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Abstract We have constructed a tool for usinga® (SAT Modulo Theories) solvers to
discharge verification conditions (VCs) from programs teritin the $ARK language. The
tool has API interfaces for some solvers and can drive anyesalupporting the 8T1-L18
standard input language.

SPARK is a subset of Ada used primarily in high-integrity systemghie aerospace,
defence, rail and security industries. Formal verificabdrBPARK programs is supported
by tools produced by the UK company Altran Praxis.

We report in this paper on our experience in provimgh8K VCs using the popular st
solvers Grc3, Yices, Z3 and Simplify, and compare these solvers withkxiBsaautomatic
prover. We find that the 81 solvers can prove virtually all the VCs that are discharged
by Praxis’s prover, and sometimes more. Average run-tini¢lseofastest 8T solvers are
observed to be roughly-22x that of the Praxis prover.

Significant work is sometimes needed in translating VCs aform suitable for in-
put to the $T solvers. A major contribution of the paper is a detailed engstion of the
translations we implement. This is expected to be of intatesther users of 8T solvers.

Keywords SMT solver- SAT modulo theories solveiAda- SPARK- theory interpretation
data-type refinement

1 Introduction

1.1 Overview

Software is deployed in an ever increasing range of apmicstvhere its safety is paramount,
in aerospace, rail and road transport, and medical equiprf@rexample. The UK com-
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pany Altran Praxis provides verification tools that give heahatically-rigorous assurances
of the correctness of SPARK-Ada programs. Examples of n@pjects that Praxis deploy
SPARK and their tools on include an upgrade to the UK civiamrtraffic control system
and monitoring software for jet engines. This paper repamta/ork to improve the capabil-
ities of Praxis’s verification tools. Specifically the papeconcerned with how 8T solvers
could augment or replace Praxis’s in-house automatic pteeénology. Praxis’s customers
currently exert significant effort to work around the limasthis technology. Improvements
in prover technology could broaden the range of projects biclwuse of the Praxis verifi-
cation tools is cost effective and deepen the formal aratys tools provide.

We find that significant formal engineering is required to make of T solvers, and
much of the paper is devoted to a careful exposition of whahaee implemented. We
expect this exposition to be of significant interest to atheho are wanting to usenv&
solvers for software or system verification.

1.2 Softare Verification using Verification Conditions

There are a variety of techniques currently used for forneaification of software. These
include software model checking [26] and abstract integpi@n [13]. Many involve attach-
ing assertions to positions in the procedures and functidnograms. These assertions
are predicates on the program state that are desired todwkrenever the flow of control
passes them.

Praxis use a verification technique that involves geneatind proving of predicate
logic formulas calledverification conditiongVCsfor short). For each assertion, one can
analyse the surrounding program structure and generateod ¥€s that, if proven, guar-
antee that the assertion will always be satisfied when rela¢fmually VCs for an assertion
are generated under the assumption that immediately psg®réons on the control flow
path were satisfied. While VCs use mathematical analogsagram data types such as
arrays, records and enumerated types, they are otheneiseofrprogram syntax. A con-
sequence is that provers for VCs need no knowledge of thergemmaf the programming
language beyond these mathematical data types. All relegamnantic information on how
programming language statements execute is captured WQlgeneration process.

1.3 SMT Solvers

SMT (SAT Modulo Theories) solvers combine recent advances in tgaksifor solving
propositional satisfiability (1) problems [42] with the ability to handle first-order thezsi
using approaches derived from Nelson and Oppen’s work operating decision proce-
dures [35]. The core solvers work on quantifier free probldmas many also can instantiate
quantifiers using heuristics developed for the nam-8ased prover Simplify [14]. Common
theories that 871 solvers handle include linear arithmetic over the integard rationals,
equality, uninterpreted functions, and datatypes suchrags bitvectors and records. Such
theories are common in VCs, so8 solvers are well suited to automatically proving them.
An SMT solver proves a VC by checking that a conjunction of the V@jdiheses and the
negation of the VC'’s conclusion is unsatisfiable.

