Data Sharing:
Querying and Linking Distributed and Autonomous Data
Yang Cao, Wenfei Fan, Peter Buneman
University of Edinburgh

Background

Data sharing: healthcare, e-government, business intelligence, open bank . . .
● Tasks: querying and linking
● Data: distributed, heterogeneous

Challenges:
● data owners ("private") vs. users ("open")
● limited resources (distributed databases) vs. big data analytics (cloud)
● heterogeneous vs. homogeneous

Heterogeneity in Data Sharing

● multiple types of peers
● data owners and users
● varying trust levels and security guarantees
● consequently, varying privacy overheads
● centralised database does not fit

A Model for Querying Shared Data

Data sharing protocols ρ specifying:
● capsules: logic units for computations over shared data
● hosts: data owners that host capsules
● pair-wise privacy requirements:
 ○ permitted capsule specifications
 ○ secure communication overheads

Heterogeneous distributed query plan: A DAG of atomic operations

Step (1): generating toll-minimized distributed plan ξQ
● toll-minimized ξop for each op of Q
● an O(log n)-approximation algorithm for Π

Step (2): optimizing ξQ within the toll budget
● via an atomic operator κ for "rebalancing" ξQ
● a near-optimal design of κ (2-approximation of the optimal for Π)

[Experimental study]:
● heterogeneity has a big impact on querying shared data
● existing systems can be integrated with our method as capsules and alleviate efficiency bottleneck in the heterogeneous setting
● it speeds up SMCQL by 18+ times over 1GB of TPCH data.

Linking Entities across Relations and Graphs

Heterogeneous Entity Linking: given relational database D and graph G, identity tuples in D and vertices in G that refer to the same real-world entity.

[Parametric simulation]:
● take functions and thresholds for measuring vertex closeness, path associations and properties as parameters
● combine topological and semantic matching by extending graph simulation
● decide whether (t, v) is a match in quadratic-time

[Learning parameters]:
● label similarity functions: BERT-based embedding + metric learning
● picking top-k properties of vertices via LSTM network and path resource allocation.

[System HER]:
● convert D to a canonical graph GD following RDB2RDF and then invoke parametric simulation over GD and G
● decide whether t ∈ D and v of G make a match;
● compute all vertices in G that match a given tuple t ∈ D;
● find all matches across D and G.

Joins Across Relations and Graphs

SQL across a relational database D and a graph G via semantic joins.

Algebra: Graph Relational Algebra across relations D and graphs G

Q := R \ P x Q \ σ \{Q | Q1 \times Q2 \ | Q1 \cup Q2 \ | Q1 \ \ Q2 \} \ \ R \bowtie G \ Q \bowtie G.

[Static Join]: R \bowtie G over a relational database D and graph G:

\{(t, v) \ | (t, v) \in f(D, G), (v, id, t') \in h(D, G)\}

\{f(D, G): (t, v) \in f(D, G) \iff t \in D \ \ \mbox{and} \ v \in G \ MAKES A HER MATCH\}

h(S, G) (join attribute extraction): a set of tuples, returns a schema R_C and an instance h(S, G) of schema R_C by extracting corresponding properties of the vertices in f(S, G) that match tuples in S.

[Dynamic Join]: Q \bowtie G where Q is a sub-query that returns a set S of tuples (Q may also contain static/dynamic joins), it returns:

\{(t, v) \ | S = Q(D), (t, v) \in f(S, G), (v, id, t') \in h(S, G)\}

[System RGAP]: supporting semantic joins over existing SQL systems
● h(S, G): (a) sentence and sequence embedding for vertex and edge label encoding; (b) K-means clustering for attribute extraction.
● Emissive joins: dynamic joins that can be reduced to static joins.
● Heuristic joins: approximation of non-entitic dynamic joins

References

Deep Algorithmic Question Answering

Motivation
Ability to reason in a step-by-step "algorithmic" manner that can be inspected and verified for its correctness in the domain of question answering (QA).

We propose **Deep Algorithmic Question Answering** ([1]), an approach to algorithm reasoning for QA based on three desirable properties: interpretability, generalizability, and robustness. We conclude that they are best achieved with a combination of hybrid and compositional AI.

Problem
• Tasks such as the automatic selection of KBs and relevant knowledge, choice of inference algorithms, and how to combine them, are all important to fully automate the QA process.
• We argue that these tasks should be part of the AI models which are built for QA tasks, as they are key ingredients in the full automation of the QA process.

Proposed Model
Hybrid inference graphs with functional nodes.

Inference Graph
Construct and expanded dynamically through the decompositions of its functional nodes using rules that are learned (see Fig. 2).

Functional nodes
• Represent data
• Specify operations to be applied
• Encode a model to convert between the symbolic and vectorized representations of the node.

A Systems Approach
Improving the inference capabilities and explainability of QA systems via "whole system reasoning" [1,2].

Automatic Knowledge Source Selection [3]

Aim:
• Discover new knowledge sources.
• Identify and align equivalent entities and relationships (properties) across different knowledge graphs (KGs)

Process:
• Discovery
 • Crawl websites following Linked Data URIs
 • (in Schema.org or JSON-LD formats)
• Introspection: "Upper Ontology" to capture metadata about KGs.
• Alignment: Update existing upper ontology

Usage:
• LOOKUP operation uses upper ontology to find KGs that have relevant data.

Automatic Statistical Model Selection

GPy-ABCD ([4])
• A more configurable implementation of the ABCD (Automatic Bayesian Covariance Discovery) system
• An iterative modular Gaussian Process regression framework
• A flexible class of nonparametric models to fit data
• Produces short text descriptions of fit models

SMART: Statistical Methodology Advisor at Reasoning Time
• Selects and performs statistical methods given a query and data features;
• Uses an ontology of various query tags, statistical methods and output types.

References: