapped
cache with a conventional mapping function to a direct-mapped
cache with the mapping functionf previously defined. It can be seen
that the use of an XOR-mapping function provides a large
improvement for two of the benchmarks (tomcatv and wave). These
are the two benchmarks that also most benefit from a low degree of
set-associativity, as can be seen from Table 1. Notice however, that
five of the ten programs exhibit slightly higher miss ratios. These
are all notable for their low conflict miss ratios in a conventional
direct-mapped cache. We are seeing the random introduction, with
low probability, of conflicts that were not originally present. On
average, the direct-mapped cache with an XOR-mapping function
has a total miss ratio (17.51) lower than that of a column associative
cache (19.11) and almost equal to the miss ratio of a four-way
associative cache (16.42).

5.2 Hash-rehash and column-associative

The mapping functions proposed for the skewed-associative cache
[18] can also be used for a hash-rehash cache and a column
associative cache. For these, as for the skewed-associative cache,
we define two distinct mapping functions and . The first probe
uses and, if required, the second probe uses . These functions
are as defined in section 2, using the address decompositionA=(A3,
A2, A1, A0) defined in section 5.1, and with a binary value of

.
The average total cache miss ratios for hash-rehash and column

associative caches using and are 23.63% and 20.39%
respectively. On average the XOR-mapping functions do not
provide any improvement although they are beneficial for two
benchmarks (101 and 146). The net deterioration in miss ratio is due
to two reasons:

• If reference A produces a cache miss, it is placed in .
If the data currently in this location corresponds to memory
addressB, it is moved to , or discarded. The hash-
rehash cache always moves the data, whereas the column-
associative cache takes this decision based on the rehash bit.

tomcat swim su2cor hydro mgrid applu turb3d apsi fpppp wave average

0.0

10.0

20.0

30.0

40.0

50.0

co
n

fl
ic

t
m

is
s

ra
ti

o

direct-mapped
XOR direct-mapped

Figure 1: Conflict miss ratio (%) for a direct-mapped cache with
the conventional and a bitwise XOR mapping. The average total
miss ratios are 21.32% and 17.51% respectively.

f0 f1
f0 f1

T 10101010=

f0 f1

f0 A()

f1 A()

However, it is very likely that and
. Consequently, the data from addressB will

be moved to a place where it will no longer be accessible and
the next reference to will miss (even if the data is in cache).
In addition to degrading performance, this may also cause
some consistency problems.

• For a given reference, it may happen that . In
this case, reference A does not have an alternative location
and we loose the positive effect of pseudo-associativity
caused by the use of two mapping functions.

5.2.1 Enhancing the hash-rehash and column-associative

cache

The first problem mentioned above can be solved by inhibiting the
swapping of data. Of course, that will cause a significant increase
in the percentage of hits that require two probes, but it will provide
us with a lower bound on the miss ratio that could be obtained.
Besides, swapping may significantly increase pressure on the cache
ports, and may cause performance penalties as it is not always
possible to hide the swapping during idle cache cycles. For
instance, in an ideal out-of-order machine with two memory ports
and infinite resources, we have measured that on average two
memory ports are busy during 71% of cycles, and only in the 17%
of cycles are both idle [9]. An interesting alternative to swapping is
to predict the most likely location of the two possible candidates for
a given address. This has been extensively studied by Calderet al.
who showed that it can be a very effective approach [6].

In order to eliminate the possibility that , we
propose to slightly modify the mapping functions such that they
always differ in the most significant bit of the result they produce.
This most significant bit will be equal to the most significant bit of
A1 for f0 and it will be inverted forf1.

The proposed replacement policy is a pseudo-LRU policy
inspired by the one proposed in [18]. A one-bit flag is associated
with each cache line. When a hit occurs, the flag of the line holding
the data is reset to 0 and the flag of the alternate location is set to 1.
If a miss occurs, the new line replaces the line whose flag is higher.
If both flags are equal, the line at is replaced.