The experiments we report on here use three popular ®lvers: G/c3 [1], Yices [16]
and Z3 [33]. All these solvers featured in recent annuar-$omMP competitions compar-



ing SMT solverg in categories which included handling quantifier instaitia We also
include Simplify in our evaluation because it is highly reggd and, despite its age (the
latest public release was in 2002), it is still competitividhweurrent 34T solvers. Simplify
was used in the popular ESC/Java VC-based software veidficatol [20] and continues to
be the default prover for use with the successor t@it/ava? [2]. And we include Praxis’s
automatic prover, which is the usual tool thaa®K users employ to discharge verification
conditions.

One advantage thatv8 solvers have over Praxis’s prover is their ability to pragluc
counterexample witnesses to VCs that are not valid. Theseteexamples can be of great
help to SPARK program developers and verifiers: they can point out scenaighlighting
program bugs, or indicate what extra assertions such asdwapants need to be provided.
They also can reduce wasted time spent in attempting tcaictieely prove false VCs.

1.4 Targetting the SPARK language

Tackling SPARK programs rather than say Java or C programs is appealingcoue of
reasons. Firstly, there is a community of industriah8K users who have a need for strong
assurances of program correctness and who are alreadpgnridimal specifications and
using formal analysis tools. This community is a receptiudience for our work and we
have already received strong encouragement from Praxdsn8ly, SPARK is semantically
relatively simple and well defined. This eases the challerigeachieving higher levels of
VC proof automation.

1.5 Contributions of Paper

This paper makes two contributions:

1. It gives a detailed presentation of the process of tréingla/Cs into forms suitable
for passing to the 8T solvers. While some of the translation steps by themselkes a
well known and straightforward, several, especially thadating to translating finite
types, are less so. We see value in presenting the detalismf, £xplaining options and
subtleties, and how the steps interact. This presentatiald @act as a guide to others
needing to construct similar translations fanSsolvers.

2. Itinvestigates how current® solvers perform on industrially relevant examples.

1.6 Wider Context of Reported Work

The longer-term goals of the work reported here are to ingrtre level of automation
of SPARK VC verification and to extend the range of properties thatlmaautomatically
verified.

Often there is a requirement that all VCs associated withogram are checked by
some means. Typically 95-98% of VCs are proved automatibglPraxis’s prover. A large
project might have T0VCs, so the remaining several thousand VCs must be justified b
other means. Alternative approaches for checking theseindigle checking them by hand
and using an interactive theorem prover provided as pati@Praxis toolset. Interactive

! http://www.smtcomp.org/



proofs are usually brittle, they often fail when VCs chantighsly because of changes to
code or to annotations. Another approach that has been foonel robust is to add axioms
that provide hints to the automatic prover for completing Wi©ofs. Obviously, care is
needed to avoid inadvertently introducing inconsistencidl these approaches are highly
skilled and very time consuming. Increasing the level obendtion reduces the cost of
complete VC checking, and makes complete checking afféedaba wider range of SARK
users.

These concerns over the cost of handling non-automatipatiyen VCs impact the
range of program properties thak&RK users try to check. If users try to check richer prop-
erties, the number of non-automatically-proved VCs insesaand so does verification cost.
Most SPARK users settle for verifying little more than the absence oftime exceptions
caused by arithmetic overflow, divide by zero, or array bauwidlations.

Cost concerns also place constraints @K programming style. SARK users learn
programming idioms that lead to the generation of VCs thanaore likely to be proved by
Praxis’s automatic prover.

1.7 Organisation of Paper

Section 2 compares our VC translation approach to that @érqgtbpular VC-based pro-
gram verification systems. Section 3 gives more backgroumn8raRrK. Section 4 gives an
overview of our VC translation tool. The translation is meted in detail in Sections 5 to
13. Readers interested in the experiments may choose ttheldp sections. Case study pro-
grams are summarised in Section 14, and Sections 15, 16 apit4&nt our experiments
on the VCs from these programs. Current and future work i®@Vin Section 18, and
conclusions are in Section 19.

2 Related Work

We discuss here several related strands of research. lioi$e2t1 and 2.2 we consider
verification-condition-based program verification, bath imperative languages in general
and for Ada in particular. Then we look more broadly at resledinat has dealt with similar
translations. 8T solvers support a variety of input languages and some oétlaeguages
have many of the features found in the(FVC language our translation takes as a starting
point. We discuss these input languages in Section 2.3. durigey of ST solver input
languages also serves to motivate the translation effoethave gone to. Also there are
similarities between many interactive theorem prover leggs and BL, and there has
been strong interest in developing interfaces betweenaictige theorem provers andv$
solvers. We survey some work in this area in Section 2.4.

Our translations are theory interpretations of matherahligic. In Section 2.5 we ex-
plore this formal basis for our translations and also bridfbcuss the closely-related topic
of theory interpretations in algebraic specification.

2.1 VC-based program verification

Systems for verifying programs by proving VCs have beenrdaince the 1960s. King's
PhD thesis [27] is the first description of such a system. bletaystems since include the



Stanford Pascal Verifier [30] Gypsy [21] and ESC/Java [2@plfar contemporary sys-
tems includeWhy verification platform [19], theSpec# static program verifier [7], and
EscdJavaz? [2].

EscdJava2 generates VCs for Java programs. The standard VGageds that of the
Simplify prover, though experimental translations inte 8uT-L 1B format (see Section 2.3)
and into the input language of thes®theorem proveérare also available. While\® has a
rich type system, the \Bs translation translates to an embedding of the Simplify lege,
and so makes relatively little use of these types.

Spec# is targetted at the C# language. Originally it generated MGke Simplify lan-
guage. Currently it proves VCs using the Z3 prover, thoughriiot known whether it con-
tinues to use the Simplify language as the interface larnguag

The Why tool provides a VC generator for th&hy intermediate-level programming
language\Vhy PL) and can translate these VCs into the input languagesiofor solvers
and interactive theorem provers [19]. The associated Koaki@ol translates annotated Java
into Why PL, and Caduceus and its successor Frama-C translate tathGtantoWhy PL.
The VC language is a simply-typed polymorphic language auitisub-types.

Both Esc/Java2 an@pec# also translate into a simple intermediate-level abstnagdam-
ming language before generating VCs. In the casgpet+#, there is an alternate front end
for C and an alternate VC generator that outputs in the inpotax of the Isabelle/HOL
interactive theorem provér

In all the above cases, extensive axiomatisations of theeedanguage data types and
memory models has been carried out by the time VCs are gederat the case of the
Simplify language, the only interpreted type left is theeggrs; in the case af/hy, there
is also a Boolean interpreted type, for examplhy has a feature for allowing additional
types to be interpreted. As far as we understand, this fe&wsed mainly when translating
for VCs in interactive theorem prover languages. Nearlyttali axiomatisation appears to
happen at stages before the intermediate-level progragntailguage representations are
generated.

In contrast, with the VCs generated fop&RK programs, mathematical analogs of most
of the SPARK level data-types survive in the VCs. That this is possibie jsart due to the
simplicity of the SPARK data types, memory model and mode of passing data between pro
cedures: with BARK there are no reference types or pointer types, there is nandigally
allocated memory, and all data appears to be passed by vajuecedure calls and returns.
This richer VC language then gives us more work when traingldd a relatively simple
language like ®IT-LiB, where the only interpreted type we might make use of is ttegjar
type.

There are some similarities between our translation steph®se employed in&/Java,
Esc/Java2Spec# and thewhy front-ends before intermediate language generation.>-or e
ample, our step for abstracting term-level Boolean opemati{see Section 10) are derived
from those in Bc/Java2. There are also significant differences. For exanopleunder-
standing is that the translations in these other systemsare monolithic than ours: they
are not broken down into a series of distinct steps. And we hat seen parts of the transla-
tions in these other systems having a direct analog to oardéihement step (see Section 9).
In these other systems, any data refinement is directly intdltthe introduced axioms.

