
CvxLean
a convex optimization modeling framework

based on the Lean 4 proof assistant

Ramon Fernández Mir Paul Jackson
Alex Bentkamp Jeremy Avigad

ICCOPT
July 21st, 2025

1 / 16



Proof assistants
A proof assistant provides an environment for

I Formally expressing mathematical definitions and theorems

I Describing proofs.

I Having those proofs formally checked

I Automating expression manipulation & proof generation

State of the art:

I Large libraries (e.g. UG math and more)
I Applications to

I math teaching & research
I formal verification of hardware and software
I programming language foundations

I Industrial take-up (e.g. Intel, AMD, Apple, AWS, Meta, IOG)

Examples: Lean, Coq, Isabelle/HOL, ACL2, Agda

2 / 16



DCP example in CvxLean

def p :=

optimization (x y : R)
minimize -sqrt (x - y)

subject to

c1 : y = 2*x - 3

c2 : x^2 ≤ 2

c3 : 0 ≤ x - y

equivalence eqv/q : p := by dcp

q now bound to

optimization (x y t.0 t.1 : R)
minimize -t.0

subject to

c1’ : zeroCone (2*x - 3 - y)

c2’ : nonnegOrthCone (2 - t.1)

c3’ : rotatedSoCone t.1 0.5 ![x]

c4’ : rotatedSoCone (x - y) 0.5 ![t.0]

3 / 16



DCP example in CvxLean (continued)

CvxLean interfaces to the MOSEK conic solver

solve p

#print p.conicForm -- shows the problem in conic form

#eval p.status -- "PRIMAL_AND_DUAL_FEASIBLE"

#eval p.value -- -2.101003

#eval p.solution -- (-1.414214, -5.828427)

4 / 16



Atom library

Currently, CvxLean defines 107 atoms, including:

I 22 classes of affine atoms, including elementary operations
(+, −, ·, and /) and various operations to manipulate vectors
and matrices.

I 11 classes of convex atoms: absolute value, exponential,
Huber loss, positive inverse, Kullback-Leibler divergence,
log-sum-exp, max, `2-norm, some powers (2, −2, and −1),
quadratic-over-linear, and x · exp(x).

I 6 classes of concave atoms: entropy, geometric mean,
logarithm, log-det, min, and square root.

5 / 16



Atom declaration for square-root
I curv := ConcaveFn

I domain := R, and args := (x : R) with
inputKind(1) = Increasing.

I vconds(x) := 0 ≤ x

I expr(x) :=
√
x

I impDomain(x) := R, and impVars := (v : R)

I impObj(x , v) := v

I impConstrs :=
[
λ(x , v). (x , 0.5, v) ∈ Q3

r

]
CvxLean generates statements of desired properties

I feasibility : ∀x : R. 0 ≤ x ⇒
(
x , 0.5,

√
x
)
∈ Q3

r

I monotonicity :
∀x , y : R. 0 ≤ x ⇒ 0 ≤ y ⇒ x ≥ y ⇒

√
x ≥ √y

I bounds : ∀x , v : R. (x , 0.5, v) ∈ Q3
r ⇒ v ≤

√
x

I vcondElim : ∀x , y , v : R. (x , 0.5, v) ∈ Q3
r ⇒ y ≥ x ⇒ 0 ≤ y

which all must be proven.
6 / 16



Optimization problem equivalences

Let P be a minimization problem defined over domain D
Let Q be defined over E .

P and Q are equivalent if there exist maps
ϕ : D → E and ψ : E → D such that:

(ϕopt) ∀x . optimalP(x)⇒ optimalQ(ϕ(x))

(ψopt) ∀y . optimalQ(y)⇒ optimalP(ψ(y))

Can also add

(ϕfeas) ∀x . feasibleP(x)⇒ feasibleQ(ϕ(x))

(ψfeas) ∀y . feasibleQ(y)⇒ feasibleP(ψ(y))

7 / 16



Putting optimization problems into DCP form
Sometimes initial user problems need transformations to put them
into DCP form.

Minimize x

subject to 0.001 ≤ x
1√
x
≤ exp(x)

Not in DCP form

≡

Minimize x

subject to 0.001 ≤ x
exp(−x) ≤

√
x

In DCP form

A possible sequence of rewrites:

1√
x
≤ exp(x)  1 1 ≤ exp(x)

√
x  2 1 ≤

√
x exp(x)

 3
1

exp(x)
≤
√
x  4 exp(−x) ≤

√
x

Rewrite rules applied bidirectionally (steps 1 & 3).
No obvious cost metric being reduced.