With these changes to the mapping function and replacement
policy, and the elimination of swapping, the conflict miss ratios for
a column-associative cache are as shown in Figure 2. The figure

f1 A() f0 B()≠
f1 A() f1 B()≠

B

f0 A() f1 A()=

f0 A() f1 A()=

tomcat swim su2cor hydro mgrid applu turb3d apsi fpppp wave average

0.0

10.0

20.0

30.0

40.0

50.0
co

n
fl

ic
t

m
is

s
ra

ti
o

column-associative
XOR column-associative

Figure 2: Conflict miss ratio (%) for the conventional column-
associative cache and the new bitwise XOR-mapping. The
average total miss ratios are 19.11% and 10.04% respectively.

f0 A()

also includes the conflict miss ratios for the conventional column-
associative organization without using a XOR-mapping.

Notice that with this organization, the effect of the XOR-
mapping scheme in the column-associative cache is very
impressive, in particular for those programs with the highest miss
ratio. The average total miss ratio of this organization (10.04) is
much lower than that of a four-way associative cache (16.42) and
somewhat lower than that of the skewed-associative cache (11.05).
To isolate the effect of inverting one bit to obtain always two
potential locations for each address, we have performed the
simulations just with the XOR-functions (f0 andf1 as defined at the
beginning of this section), without the bit inversion and we obtained
an average total miss ratio of 11.17.

5.3 Victim cache

In this case, the direct-mapped part uses the XOR-mapping function
defined in section 5.1. The results are shown in Figure 3. We can
see that the XOR-mapping makes the average total miss ratio of the
victim cache (11.6) to be very close to that of the two-way skewed-
associative cache (11.05). Notice also that the XOR-mapping
produces a slight increase in miss ratio for those benchmarks with
very few conflict misses. The same behavior was observed for a
direct-mapped cache and can be explained again by the random, but
infrequent, introduction of new conflict misses.

5.4 Two-way associative

In the case of a two-way associative cache, consider an addressA
composed of four fieldsA=(A3, A2, A1, A0) of n-2l-b+2, l-1, l-1and
b bits respectively. In this case, the XOR-based mapping function
is defined as follows:

g: {0...2n–1} → {0...2l-1–1}
A=(A3, A2, A1, A0) → (A2⊕A1, A0)

The same mapping function is used to access both banks, as in a
conventional set-associative cache, and LRU replacement is used as
in this case it can be implemented with low cost. The conflict miss
ratios corresponding to this organization are shown in Figure 4.

The bitwise XOR mapping scheme more than halves the average
total miss ratio (from 19.76 to 9.54). We can also see in Figure 4
that the mapping function has eliminated almost all the conflict
misses. In average, the total miss ratio is just 1.10 times that of a
fully-associative cache. For two programs the two-way XOR cache
has lower miss ratio than a fully-associative cache. This is again due

tomcat swim su2cor hydro mgrid applu turb3d apsi fpppp wave average

0.0

10.0

20.0

30.0

40.0

50.0

co
n

fl
ic

t
m

is
s

ra
ti

o

victim
XOR victim

Figure 3: Conflict miss ratio (%) for the victim cache with the
conventional and the bitwise XOR mapping functions. The
average total miss ratios are 14.3% and 11.6% respectively.

to the sub-optimality of LRU replacement in the fully-associative
cache, and is a common anomaly in programs with negligible
conflict misses.

When a bitwise XOR mapping is used, the average total miss
ratio of the two-way associative cache (9.54) is slightly better than
that of a column-associative cache (10.04) and much better than
that of the skewed associative cache (11.05). This may seem to
contradict the results in [18], where Seznec observed that the two-
way skewed-associative cache had a lower miss ratio than a two-
way associative cache with the same mapping function for both
banks. The reason for this difference is twofold. Firstly, Seznec
used functionf0

T described in section 2 to index the two-way
associative cache. This function indexes the cache using

 bits, whereas his two-way skewed-associative
cache was indexed using bits. One of the most important
benefits of XOR-mapping schemes is that they avoid conflicts
among data structures that are accessed simultaneously with the
same stride but whose initial addresses differ in a sum of powers of
two. If these powers of two correspond to bits that are used by the
mapping function, the conflicts may be avoided. Thus, to be fair,
one should compare cache organizations that use the same number
of bits as input to the mapping function. Both the two-way skewed-
associative cache in Table 1 and the two-way associative cache in
Figure 4 use the same number of bits. The second reason for the
difference with Seznec’s results is that he used a different
workload, with a much smaller working set, since his miss ratios are
much lower.

