
DBS Database Systems

Designing Relational Databases

Peter Buneman

12 October 2010

SQL DDL

In its simplest use, SQL’s Data Definition Language (DDL) provides a name and a type

for each column of a table.

CREATE TABLE Hikers (HId INTEGER,

HName CHAR(40),

Skill CHAR(3),

Age INTEGER)

In addition to describing the type or a table, the DDL also allows you to impose constraints.

We’ll deal with two kinds of constraints here: key constraints and inclusion constraints

DBS 3.1

Key Constraints

A key is a subset of the attributes that constrains the possible instances of a table. For

any instance, no two distinct tuples can agree on their key values.

Any superset of a key is also a key, so we normally consider only minimal keys.

CREATE TABLE Hikers (HId INTEGER,
HName CHAR(30),
Skill CHAR(3),
Age INTEGER,
PRIMARY KEY (HId))

CREATE TABLE Climbs (HId INTEGER,
MId INTEGER,
Date DATE,
Time INTEGER,
PRIMARY KEY (HId, MId))

Updates that violate key constraints are rejected.

Do you think the key in the second example is the right choice?

DBS 3.2

Inclusion Constraints

A field in one table may refer to a tuple in another relation by indicating its key. The

referenced tuple must exist in the other relation for the database instance to be valid. For

example, we expect any MId value in the Climbs table to be included in the MId column

of the Munros table.

SQL provides a restricted form of inclusion constraint, foreign key constraints.

CREATE TABLE Climbs (HId INTEGER,

MId INTEGER,

Date DATE,

Time INTEGER,

PRIMARY KEY (HId, MId),

FOREIGN KEY (HId) REFERENCES Hikers(HId),

FOREIGN KEY (MId) REFERENCES Munros(MId))

DBS 3.3

There’s much more to SQL DDL

Cardinality constraints, triggers, views. There are also many features for controlling the

physical design of the database.

Some of these will appear later in the course.

However, the two simple constraints that we have just seen, key constraints and foreign

key constraints are the basis for database design.

DBS 3.4

SQL – Summary

SQL extends relational algebra in a number of useful ways: arithmetic, multisets as well

as sets, aggregate functions, group-by. It also has updates both to the data and to the

schema. “Embeddings” exist for many programming languages. However, there are a

number of things that cannot be expressed in SQL:

• Queries over ordered structures such as lists.

• Recursive queries.

• Queries that involve nested structures (tables whose entries are other tables)

Moreover SQL is not extensible. One cannot add a new base type, one cannot add new

functions (e.g., a new arithmetic or a new aggregate function)

Some of these limitations are lifted in query languages for object-relational and object-

oriented systems.

DBS 3.5

Conceptual Modelling and Entity-Relationship Diagrams

[R&G Chapter 2]

Obtaining a good database design is one of the most challenging parts of building a

database system. The database design specifies what the users will find in the database

and how they will be able to use it.

For simple databases, the task is usually trivial, but for complex databases required that

serve a commercial enterprise or a scientific discipline, the task can daunting. One can

find databases with 1000 tables in them!

A commonly used tool to design databases is the Entity Relationship (E-R) model. The

basic idea is simple: to “conceptualize” the database by means of a diagram and then to

translate that diagram into a formal database specification (e.g. SQL DDL)

DBS 3.6

Conceptual Modelling – a Caution

There are many tools for conceptual modelling some of them (UML, Rational Rose, etc.)

are designed for the more general task of software specification. E-R diagrams are a

subclass of these, intended specifically for databases. They all have the same flavour.

Even within E-R diagrams, no two textbooks will agree on the details. We’ll follow R&G,

but be warned that other texts will use different convernmtions (especially in the way

many-one and many-many relationships are described.)

Unless you have a formal/mathematical grasp of the meaning of a diagram, conceptual

modelling is almost guaranteed to end in flawed designs.

DBS 3.7

Conceptual Design

• What are the entities and relationships that we want to describe?

• What information about entities and relationships should we store in the database?

• What integrity constraints hold?

• Represent this information pictorially in an E-R diagram, then map this diagram into a

relational schema (SQL DDL.)

DBS 3.8

ER digarams – the basics

In ER diagrams we break the world down into three kinds of things:

• Attributes. These are the things that we typically use as column names: Name, Age,

Height, Address etc.

Attributes are drawn as ovals: Name

• Entities. These are the real world “objects” that we want to represent: Students,

Courses, Munros, Hikers, A database typically contains sets of entitites.

Entity sets are drawn as boxes: Courses

• Relationships. This describes relationships among entitites, e.g. a students enrolls in a

course, a hiker climbs a Munro, ...

Relationships are drawn as diamonds: Enrolls

DBS 3.9

Drawing Entity Sets

The terms “entity” and “entity set” are often confused. Remember that boxes describe

sets of entities.

To draw an entity set we simpy connect it with its attributes

Munros

MId HeightMName Lat Long Rating

Note that we have indicated the key for this entity set by underlining it.

DBS 3.10

Drawing Relatonships

We connect relationships to the entities they “relate”. However relationships can also have

attributes. Note that Date and Time apply to Climbs – not to Hikers or Munros.

We connect relationships to enitity sets and attributes in the same way that we connected

entity sets to attributes.

Climbs

Date Time

MunrosHikers

DBS 3.11

The whole diagram

Munros

HeightRatingLongLatMNameMId HId HName Skill Age

Climbs Hikers

TimeDate

Note that lines connect entitites to attributes and relationships to entities and to attributes.

They do not connect attributes to attributes, entitites to entities, or relationships to

relationships. This is a “toy” diagram. Real ER diagrams can cover a whole wall or occupy

a whole book!

DBS 3.12

Obtaining the relational schema from an ER diagram

We now translate the ER diagram into a relational schema. Roughly epaking (this will not

always be the case) we generate a table for each entity and a table each relationship.

For each entity we generate a relation with the key that is specified in the ER diagram.

For example (SQL DDL)

CREATE TABLE Munros (
MId INTEGER,
MName CHAR(30),
Lat REAL,
Long REAL,
Height INTEGER,
Rating REAL,
PRIMARY KEY (RId))

CREATE TABLE Hikers (
HId INTEGER,
HName CHAR(30),
Skill CHAR(3),
Age INTEGER,
PRIMARY KEY (HId))

DBS 3.13

Obtaining the relational schema – continued

For each relationship we generate a relation scheme with attributes

• The key(s) of each associated entity

• Additional attribute keys, if they exist

• The associated attributes.

Also, the keys of associated attributes are foreign keys.

CREATE TABLE Climbs (HId INTEGER,
MId INTEGER,
Date DATE,
Time REAL,
PRIMARY KEY (HId,MId), ← also Date?
FOREIGN KEY (HId) REFERENCES Hikers,
FOREIGN KEY (MId) REFERENCES Munros);

DBS 3.14

Many-one Relationships

The relationship Climbs represents – among other things – a relation (in the mathematical

sense) between the sets associated with Munros and Hikers. That is, a subset of the set

of Munro/Hiker pairs. This is a many-many relation, but we need to consider others.

Many−Many Many−one One−Many One−one

DBS 3.15

A Many-one relationship

Consider the relationship between Employees and Departments. An Employee works

in at most one department. There is a many-one relationship between Employees and

Departments indicated by an arrow emanating from Employees

EmpID Name DName

Works−in

. . .

Employees Departments

. . .Addr

Note that an employee can exist without being in a department, and a department need

not have any employees.

DBS 3.16

The Associated DDL

CREATE TABLE Departments (
DeptID INTEGER,
Address CHAR(80),
PRIMARY KEY (DeptId))

and

CREATE TABLE Employees (
EmpID INTEGER,
NAME CHAR(10)
PRIMARY KEY (EmpId))

CREATE TABLE WorksIn (
EmpID INTEGER,
DeptID INTEGER,
PRIMARY KEY (EmpId),
FOREIGN KEY (EmpId)
REFERENCES Employees,

FOREIGN KEY (DeptID)
REFERENCES Departments)

or

CREATE TABLE Employees (
EmpID INTEGER,
NAME CHAR(10),
DeptID INTEGER,
PRIMARY KEY (EmpId),
FOREIGN KEY DeptID

REFERENCES Departments)

The key for WorksIn has “migrated” to

Employees.

DBS 3.17

1 – 1 Relationships?

