
Applied Databases

Handout 3. Storage and Indexing.

27 Oct 2010

Storage and Indexing

Reading: R&G Chapters 8, 9 & 10.1

We typically store data in external (secondary) storage. Why? Becuase:

• Secondary storage is cheaper. £100 buys you 1gb of RAM or 100gb of disk (2003

figures!)

• Secondary storage is more stable. It survives power cuts and – with care – system

crashes.

[Second point may be contentious – I’ve seen more disk failures than power cuts!]

AD 3.1

Differences between disk and main memory

• Smallest retrievable chunk of data: memory = 1 byte, disk = 1 page = 1kbyte (more

or less)

• Access time (time to dereference a pointer): memory < 10−8 sec, disk > 10−2 sec.

However sequential data, i.e. data on sequential pages, can be retrieved rapidly from disk.

AD 3.2

Communication between disk and main memory

A buffer pool keeps images of disk pages in main memory cache.

Also needed a table that maps between positions on the disk and positions in the cache

(frames) (in both directions)

Buffer pool

Disk

AD 3.3



When a page is requested

• If page is already in pool present, return address.

• If there is room in the pool, read page in and return address.

• If no room, choose a frame for replacement.

– if current frame is dirty – it has been written to – write frame to disk.

• read page in and return address.

Requesting process may pin page. Indicating that it “owns” it.

Page replacement policy: LRU, MRU, random, etc. Pathological examples defeat MRU

and LRU.

AD 3.4

Storing tuples

Tuples are traditionally stored contiguoulsy on disk. Three possible formats (at least) for

storing tuples.

% % % %

Offset array

Delimited

Fixed size

INT CHAR(4) VARCHAR(6) CHAR(6)

AD 3.5

Comments on storing tuples

Fixed format appears more efficient. We can “compile in” the offsets. But remember that

DB processing is dominated by i/o

Delimited can make use of variable length fields (VARCHAR) and simple compression (e.g.

deleting trailing blanks)

Fixed and delimited formats require extra space to represent null values. We get them for

free (almost) in the offset array representation.

AD 3.6

Placing Records on a Page

We typically want to keep “pointers” or object identifiers for tuples. We need

them if we are going to build indexes, and we’d like them to be persistent.

1 2 3 4
1

3

4

7

Array of tuples

Array of pointers

AD 3.7



Comments on page layouts

Array of tuples suitable for fixed length records.

• Object identifier is (page-identifier, index) pair.

• Cannot make use of space economy of variable-length record.

Pointer array is suitable for variable length records

• Object identifier is (page-identifier, pointer-index) pair.

• Can capitalize on variable length records.

• Records may be moved on a page to make way for new (or expanded) records.

AD 3.8

File organization – unordered data

Keep two lists: pages with room and pages with no room.

Full 

Free space

Variations:

• Keep an array of pointers.

• Order by amount of free space (for variable length tuples)

These are called heap files.

AD 3.9

Other organizations

• Sorted files. Records are kept in order of some attribute (e.g. Id). Records are assumed

to be fixed-length and “packed” onto pages.

That is, the file can be treated as an array of records.

• Hashed files. Records are kept in an array of pages indexed by some hash function

applied to the attribute. Naive example:

Tuple with id = 1234Page 34

. . . . . .
Hash function = id mod 100                 100 pages

AD 3.10

I/O Costs

We are primarily interested in the I/O (number of page reads and writes) needed to perform

various operations. Assume B pages and that read or write time is D

Scan Eq. Search Range Search Insert Delete

Heap BD 0.5BD BD 2D Search +D

Sorted BD D log2 B D log2 B + m∗ Search +BD Search +BD

Hashed 1.25BD D 1.25BD 2D Search +D

∗ m = number of matches

Assumes 80% occupancy of hashed file

AD 3.11



Indexing – Introduction

Index is a collection of data entries with efficient methods to locate, insert and delete data

entries.

Hashed files and sorted files are simple examples of indexing methods, but they don’t do

all of these efficiently.

We index on some key.