The results in Figure 4 suggest that in the case of a two-way
associative cache, it is more effective the use of more bits in each
mapping function than having two different indexing functions.

5.5 Restricted hashing

A drawback of the XOR-mapping scheme is that it may interfere
with the use of a physically tagged cache, which may be desirable
for coherency reasons [12]. To remove address translation from the
critical path it is common to have a virtually-indexed cache with
physical address tags. This typically means that the cache is
indexed using only unmapped virtual address bits. This limits the
maximum number of sets and therefore, it imposes some
constraints in both the cache size and the degree of associativity.

tomcat swim su2cor hydro mgrid applu turb3d apsi fpppp wave average

0.0

10.0

20.0

30.0

40.0

50.0
co

n
fl

ic
t

m
is

s
ra

ti
o

2-way
XOR 2-way

Figure 4: Conflict miss ratio (%) for the two-way associative
cache with the conventional and the bitwise XOR mapping
functions. The average total miss ratios are 19.76% and 9.54%
respectively.

l 1– l 1–() 2⁄+
2l 2–

However, the XOR-mapping scheme requires the use of more
bits of the address and therefore, heightens the constraint on the
page size. One way to overcome this problem is to use fewer bits to
compute the mapping. In the case of a skewed associative cache, it
was shown that this produces a small reduction in performance
[18]. We have evaluated the miss ratio of a column-associative
cache using the mapping functions described in section 5.2 with the
miss ratio obtained when using only the four least-significant bits
of A2 to perform the bitwise XOR withA1. The results showed an
increase in average by a factor of 1.08, which is relatively low.

6 An affordable implementation of LRU replacement
The use of two different XOR-mapping functions creates an effect
similar to full associativity, as previously discussed. This suggests
that an LRU replacement policy may be expensive to implement,
and has motivated previous work on pseudo-LRU replacement
policies [18]. However, implementing LRU replacement in
column-associative or skewed-associative caches is not as
expensive as in the case of a fully-associative cache. One way to
implement LRU for the caches that use two different mapping
functions is to add a time stamp to each cache line. A count of
memory references is maintained, and every time a cache line is
accessed its time stamp is updated with the value of the reference
counter. When a miss occurs, the candidate for replacement which
has the lowest time stamp is chosen for replacement. In the case of
a two-way skewed-associative or a column-associative cache this
requires a single comparison between two integer fields.

This replacement policy produces a noticeable benefit in the
performance of the column-associative cache and the two-way
skewed-associative cache, as shown in Table 2, especially for
benchmarks 101 and 102.

The cost associated with this LRU replacement depends on the
number of bits devoted to the time-stamp. The simulations reported
in Table 2 ensure that the time-stamp never overflows. A more
practical scheme, that uses a small number of bits both in the
counter and the time-stamp would work by shifting the counter and
all the time-stamps one bit to the right whenever the reference
counter overflowed. We simulated this scheme for the column-
associative cache using just 8 bits for the counter and the time
stamps. The results are practically identical to those obtained with
an unrestricted time stamp (the average miss ratio was 9.32).

One potential criticism of our comparison between the column-
associative and the skewed-associative caches is that the former

miss ratio
column-associative 2-way skewed ass.

ps-LRU LRU ps-LRU LRU

101.tomcatv 20.2 16.4 22.1 20.0

102.swim 9.7 8.6 15.1 12.3

103.su2cor 9.2 9.0 9.6 9.1

104.hydro2d 17.2 17.1 17.1 17.1

107.mgrid 3.9 3.9 4.1 3.9

110.applu 6.8 6.4 6.7 6.3

125.turb3d 5.1 4.6 5.4 4.9

141.apsi 10.7 10.0 11.5 10.5

145.fpppp 2.5 2.5 2.2 2.2

146.wave 15.2 14.6 16.8 16.3

Average 10.04 9.31 11.05 10.24

Table 2: Miss ratios (%) for the column-associative cache and
the two-way skewed-associative cache comparing pseudo-LRU
with LRU replacement.

uses one bit more of the address to compute the cache index. To
isolate this effect we simulated the column-associative cache using

address bits in the mapping function (the same as the
skewed-associative cache), and without bit inversion. This
produced an average miss ratio of 9.36, indicating no significant
difference.