These are typically created by database “fusion”. They arise through various “authorities”

introducing their own identification schemes.

Same−as

ISBN LOC−id

US−BookBook

.

The problem is that such a relationship is never quite 1-1. E.g. Scientific Name and

PubMed identifiers for taxa.

When can one “migrate” a key?

DBS 3.18

Participation Constraints

Suppose we also want to assert that every employee must work in some department. This

is indicated (R&G convention) by a thick line.

EmpID Name DName

Works−in

. . .

Employees Departments

. . .Addr

CREATE TABLE Departments (
DeptID INTEGER,
Address CHAR(80),
PRIMARY KEY (DeptId))

and

CREATE TABLE Employees (
EmpID INTEGER,
NAME CHAR(10),
DeptID INTEGER NOT NULL,
PRIMARY KEY (EMPID),
FOREIGN KEY DeptID
REFERENCES Departments)

Note: Many-one = partial function, many-one + participation = total function

DBS 3.19

Labelled Edges

It can happen that we need two edges connecting an entity set with (the same) relationship.

Made−from Part

IdQty Name . . .

Assemb

Sub

When one sees a figure like this there is typically a recursive query associated with it, e.g.,

“List all the parts needed to make a widget.”

What are the key and foreign keys for Made-from?

DBS 3.20

ISA relationships

An isa relationship indicates that one entity is a “special kind” of another entity.

Persons

Id Name

Employees

ISA

Employees

Salary . . .
Salary . . .

Persons

NameId . . .
. . .

The textbook draws this relationship as shown on the left, but the right-hand representation

is also common.

This is not the same as o-o inheritance. Whether there is inheritance of methods depends

on the representation and the quirks of the DBMS. Also note that, we expect some form

of inclusion to hold between the two entity sets.

DBS 3.21

Relational schemas for ISA

CREATE TABLE Persons (
Id INTEGER,
Name CHAR(22),
...
PRIMARY KEY (Id))

CREATE TABLE Employees (
Id INTEGER,
Salary INTEGER,

...
PRIMARY KEY (Id),
FOREIGN KEY (Id) REFERENCES Persons)

A problem with this representation is that we have to do a join whenever we want to do

almost any interesting query on Employees.

An alternative would be to have all the attributes of Persons in a disjoint Employees

table. What is the disadvantage of this representation? Are there other representations?

DBS 3.22

Disjointness in ISA relationships

When we have two entities that are both subclasses of some common entity it is always

important to know whether they should be allowed to overlap.

Employees Students

ISA

Persons

Can a person be both a student and an employee? There are no mechanisms in SQL DDL

for requiring the two sets to be exclusive. However it is common to want this constraint

and it has to be enforced in the applications that update the database.

DBS 3.23

Weak Entities

An entity that depends on another entity for its existence is called a weak entity.

DateQtySymbolId

Person Owns Portfolio

PIdFId

Contains Purchase

Mgr.

In this example a Purchase cannot exist unless it is in a Portfolio. The key for a

Purchase may be a compound FId/PId. Weak entities are indicated in R&G by thick

lines round the entity and relationship.

Weak entities tend to show up in XML design. The hierarchical structure limits what we

can do with data models.

DBS 3.24

Weak Entities – the DDL

CREATE TABLE Portfolio (
FId INTEGER,
Owner INTEGER,
Mgr CHAR(30),
PRIMARY KEY (FId),
FOREIGN KEY (Owner)
REFERENCES Person(Id))

CREATE TABLE Purchase (
PId INTEGER,
FId INTEGER,
Symbol CHAR(5),
QTY INTEGER,
Date DATE
PRIMARY KEY (FId, PId),
FOREIGN KEY (FId)

REFERENCES Portfolio
ON DELETE CASCADE)

ON DELETE CASCADE means that if we delete a portfolio, all the dependent Purchase

tuples will automatically be deleted.

If we do not give this incantation, we will not be able to delete a portfolio unless it is

“empty”.

DBS 3.25

Other stuff you may find in E-R diagrams

• Cardinality constraints, e.g., a student can enroll in at most 4 courses.

• Aggregation – the need to “entitise” a relationship.