Note the index key is not (necessarily) the “key” in the database design sense of the term.

We can only organize a data file by one key, but we may want indexes on more than one

key.

AD 3.12

Example. Hash indexes and files

3000
3000
5004
5004

4003
2007
6003
6003

file of record id / sal
pairs hashed on age

Smith
Jones
Tracy

Ashby
Basu
Bristow

Cass
Daniels

44
40
44

3000
6003
5004

25
33
29

3000
4003
2007

50
22

5004
6003

File hashed on age

age mod 4 sal mod 4age sal

AD 3.13

Indexes are needed for optimization

How are these queries helped by the presence of indexes?

SELECT *

FROM Employee

WHERE age = 33

SELECT *

FROM Employee

WHERE age > 33

SELECT *

FROM Employee

WHERE sal = 3000

SELECT *

FROM Employee

WHERE sal > 3000

AD 3.14

What an index can provide

Given a key k, an index returns k∗ where k∗ is one of three things:

1. A data record (the tuple itself) with the search key value k

2. A pointer to a record with search key k together with k.

3. A list of pointers to records with search key k together with k.

AD 3.15



Clustered vs. Unclustered Indexes

If we use tree indexing (to be described) we can exploit the ordering on a key and make

range queries efficient.

An index is clustered if the data entries that are close in this ordering are stored physically

close together (i.e. on the same page).

Data entr ies

(Index File)
(Data f ile)

Data Records

Data entr ies

Data Records

CLUSTERED
UNCLUSTERED

AD 3.16

Tree indexing

Why not use the standard search tree indexing techniques that have been developed for

main memory data (variations on binary search trees): AVL trees, 3-3 trees, red-black

trees, etc?

Reason: binary search is still slow. 106 tuples (common) log2(10
6) = 20 – order 1

second because “dereferencing” a pointer on disk takes between 0.01 and 0.1 seconds.

Solution:

1. Use n-ary trees rather than binary.

2. Keep only keys and pointers at internal nodes. Leaves can be data values (either

records or record-id/key-value pairs)

AD 3.17

Range Search

Example of point (2). We can speed up ordinary binary search on a sorted array by keeping

indexes and page pointers in a separate file.

The “index file” will typically fit into cache.

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

AD 3.18

Consider queries such as SELECT *

FROM Employee

WHERE 20 < Sal AND Sal < 30

or

“Find all employees whose name begins with ‘Mac’.” (also a range search)

AD 3.19



ISAM

ISAM = Indexed Sequential Access Method: a search tree whose nodes contain m keys

and m + 1 pointers. m is chosen to “fill out” a page. A “pointer” is a page-id.

The pointer pi between keys ki−1 and ki points to a subtree whose keys are all in the

range ki−1 < k < ki.

Non− leaf
Pages

Overflow 
page Pr imary pages

Pages
Leaf

PP00 KK11 PP11KK 22 PP22 KKmmPPmm

AD 3.20

How ISAM works

• Create file(s): Data entries are sorted. Leaf data pages are allocated sequentially. Index

is constructed. Space for overflow pages is allocated.

• Find an entry (search). Obvious generalisation of method for binary search tree.

– If pages are large, we can also do binary search on a page, but this may not be worth

the effort. I/o costs dominate!

• Insert an item. Find leaf data page (search) and put it there. Create overflow page if

needed.

• Delete and item. Find leaf data page (search) and remove it. Maybe discard overflow

page.

Note. In ISAM, the index remains fixed after creation. It is easy to construct pathological

examples which make ISAM behave badly.

AD 3.21

A simple ISAM example

This is not realistic. The example is only a 3-ary tree. In practice one might have 100-way

branching.

Note that we can perform an ordered traversal of the data entries by a traversal of the

index.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

AD 3.22

ISAM after inserts

Inserting 23∗, 48∗, 41∗, 42∗

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Pr imary

AD 3.23



ISAM after deletes

Deleting 42∗, 51∗

Note that 51 appears as a key but no longer as a leaf value.

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Main problem with ISAM: index is fixed. Can become worse than useless after a long series

AD 3.24

of inserts and deletes.