7 Polynomial mapping

We have investigated the performance of the XOR-mapping
scheme proposed by Rau [17], which is based on polynomial
arithmetic and which will be referred to as polynomial mapping.
The performance of polynomial mapping has been evaluated for the
column associative, the two-way associative and the two-way
skewed-associative organizations. For all of them, Table 3
compares the total miss ratios of the previous XOR mapping
functions based on the bitwise XOR of two bit strings (XOR) with
that obtained using polynomial mapping functions (Poly). In all
cases, an LRU replacement is assumed. The miss ratio of a fully-
associative cache is also shown for comparison.

To perform a fair comparison we applied the randomization
scheme using the same number of bits of the original address as
input to all the mapping functions; in all the cases this is 19 bits (14
without considering the bits that indicate the displacement inside
the cache line). For the polynomial mapping functions, we chose
the I-poly polynomials that require the fewest number of XOR
entries for its implementation. We refer to a polynomial by the
value obtained after substitutingx by 2 (e.g., polynomial 19 is
x4+x+1). The four chosen polynomial are: P1=505, P2=301,
P3=131, P4=137. For the column-associative cache, P1 and P2
define the mapping of the two indexing functions used by this
organization. P3 corresponds to single function utilized by the two-
way associative cache. Finally, P3 and P4 define the two different
mapping functions used by skewed-associative cache. Each
mapping function requires 7 or 8 XOR gates with fan-in from 2 to
5 each.

Regarding the column-associative and the two-way associative
results, we can conclude from Table 3 that the scheme based on
using polynomial mapping provides a marginal advantage over the
bitwise XOR scheme. However, as the former requires wider XOR
gates (i.e. more inputs) the simpler XOR scheme may be preferable.

2l 2–

tomcat swim su2cor hydro mgrid applu turb3d apsi fpppp wave average

0.0

10.0

20.0

30.0

40.0

50.0
co

n
fl

ic
t

m
is

s
ra

ti
o

Poly column-associative
Poly 2-way
Poly 2-way skewed
2-way

Figure 5: Conflict miss ratio for the column-associative, two-
way associative and skewed-associative organizations with
polynomial mapping. The conflict miss ratio of a conventional 2-
way associative cache is also depicted for comparison.

The marginal advantage of the polynomial mapping scheme can
be explained in a number of ways. Firstly, both schemes are really
quite similar; the principal advantage of polynomial mapping is the
guarantee of optimal behavior on address patterns that lead to
pathological conflict misses in a conventional mapping scheme.
Such optimality may not be a feature of bitwise XOR schemes, but
pathological cache behavior is also not a dominant feature of the
SPEC95 suite. Anyway, both schemes achieve a miss ratio that is
very close to that of a fully-associative cache.

On the other hand, the polynomial mapping provides a
significant improvement for the skewed-associative cache. For
three of the benchmarks (101, 102 and 146) this improvement is
quite important. For the others, the reduction in miss ratio is very
small, if any, since the miss ratio of the original mapping was
already very close to that of a fully-associative cache. Overall, the
skewed-associative cache using polynomial mapping and a pure
LRU replacement achieves a miss ratio practically identical to that
of a fully-associative cache (it is just 0.8% higher).

Figure 5 shows the conflict miss ratio for the column-
associative, two-way associative and skewed-associative
organizations with polynomial mapping. It can be seen that the in
the three cases, practically all conflict misses have been removed.

8 Swapping in the column-associative cache
In the previous sections, the column-associative cache did not
incorporate the swapping feature. As a result we can expect a lower
miss ratio but a higher percentage of hits requiring two probes. We
have compared the performance of the column-associative cache
both with and without swapping, using a bitwise XOR mapping
scheme taking bits. In this case, when a reference to
addressA misses in cache, it is brought tof0(A). If B is the address
of the data currently in that location, either it is moved to its
alternative location (f0(B) or f1(B)) or it is discarded if its alternative
location has been used more recently. In the same way, when data
is found in the second probe (f1(A)) it is moved tof0(A) and the data
currently in this location is moved or discarded following the same
criteria as in the case of miss. In any case, data is always placed in
an accessible location. We have observed that swapping increases
the average total miss ratio by a factor of 1.14, but also ensures that
almost all hits can be achieved with a single probe (96%).

