CvxLean
a convex optimization modeling framework
based on the Lean 4 proof assistant

Ramon Fernandez Mir Paul Jackson
Alex Bentkamp Jeremy Avigad

ICCOPT
July 215t 2025

1/16

Proof assistants
A proof assistant provides an environment for
» Formally expressing mathematical definitions and theorems
» Describing proofs.
» Having those proofs formally checked

» Automating expression manipulation & proof generation

State of the art:
» Large libraries (e.g. UG math and more)

» Applications to

» math teaching & research
» formal verification of hardware and software
» programming language foundations

» Industrial take-up (e.g. Intel, AMD, Apple, AWS, Meta, 10G)

Examples: Lean, Coq, Isabelle/HOL, ACL2, Agda

2/16

Dcp example in CvxLean

def p :=
optimization (x y : R)
minimize -sqrt (x - y)

subject to
C1 1y =2%x - 3
cr 1 x72< 2
c3 : 0<x -y

equivalence eqv/q : p := by dcp

q now bound to

optimization (x y t.0 t.1 : R)
minimize -t.0
subject to
c1’ : zeroCone (2*x - 3 - y)
c2’ : nonnegOrthCone (2 - t.1)
c3’ : rotatedSoCone t.1 0.5 ![x]

¢4’ : rotatedSoCone (x - y) 0.5 ![t.0]

3/16

Dcp example in CvxLean (continued)

CvxLean interfaces to the MOSEK conic solver

solve p

#print p.conicForm -- shows the problem in conic form
#eval p.status —-— "PRIMAL_AND_DUAL_FEASIBLE"
#eval p.value -- -2.101003

#eval p.solution -- (-1.414214, -5.828427)

4/16

Atom library

Currently, CvxLean defines 107 atoms, including:

» 22 classes of affine atoms, including elementary operations
(+, —, -, and /) and various operations to manipulate vectors
and matrices.

» 11 classes of convex atoms: absolute value, exponential,
Huber loss, positive inverse, Kullback-Leibler divergence,
log-sum-exp, max, £2-norm, some powers (2, =2, and —1),
quadratic-over-linear, and x - exp(x).

» 6 classes of concave atoms: entropy, geometric mean,
logarithm, log-det, min, and square root.

5/16

Atom declaration for square-root

>
|

vvyVvyVvyy

curv := CONCAVEFN

domain := R, and args := (x : R) with
inputKind(1) = INCREASING.

veonds(x) :==0 < x

expr(x) == v/x

impDomain(x) := R, and impVars := (v : R)
impObj(x, v) := v

impConstrs := [A(x, v). (x,0.5,v) € Q3]

CvxLean generates statements of desired properties

>
>

| 4

feasibility : Vx : R. 0 < x = (x,0.5,/x) € Q3
monotonicity :

Vx,y RO<x=>0<y=>x>y=x>/y

bounds : Vx,v : R. (x,0.5,v) € Q3 = v < /x

» vcondElim : Vx,y,v:R. (x,05,v)c Q3 =y >x=0<y
which all must be proven.

6/16

Optimization problem equivalences

Let P be a minimization problem defined over domain D
Let Q be defined over E.

P and @ are equivalent if there exist maps
@w:D — E and ¢ : E — D such that:

(@opt) Vx. optimalp(x) = optimalg(p(x))
(topt) Vy. optimalg(y) = optimalp(1(y))

Can also add

(pfeas) Vx. feasiblep(x) = feasibleg(y(x))
(1feas) Vy. feasibleg(y) = feasiblep(1(y))

7/16

Putting optimization problems into Dcp form

Sometimes initial user problems need transformations to put them
into DCP form.

Minimize x Minimize x
subject to 0.001 < x subject to 0.001 < x
L <ep(x) = exp(—x) < VX
Not in DCP form In DCP form

A possible sequence of rewrites:

%Sexp(x) o 1< ep()VE w2 1< vVXexp(x)
1
exp(x) <Vx ~waoexp(—x) < Vx

Rewrite rules applied bidirectionally (steps 1 & 3).
No obvious cost metric being reduced.

Manual guidance of rewrites very tedious. Automation needed ...