AD 3.25

B+ Tree. The Standard Index

• Each node (page) other than the root contains between d and 2d entries. d is called

the order of the tree. Pages are not always full.

• Suitable for both equality and range searches.

• Lookup (equality), insertion and deletion all take approx. logk(N) page accesses where

d ≤ k ≤ 2d.

• Tree remains perfectly balanced! All the leaf nodes are the same distance from the

root.

• In practice B-trees are never more than 5 levels deep, and the top two levels are typically

cached.

Index Entr ies

Data Entr ies
(" Sequence set" )

(Direct search)

AD 3.26

Example B+ Tree

Search is again the obvious generalization of binary tree search. Could do binary search on

nodes.

Key values need not appear in any data entries.

Data pages are linked (we’ll see why shortly)

AD 3.27



Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

AD 3.28

Inserting into a B+ Tree

• Find leaf page that should hold k∗

• If page is not full, we can insert k∗ and we are done.

• If not, split the leaf page into two, putting “half” he entries on each page and leaving

a middle key k′to be inserted in the node above.

• Recursively, try to insert k′ in the parent node.

• Continue splitting until either we find a node with space, or we split the root. The root

need only contain two children.

Either the tree grows fatter or (very occasionally) it grows deeper by splitting the root.

AD 3.29

Example Insertion

Inserting 8∗. The page is full so the leaf page splits and 5, the middle key, is pushed up.

(5∗ remains in the leaf page.)

2* 3* 5* 7* 8*

55

The parent page is also full so this page splits and 17 is pushed up. (This is not in a data

entry, so it does not remain on one of the child pages.)

55 24 30

17

13

AD 3.30

The new root contains just 17

AD 3.31



The Resulting Tree

33* 34* 38* 39*24* 27* 29*19* 20* 22*

24 30

17

14* 16*

root

2* 3*

5 13

8*7*5*

We could have avoided the root split by sideways redistribution of data on the leaf pages.

But how far sideways does one look?

AD 3.32

More properties of B+ trees

• Efficient deletion

• Bulk insertion from ordered data

AD 3.33

B+ Trees in practice

• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1 Mbyte

– Level 3 = 17,689 pages = 133 MBytes

AD 3.34

Hashing

An alternative to tree indexing

2961
1297
 657
8209

2706
1298
7058

Primary pages Overflow Pages

. . .

. . .
127

0

Id mod 128

2577

18

17

• Lookup, insert and update usually

take 1 read except when

restructuring is needed.

• No good for range searches.

• Typically hash to bucket (page)

h(x) mod m where m is number

of pages.

AD 3.35



Expanding Hash Tables

If the hash table becomes “full”, which can happen because

• we don’t have overlow pages and a page becomes full, or

• the number (ratio) of overflow pages exceeds some threshold,

we need to restructure the hash table.

We can double the number of buckets and split each one.

E.g. 1297 mod 128 = 17 = 1297 mod 256. So 1297 stays on page 17.

However 2961 mod 128 = 17 but 2961 mod 256 = 145, so 2961 gets moved from

page 17 to page 145.

AD 3.36

Doubling the table size

1298

 657
 

7058
2706

8209
2577

Primary pages Overflow Pages

Id mod 256

. . .

. . .

. . .

18

17

145 2961

146

 657

AD 3.37

Alternative Hashing Techniques

Reconfiguring a whole hash table because can be very time consuming. Need methods of

“amortizing” the work.

• Extendible hashing Keep an index vector of n pointers. Double the index when needed,

but only split pages when they become full.

• Linear Hashing. Clever hash function that splits pages one at a time. This does not

avoid overflow pages, but we add a new page when the number of records reaches a

certain threshold. (80-90%) of maximum capacity.

AD 3.38

Storage and indexing – Review

• Physical properties of disks and seek times for random and sequential access.

• File organization

• Representation and placement of tuples

• Clustering

• ISAM files

• B+ trees

• Hash tables

• Relative merits of B+ trees and hashing

AD 3.39