miss ratio

column-
associative

2-way
associative

2-way
skewed assoc. fully-

assoc.
XOR Poly XOR Poly XOR Poly

101.tomcatv 13.8 12.8 17.0 14.8 20.0 12.6 12.5

102.swim 8.3 7.7 7.9 7.9 12.3 7.5 7.9

103.su2cor 9.1 9.1 9.6 9.9 9.1 9.4 8.9

104.hydro2d 17.1 17.2 17.2 17.1 17.1 17.1 17.5

107.mgrid 4.0 4.2 3.7 3.8 3.9 4.1 3.5

110.applu 6.6 6.5 6.9 6.9 6.3 6.4 5.9

125.turb3d 5.5 6.0 4.6 4.8 4.9 4.2 2.8

141.apsi 10.6 11.2 11.4 11.4 10.5 10.6 12.5

145.fpppp 4.0 2.7 2.7 2.8 2.2 2.3 1.7

146.wave 14.7 13.8 14.4 14.2 16.3 13.7 13.9

Average 9.36 9.12 9.54 9.37 10.24 8.78 8.71

Table 3: Miss ratios for a column associative cache, a two-way
associative cache and a two-way skewed-associative cache for the
two XOR-mapping schemes: bitwise XOR (XOR) and
polynomial mapping (Poly).

2l 2–

9 Conclusions
We have analyzed the performance of XOR-based placement
functions for cache memories using the SPEC 95 floating-point
benchmark suite. We have shown that XOR-mapping schemes
provide a very high improvement across a broad range of different
cache organizations: direct-mapped, set-associative, column-
associative and victim cache. We have also evaluated their effect on
the hash-rehash cache and presented performance measures of the
skewed-associative cache.

The main conclusion of this study is that XOR-based placement
functions significantly reduce the number of conflict misses for all
cache organizations. In particular, XOR-mapping combined with
(pseudo) two-way associativity eliminates practically all the
conflict misses, and obtains a miss ratio practically equal to that of
a fully associative cache.

We have also presented a low-cost implementation of LRU
replacement suitable for caches with two or more distinct mapping
functions based on XOR-mapping schemes, and shown that it
yields significant improvement over previously proposed pseudo-
LRU replacement schemes.

Two class of placement functions have been considered. The
first one is based on the bitwise exclusive OR of two bit strings. The
second class is the polynomial mapping proposed in [17] in the
context of interleaved memories.

For the first class of mapping functions, among the different
schemes evaluated, the lowest miss ratio is achieved by the column
associative cache, closely followed by the two-way set associative
cache, the two-way skewed-associative cache and the victim cache.
All of them achieve a miss ratio much lower than that of a
conventional four-way associative cache and close to that of a fully-
associative cache. For example, a two-way associative cache
achieves an average miss ratio that is just 1.09 times that of a fully-
associative cache. Similarly, a column-associative cache can
achieve a miss ratio between 1.07 and 1.23 times that of a fully-
associative cache, depending on whether swapping is implemented.
For comparison, a conventional direct-mapped cache has a miss
ratio that is 2.45 times that of a fully-associative cache.

Regarding polynomial mapping, we have shown that it provides
a marginal advantage over the simpler bitwise XOR schemes for the
two-way associative and column-associative organizations.
However, for the skewed-associative cache it achieves a significant
reduction in miss ratio. Combining the effects of a LRU
replacement and polynomial mapping, the miss ratio of the two-
way skewed associative cache is reduced from 1.27 to 1.01 times
that of a fully associative cache.

Comparing the three most effective organizations, i.e., skewed-
associative, column-associative and set-associative, we can see that
all achieve a very similar miss ratio. Each one may be preferable for
different reasons: a skewed-associative has the lowest miss ratio,
the column-associative has the lowest hit time and the set-
associative requires less hardware to implement a LRU
replacement.

In overall, we can conclude that XOR-based placement
functions are an extremely powerful technique for eliminating
conflict misses.

Acknowledgments
This work has been supported by the Spanish Ministry of Education
(grants CICYT TIC-429/95 and Acción Integrada Hispano-
Británica 202B); the British Council (grant 1016); and the UK
EPSRC (grant K19723).