8/16

A preDcp transformation tactic for Lean

def p : Minimization R R :=
optimization (x : R)
minimize (x)
subject to
hi : 1/ 1000 < x
h2 : 1/ (sqrt x) < exp x

equivalence eqv/q : p := by pre_dcp

#print q
-- def q : Minimization R R :=
-- optimization (z : R)
= minimize T
- subject to
- h1 : 1 / 1000
- h2 : exp (-z)

<z

< sqrt =

pre_dcp uses e-graphs and e-graph rewriting for an efficient
breadth-first search of equivalent problems

9/16

E-graphs and e-graph rewriting

An e-graph represents a set of terms and a congruence relation on
those terms. E-graph rewriting adds new terms equal to existing

terms
{1 < exp(x)V/x,
{1< Xexp(x), 1< Vxexp(x),
1/v/x < exp(x)} 1/v/x < exp(x)}

.

r _\\ I
i Const(1) J |
L AN

7 N
E Const(1) |i

(i)
\

10/16

Example run of preDcp tactic

Started with geometric programming problem, after change of
variables

| 4

vV v.v. v v Y

4 variables, 8 constraints

Problem size 97 to begin, 104 at end

37k rewrite rule matches

41k nodes in e-graph

123 rewrite steps to justify transformation
19 iterations of parallel rewriting

5s for e-graph computations,
10s for verification in Lean

11/16

Related work

Formally verifying solver output

» ValidSDP (Coq)
» SDP-based non-linear-arithmetic prover (HOL Light)

Using interval arithmetic within solver: VSDP

Formally verifying convex optimization algorithms
(Peking University, using Lean)

12/16

Conclusions and questions

CvxLean implements & formally verifies

>
>

automatic DCP form to conic form tranformations,
manually-guided & automatic transformations into DCP form

Questions for DCP Community

>

>

v

vVvvyyvyy

When do you care about problem transformation correctness,
and how much?
Are there concerns about correctness of convex solvers?
What does correctness mean, when
» using floating-point arithmetic?
» problem parameters are approximate?
How important is integration with e.g. CvxPy?
What interaction expertise level(s) are appropriate?
Is automatic transformation into DCP form useful?
What further atoms or features are most desirable?

Where can larger problem examples be found?
13/16

Further Information about CvxlLean

>

>

Code
https://github.com/verified-optimization/CvxLean

Transforming optimization problems into Disciplined Convex
Programming form.

R. Fernandez Mir, P. Jackson, S. Bhat, A. Goens, T. Grosser.
International Conference on Intelligent Computer Mathematics (CICM).
2024.

https:
//1link.springer.com/chapter/10.1007/978-3-031-66997-2_11

Verified reductions for optimization

A. Bentkamp, R. Fernandez Mir, J. Avigad

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). 2023.

https:
//link.springer.com/chapter/10.1007/978-3-031-30820-8_8

Verified transformations for convex programming
Ramon Ferndndez Mir. PhD Thesis. July 2024.
https://era.ed.ac.uk/handle/1842/42057

14/16

https://github.com/verified-optimization/CvxLean
https://link.springer.com/chapter/10.1007/978-3-031-66997-2_11
https://link.springer.com/chapter/10.1007/978-3-031-66997-2_11
https://link.springer.com/chapter/10.1007/978-3-031-30820-8_8
https://link.springer.com/chapter/10.1007/978-3-031-30820-8_8
https://era.ed.ac.uk/handle/1842/42057

Core Lean definitions

structure Minimization (D R : Type) where
objFun : D — R
constraints : D — Prop

variable {D R : Type} [Preorder R] (p : Minimization D R)
def feasible (x : D) : Prop := p.constraints x
def optimal (x : D) : Prop :=
p.feasible x A
V y, p.feasible y — p.objFun x < p.objFun y
structure Solution where

point : D
isOptimal : p.optimal point

15/16

preDcp tactic configuration

Atoms
unary: —=(-), ()74 -], V- log, exp, xexp, entr,
binary: +, —, %, /,”,min, max, qol, geo, Ise, norm2

Rewrite rules (17 unidirectional, 51 bidirectional)
1. On R-valued terms

Vx € R. avs exp(—x)

exp(x)
2. On propositions
Va,b,ceR.c >0= (ggbwagbc)

3. On whole problems

Vf,cs. (Vx. cs(x) = f(x) > 0) = (f,cs) ~ (Ax.log(f(x)), cs)

16/16