• Ternary or n-ary relationships. No problem here, but our diagrams aren’t rich enough

properly to extend the notion of many-one relationships.

It is very easy to go overboard in adding arbitrary features to E-R diagrams. Translating

them into types/constraints is another matter. Semantic networks from AI had the same

disease – one that is unfortunately re-infecting XML.

DBS 3.26

E-R Diagrams, Summary

E-R diagrams and related techniques are the most useful tools we have for database design.

The tools tend to get over-complicated, and the complexities don’t match the

types/constraint systems we have in DBMSs

There is no agreement on notation and little agreement on what “basic” E-R diagrams

should contain.

The semantics of E-R diagrams is seldom properly formalized. This can lead to a lot of

confusion.

DBS 3.27

Review

• Basics, many-one, many-many, etc.

• Maping to DDL

• “Entitising” relationships.

• Participation, ISA, weak entities.

DBS 3.28

Relational Database Design and Functional
Dependencies

Reading: R&G Chapter 19

• We don’t use this to design databases (despite claims to the contrary.)

• ER-diagrams are much more widely used.

• The theory is useful

– as a check on our designs,

– to understand certain things that ER diagrams cannot do, and

– to help understand the consequences of redundancy (which we may use for efficiency.)

– also in OLAP designs and in data cleaning

DBS 3.29

Not all designs are equally good!

• Why is this design bad?

Data(Id, Name, Address, CId, Description, Grade)

• And why is this design good?

Student(Id, Name, Address)

Course(CId, Description)

Enrolled(Id, CId, Grade)

DBS 3.30

An example of the “bad” design

Id Name Address CId Description Grade

124 Knox Troon Phil2 Plato A

234 McKay Skye Phil2 Plato B

789 Brown Arran Math2 Topology C

124 Knox Troon Math2 Topology A

789 Brown Arran Eng3 Chaucer B

• Some information is redundant, e.g. Name and Address.

• Without null values, some information cannot be represented, e.g, a student taking no

courses.

DBS 3.31

Functional Dependencies

• Recall that a key is a set of attribute names. If two tuples agree on the a key, they

agree everywhere (they are the same).

• In our “bad” design, Id is not a key, but if two tuples agree on Id then they agree on

Address, even though the tuples may be different.

• We say “Id determines Address” written Id→ Address.

• A functional dependency is a constraint on instances.

DBS 3.32

Example

Here are some functional dependencies that we expect to hold in our student-course

database:

Id→ Name, Address

CId→ Description

Id, CId→ Grade

Note that an instance of any schema (good or bad) should be constrained by these

dependencies.

A functional dependency X → Y is simply a pair of sets. We often use sloppy notation

A, B → C, D or AB → CD when we mean {A, B} → {C, D}

Functional dependencies (fd’s) are integrity constraints that subsume keys.

DBS 3.33

Definition

Def. Given a set of attributes R, and subsets X, Y of R, X −→ Y is a functional

dependency (read “X functionally determines Y ” or “X determines Y ”) if for any instance

r of R, and tuples t1, t2 in r, whenever t1[X] = t2[X] then t1[Y] = t2[Y].

(We use t[X] to mean the “projection” of the tuple t on attributes X)

A superkey (a superset of a key) is simply a set X such that X → R

A key can now be defined, somewhat perversely, as a minimimal superkey.

DBS 3.34

The Basic Intuition in Relational Design

A database design is “good” if all fd’s are of the form K → R, where K is a key for R.

Example: our bad design is bad because Id→ Address, but Id is not a key for the table.

But it’s not quite this simple. A→ A always holds, but we don’t expect any attribute A

to be a key!

DBS 3.35

Armstrong’s Axioms

Functional dependencies have certain consequences, which can be reasoned about using

Armstrong’s Axioms:

1. Reflexivity : if Y ⊆ X then X → Y

(These are called trivial dependencies.)

Example: Name, Address → Address

2. Augmentation: if X → Y then X ∪W → Y ∪W

Example: Given CId → Description, then CId,Id → Description,Id. Also, CId

→ Description,CId

3. Transitivity : if X → Y and Y → Z then X → Z

Example: Given Id,CId → CId and CId → Description, then Id, CId →

Description

DBS 3.36

Consequences of Armstrong’s Axioms

1. Union: if X → Y and X → Z then X → Y ∪ Z.

2. Pseudotransitivity: if X → Y and W ∪ Y → Z then X ∪W → Z.

3. Decomposition: if X → Y and Z ⊆ Y then X → Z

Try to prove these using Armstrong’s Axioms!