A common observation in descriptions of these axiomatsatis the need to carefully
phrase the axiomatisations and to provide hints on when awdtd instantiate quantifiers

2 http://pvs.csl.sri.com
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involved in the axiomatisations. This attention can muclpriowe the performance of the
quantifier instantiation heuristics built-in tovS solvers which otherwise can be very poor.
In the work described here, our experience so far has beerotineaxiomatisations are
handled relatively well by 8T solvers However, we are aware that most of the VC examples
we have tried do not thoroughly exercise our axiomatisatiso further experimentation is
necessary.

2.2 Verification of Ada programs

The Ada language was originally designed for use in missiitical real-time and embed-

ded systems. Users of the language have a natural intertrst Bafety and correctness of
their programs and have supported the development of forerdication systems targeted
at subsets of Ada such agARK.

Earlier examples of systems include Penelope [23] from @elyResearch Associates
and SDVS (State Delta Verification System) [32] from Aerasp€orporation. Both made
use of an automatic prover from Aerospace Corporporatiahvifas similar to that used in
the Stanford Pascal Verifier. This prover used the Nelsore@pechnique [35] for combin-
ing provers for such theories as bit-strings, arrays, engmeted functions and linear integer
arithmetic.

The Compliance Tool [37] takes as inpupARK programs and specifications written
in the Z specification language. It generates VCs in Z whiehtaen discharged either
interactively or automatically using the ProofPower tlegorprover [4]. The Compliance
Tool is used in conjunction with the ClawZ system [3] for geaieng Z specifications of
Simulink models of avionics systems. The Compliance Toalbdéss checking thatFARK
code correctly implements the Simulink models.

The Hi-Lite* project currently underway is modifying the GNU GNAT congpilfor
Ada so it can handle BA\RK annotations and generate intermediate-level code iMthe
program verification language (see Section 2.1).

See Section 3 for a description of the formal verificationatalities of the $ARK
toolset from Praxis.

2.3 QuT solver front-end translations

Both Yices and @c3 have rich native input languages, with many of the feattoesd in
FDL. These 1T solvers both support (linear) arithmetic over the integerd reals, arrays,
records and subtypes. Minor differences are thac& makes a strict distinction between
formulas and Boolean-valued terms and that neither supiperdrdered enumeration types
found in FoL. The details of how these systems handle types such as se@oreys and
subtypes are not well documented in published documenkmtincases there appears to be
some translation away of subtypes similar to that which wesicter in this paper. We expect
that both systems avoid introducing the non-trivial eql@mae relations on types we need
to consider in some circumstances, as they have more cangpthe types that are directly
supported by their core reasoning engines. For examplie Sopport Boolean-valued terms,
while some of the translations we need to consider have tslate to languages without
Boolean-valued terms. We have observed experimentaltyGkia3 does not handle array

4 http://www.open-do.org/projects/hi-lite/



extensionality at all, as we do, though Yices does. At the tohwriting, we had asked the
Yices developers about how they handle array extensigphiit have not heard back from
them. There are several published papers on how to reasom sidusets of the quantified
theory of arrays (see [11], for example) and we conjectuth bgstems implement special
purpose translations for arrays, more sophisticated thaat we consider here.

The Z3 prover native input language is simpler than that o€¥ior G&/c3 in that it does
not support sub-types, but does support arrays and records.

The SuT-LIB initiative® has been promoting a common input language and standard
background theories forMgr solvers since 2003. This is to facilitate research and eevel
opment in M7 techniques and support an annual competitimT-£omMpP between 1T
solvers. However, the standard background theories stggpby SiT-LI1B are consider-
ably simpler than the range of types found intk Our understanding is that thev$-L 18
architects chose to keep things simple in order to miningeeitra effort required of po-
tential SWT-CoMmP participants to supportNsr-LiB.

The SuT-L1B language distinguishes between formulas and terms. AsihdéaRguage
starting point of our translation does not, this is a digtorctwe need to introduce.

Background theories and restrictions on syntax (e.g. remuihat all arithmetic is linear
or that there are no quantifiers) are grouped togethersimbelogics Developers of support
for SMT-L1B choose to support certain of the sub-logics definedby-&18 and a category
of SMT-ComPis established for each of the sub-logics.