Manual guidance of rewrites very tedious. Automation needed . . .
8 / 16



A preDCP transformation tactic for Lean

def p : Minimization R R :=

optimization (x : R)
minimize (x)

subject to

h1 : 1 / 1000 ≤ x

h2 : 1 / (sqrt x) ≤ exp x

equivalence eqv/q : p := by pre_dcp

#print q

-- def q : Minimization R R :=

-- optimization (x : R)
-- minimize x

-- subject to

-- h1 : 1 / 1000 ≤ x

-- h2 : exp (-x) ≤ sqrt x

pre_dcp uses e-graphs and e-graph rewriting for an efficient
breadth-first search of equivalent problems

9 / 16



E-graphs and e-graph rewriting
An e-graph represents a set of terms and a congruence relation on
those terms. E-graph rewriting adds new terms equal to existing
terms

{1 ≤
√
x exp(x),

1/
√
x ≤ exp(x)}

{1 ≤ exp(x)
√
x ,

1 ≤
√
x exp(x),

1/
√
x ≤ exp(x)}

=⇒
uv  vu

10 / 16



Example run of preDCP tactic

Started with geometric programming problem, after change of
variables

I 4 variables, 8 constraints

I Problem size 97 to begin, 104 at end

I 37k rewrite rule matches

I 41k nodes in e-graph

I 123 rewrite steps to justify transformation

I 19 iterations of parallel rewriting

I 5s for e-graph computations,
10s for verification in Lean

11 / 16



Related work

Formally verifying solver output

I ValidSDP (Coq)

I SDP-based non-linear-arithmetic prover (HOL Light)

Using interval arithmetic within solver: VSDP

Formally verifying convex optimization algorithms
(Peking University, using Lean)

12 / 16



Conclusions and questions

CvxLean implements & formally verifies
I automatic DCP form to conic form tranformations,
I manually-guided & automatic transformations into DCP form

Questions for DCP Community
I When do you care about problem transformation correctness,

and how much?
I Are there concerns about correctness of convex solvers?
I What does correctness mean, when

I using floating-point arithmetic?
I problem parameters are approximate?

I How important is integration with e.g. CvxPy?
I What interaction expertise level(s) are appropriate?
I Is automatic transformation into DCP form useful?
I What further atoms or features are most desirable?
I Where can larger problem examples be found?

13 / 16



Further Information about CvxLean

I Code
https://github.com/verified-optimization/CvxLean

I Transforming optimization problems into Disciplined Convex
Programming form.
R. Fernández Mir, P. Jackson, S. Bhat, A. Goens, T. Grosser.
International Conference on Intelligent Computer Mathematics (CICM).
2024.
https:

//link.springer.com/chapter/10.1007/978-3-031-66997-2_11

I Verified reductions for optimization
A. Bentkamp, R. Fernández Mir, J. Avigad
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 2023.
https:

//link.springer.com/chapter/10.1007/978-3-031-30820-8_8

I Verified transformations for convex programming
Ramon Fernández Mir. PhD Thesis. July 2024.
https://era.ed.ac.uk/handle/1842/42057

14 / 16

https://github.com/verified-optimization/CvxLean
https://link.springer.com/chapter/10.1007/978-3-031-66997-2_11
https://link.springer.com/chapter/10.1007/978-3-031-66997-2_11
https://link.springer.com/chapter/10.1007/978-3-031-30820-8_8
https://link.springer.com/chapter/10.1007/978-3-031-30820-8_8
https://era.ed.ac.uk/handle/1842/42057


Core Lean definitions

structure Minimization (D R : Type) where

objFun : D → R

constraints : D → Prop

variable {D R : Type} [Preorder R] (p : Minimization D R)

def feasible (x : D) : Prop := p.constraints x

def optimal (x : D) : Prop :=

p.feasible x ∧
∀ y, p.feasible y → p.objFun x ≤ p.objFun y

structure Solution where

point : D

isOptimal : p.optimal point

15 / 16



preDCP tactic configuration

Atoms
unary : −(·), (·)−1, | · |,

√
·, log, exp, xexp, entr,

binary : +, −, ×, /, ˆ,min, max, qol, geo, lse, norm2

Rewrite rules (17 unidirectional, 51 bidirectional)

1. On R-valued terms

∀x ∈ R.
1

exp(x)
! exp(−x)

2. On propositions

∀a, b, c ∈ R. c > 0⇒
(a
c
≤ b! a ≤ bc

)
3. On whole problems

∀f , cs. (∀x . cs(x)⇒ f (x) > 0)⇒ (f , cs) (λx .log(f (x)), cs)

16 / 16