DBS 3.37

An example

Proof of union.

1. X → Y and X → Z [Assumption]

2. X → X ∪ Y [Assumption and augmentation]

3. X ∪ Y → Z ∪ Y [Assumption and augmentation]

4. X → Y ∪ Z [2, 3 and transitivity]

DBS 3.38

Closure of an fd set

Def. The closure F + of an fd set F is given by

{X → Y | X → Y can be deduced from F Armstrong’s axioms}

Def. Two fd sets F, G are equvalent if F + = G+.

Unfortunately, the closure of an fd set is huge (how big?) so this is not a good way to test

whether two fd sets are equivalent.

A better way is to test whether each fd in one set follows from the other fd set and vice

versa.

DBS 3.39

Closure of an attribute set

Given a fd set set F , the closure X+ of an attribute set X is given by:

X
+ =

[

{Y | X → Y ∈ F
+}

Example. What are the the following?

• {Id}+

• {Id,Address}+

• {Id,CId}+

• {Id,Grade}+

DBS 3.40

Implication of a fd

“Is X → Y ∈ F +?” (“Is X → Y implied by the fd set F ”) can be answered by

checking whether Y is a subset of X+. X+ can be computed as follows:

X+ := X

while there is a fd U → V in F such that U ⊆ X+ and V 6⊆ X+

X+ := X+ ∪ V

Try this with Id,CId→ Description,Grade

DBS 3.41

Minimal Cover

A set of functional dependencies F is a minimal cover iff

1. Every functional dependency in F is of the form X → A where A is a single attribute.

2. For no X → A in F is F − {X → A} equivalent to F

3. For no X → A in F and Y ⊂ X is F − {X → A} ∪ {Y → A} equivalent to F

Example: {A→ C, A→ B} is a minimal cover for {AB → C, A→ B}

A minimal cover need not be unique. Consider {A → B, B → C, C → A} and

{A→ C, B → A, C → B}

DBS 3.42

Why Armstrong’s Axioms?

Why are Armstrong’s axioms (or an equivalent rule set) appropriate for fd’s.

They are consistent and complete.

“Consistent” means that any instance that satisfies every fd in F will satisfy every derivable

fd – the fd’s in F +

“Complete” means that if an fd X → Y cannot be derived from F then there is an

instance satisfying F but not X → Y .

In other words, Armstrong’s axioms derive exactly those fd’s that can be expected to hold.

DBS 3.43

Proof of consistency

This comes directly from the definition. Consider augmentation, for example. This says

that if X → Y then X ∪W → Y ∪W .

If an instanceI satisfies X → Y then, by definition, for any two tuples t1, t2 in

I, if t1[X] = t2[X] then t1[Y] = t2[Y]. If, in adition, t1[W] = t2[W] then

t1[Y ∪W] = t2[Y ∪W].

Go through all the other axioms similarly.

DBS 3.44

Proof of completeness

We suppose X → Y 6∈ F + and construct an instance that satisfies F + but not X → Y .

We first observe that, since X → Y 6∈ F +, there is at least one (single) attribute A ∈ Y

such that X → A 6∈ F +. Now we construct the table with two tuples that agree on X+

but disagree everywhere else.

X A X+ −X rest of R

x1 x2 . . . xn a1,1 v1 v2 . . . vn w1,1 w2,1 . . .

x1 x2 . . . xn a1,2 v1 v2 . . . vn w1,2 w2,2 . . .

Obviously this table fails to satisfy X → Y . We also need to check that it satisfies any

fd in F and hence any fd in F +

DBS 3.45

Decomposition

Consider the attribute our attribute set. We have agreed that we need to decompose it in

order to get a good design, but how?

Data(Id, Name, Address, CId, Description, Grade)

Why is this decomposition bad?

R1(Id, Name, Address)

R2(CId, Description,Grade)

Information is lost in this decomposition but how do we express this loss of information?

DBS 3.46

Lossless join decomposition

R1, R2, . . . , Rk is a lossless join decomposition with respect to a fd set F if, for every

intance of R that satisfies F ,

πR1
(r) ⊲⊳ πR2

(r) . . . πRk
(r) = r

Example:

Id Name Address CId Description Grade

124 Knox Troon Phil2 Plato A

234 McKay Skye Phil2 Plato B

What happens if we decompose on {Id, Name, Address} and {CId,

Description, Grade} or on {Id, Name, Address, Description, Grade} and

{CId, Description}?

DBS 3.47

Testing for a lossless join

Fact. R1, R2 is a lossless join decomposition of R with respect to F if at least one of

the following dependencies is in F +:

(R1 ∩ R2)→ R1 −R2

(R1 ∩ R2)→ R2 −R1

Example: with respect to the fd set

Id → Name, Address

CId → Description

Id, CId → Grade

is {Id, Name, Address} and {Id, CId, Description, Grade} a lossless

decomposition?

DBS 3.48

Dependency Preservation

Given a fd set F , we’d like a decomposition to “preserve” F . Roughly speaking we want

each X → Y in F to be contained within one of the attribute sets of our decomposition.

Def. The projection of an fd set F onto a set of attributes Z, FZ is given by:

FZ = {X → Y | X → Y ∈ F
+

and X ∪ Y ⊆ Z}

A decomposition R1, R2, . . . Rk is dependency preserving if

F
+

= (FR1 ∪ FR2 ∪ . . . ∪ FRk
)
+

If a decomposition is dependency preserving, then we can easily check that an update on

an instance Ri does not violate F by just checking that it doesn’t violate those fd’s in

FRi
.

DBS 3.49

Example 1

The scheme: {Class, Time, Room}

The fd set: Class → Room

Room,Time → Class

The decomposition {Class, Room} and {Room, Time}

Is it lossless?

Is it dependency preserving?

What about the decomposition {Class, Room} and {Class, Time}?

DBS 3.50

Example 2

The scheme: {Student, Time, Room, Course, Grade}

The fd set: Student, Time → Room

Student, Course → Grade

The decomposition {Student, Time, Room} and {Student, Course, Grade}

It it lossless?

Is it dependency preserving?

DBS 3.51

Relational Database Design

Earlier we stated that the idea in analysing fd sets is to find a design (a decomposition)

such that for each non-trivial dependency X → Y (non-trivial means Y 6⊆ X), X is a

superkey for some relation scheme in our decomposition.

Example 1 shows that it is not possible to achieve this and to preserve dependencies.

This leads to two notions of normal forms....

DBS 3.52

Normal forms

Boyce-Codd Normal Form (BCNF) For every relation scheme R and for every X → A

that holds on R, either

• A ∈ X (it is trivial), or

• X is a superkey for R.

Third Normal Form (3NF) For every relation scheme R and for every X → A that holds

on R,

• A ∈ X (it is trivial), or

• X is a superkey for R, or

• A is a member of some key of R (A is “prime”)

DBS 3.53

Observations on Normal Forms

BCNF is stronger than 3NF.

BCNF is clearly desirable, but example 1 shows that it is not always achievable.

There are algorithms to obtain

• a BCNF lossless join decomposition

• a 3NF lossless join, dependency preserving decomposition

The 3NF algorithm uses a minimal cover.

DBS 3.54

So what’s this all for?

Even though there are algorithms for designing databases this way, they are hardly ever

used. People normally use E-R diagrams and the like. But...

• Automated procedures (or human procedures) for generating relational schemas from

diagrams often mess up. Further decomposition is sometimes needed (or sometimes

thet decompose too much, so merging is needed)

• Understanding fd’s is a good “sanity check” on your design.

• It’s important to have these criteria. Bad design w.r.t. these criteria often means that

there is redundancy or loss of information.

• For efficiency we sometimes design redundant schemes deliberately. Fd analysis allows

us to identify the redundancy.

DBS 3.55

Functional dependencies – review

• Redundancy and update anomalies.

• Functional dependencies.

• Implication of fd’s and Armstrong’s axioms.

• Closure of an fd set.

• Minimal cover.

• Lossless join decomposition and dependency preservation.

• BCNF and 3NF.

DBS 3.56