We would like to thank the anonymous referees for their
constructive comments.

References
[1] Amdhal Corp.,470V/6 Machine Refernce Manual, 1976
[2] A. Agarwal,Analysis of Cache Performance for Operating

Systems and Multiprogramming,Kluwer Academic Publish-
ers, 1989, pp. 120-122.

[3] A. Agarwal, J. Hennessy and M. Horowitz, "Cache Perform-
ance of Operating Systems and Multiprogramming",ACM
Trans. on Comp. Systems,6, Nov. 1988, pp. 393-431.

[4] A. Agarwal and S.D. Pudar, "Column-Associative Caches:
A Technique for Reducing the Miss Rate of Direct-Mapped
Caches", inProc. Int. Symp. on Computer Architecture,
1993, pp. 179-190.

[5] T. Aspreyet al., "Performance Features of the PA7100
Microprocessor",IEEE Micro,13(3), June 1993, pp. 22-35.

[6] B. Calder, D. Grunwald and J. Emer, "Predictive Sequential
Associative Caches", inProc Int. Symp. on High Perform-
ance Computer Architecture,1996, pp. 244-253.

[7] D.A. Fotlandet al., "Hardware Design of the First HP Preci-
sion Architecture Computeres",Hewlet-Packard Journal,
38(3), March 1987, pp. 4-17.

[8] J.M. Frailong, W. Jalby and J. Lenfant, "XOR-Schemes: A
Flexible Data Organization in Parallel Memories", InProc.
Int. Conf. on Parallel Processing,1985, pp. 276-283.

[9] J. González and A. González, "Identifying Contributing Fac-
tors to ILP", inProc. Euromicro 96,1996

[10] D.T. Harper III, "Reducing Memory Contention in Shared
Memory Multiprocessors", inProc. Int. Symp. on Computer
Architecture,1991, pp. 66-73.

[11] D. Harper III and D. Linebarger, "A Dynamic Storage
Scheme for Conflict-Free Vector Access", inProc. Int.
Symp. on Computer Architecture,1989, pp. 72-77.

[12] J.L. Hennessy and D. Patterson,Computer Architecture: A
Quantitative Approach,Morgan Kaufmann Publiss., 1996.

[13] IBM, 3033 Processor Comples, Theory of Operation/Dia-
grams Manual-Processor Storage Control Function, vol. 4,
IBM, Poughkeepsie, N.Y., 1978

[14] N. P. Jouppi, "Improving Direct-Mapped Cache Perform-
ance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers", inProc. Int. Symp. on Computer
Architecture,1990, pp. 364-373.

[15] A. Norton and E. Melton, "A Class of Boolean Linear Trans-
formations for Conflict-free Power-of-two Stride Access", In
Proc. Int. Conf. on Parallel Processing,1987, pp. 247-254.

[16] B.R. Rau, M.S. Schlansker and D.W.L Yen, "The Cydra 5
Stride-Insensitive Memory System", InProc Int. Conf. on
Parallel Processing,1989, pp. 242-246.

[17] B.R. Rau, "Pseudo-Randomly Interleaved Memories", in
Proc. Int. Symp. on Computer Architecture,1991, pp. 74-83.

[18] A. Seznec, "A Case for Two-way Skewed-associative
Caches", inProc. Int. Symp. on Computer Architecture,
1993, pp. 169-178.

[19] A. Seznec and F. Bodin, "Skewed-associative Caches", In
Proc. Int. Conf. on Parallel Architectures and Languages
(PARLE),1993, pp. 305-316.

[20] A. J. Smith, "Cache Memories",ACM Computing Surveys,
14(4), Sept. 1982, pp. 473-530.

[21] G. S. Sohi,Logical Data Skewing Schemes for Interleaved
Memories in Vector Processors, Computer Science Techni-
cal Report #753, Univ. of Wisconsin-Madison, Sept. 1988.

[22] A. Srivastava and A. Eustace, "ATOM: A System for Build-
ing Customized Program Analysis Tools", inProc. SIGP-
LAN Conf. on Programming Language Design and
Implementation,1994.

[23] M. Valero et al., "Increasing the Number of Strides for Con-
flict-free Vector Access", inProc. Int. Symp. on Computer
Architecture,1992, pp. 372-381