The sub-logics appropriate as a target froomknclude quantifiers, the theories of inte-
ger and real arithmetic, uninterpreted functions, andtéchsupport for arrays. They do not
include support for sub-types, record types or enumerdyioes. See Section 4.3 for further
discussion of these sub-logics.

While it would be simpler for us to just support the nativeuhpanguages of solvers
such as Yices and\@3, we have been keen to enable experimentation with as wialeger
of solvers as possible, so we have gone to the extra effortaviging translations from
FDL into appropriate 87-LIB sub-logics. This has also enabled us to contribute VCs from
the SPARK programs we examine to thev$-L18 benchmarks collection. This collection is
a valuable resource for allM& solver developers and is used as a source of problems for
SMT-COMP.

The Simplify input language just includes the type of intsg8ecause of the historical
importance of Simplify and its continued competitive penfiance, we support a translation
to its input language.

2.4 Interfaces between interactive theorem provers amd s®lvers

Developers and users of interactive theorem provers wigelygnise the utility of the proof
automation provided by T solvers.

The Pvs interactive theorem prover links to the Yices solver, mgkirse of Yices’s
native input language. Both Yices ang ®are developed within the same team at SRI, and,
not suprisingly, the match between the languages is vergl.goo

The 2011 release of the Isabelle/HOL prdveas interfaces to @3, Yices and Z3,
and, independently, an interfaisentto Yices has been constructed [18]. HOL-Light has an
interface [31] to @c-LITE, a predecessor of W3, and HOL4 has an interface [41] to Z3.

5 http://www.smtlib.org/
6 http://isabelle.in.tum.de/



The HOL languages typically include recursive data-typesords, polymorphism, higher-
order functions, and atomic types of reals, integers ande€2os. They do not support sub-
typing directly: when sub-typing is needed, it is usuallg@ted into the term language in
a similar way to that we describe in this paper. Differennstations support all these types
to varying degrees. Sometimes the translations are sowndndpmplete — axioms fully
characterising some of the types and their associatedtopgi@e missing. The interfaces
are both to native input languages and tT1SLIB. In general, the translations to the native
languages are more complete, as the work involved in cigp#timtranslation is less.

A common concern is handling polymorphic types: the traiwia typically handle
these by introducing a distinct set of terms and axioms foh@onomorphic instance of a
polymorphic type. Our translation does something similaemwhandling BL’s array types.

A large concern of several of these interface projects igrtisgworthiness of the 1
solver [31, 9]. Interactive theorem provers are typicatigieeered so that the correctness of
all proofs relies on a small relatively-simple kernel of eoth contrast, 8T solvers have
relatively-large code bases and employ highly-complexkwoations of algorithms. These
projects circumvent concerns about the correctnessvaf $lvers by having the solvers
output proofs that can be checked within the theorem provby some small independent
proof checker tool.

Further examples of interfaces are the interface [12] betwibe Coqg theorem prover
and the Alt-Ergo 1T solver and the link [22] between Intel's Forte theorem proxed
CvcC-LITE.

A frustration in trying to analyse much of this work is thekaaf proper documentation
of what has been implemented.

2.5 Formal background for translations

Each of the translation steps we consider is formally dbedrin mathematical logic as a
theory interpretation A sketch of the notion of a theory interpretation, appragarifor our
purposes, is as follows. theoryconsists of

— a signature which declares one or more type symbols, andhsss types in the spec-
ification of argument and value types as appropriate for ssshef constant, function
and relation symbols.

— a set of first-order-logic sentences over this signature,

— asubset of the set of all structures that model the sentences

We allow the set of structures to be a subset of the set of alets®f the theory sentences
in order to permit some components of the signature to haee fienotations and others to
have their denotations unconstrairfed

A theory interpretation is a map from some source theory toestarget theory, where,
in general, each element of the source signature is mappsahte type, term or formula
built over the target signature. This mapping then indugeaping that takes each sentence
contructible over the source signature to some sentencelwéarget signature. An inter-
pretation places some requirements on the relationshvpeleet the validity of sentences in
the source theory and the validity of the mappings of thesgesees in the target theory.

7 Elsewhere in this paper, following common practice, we $&t tomponents with fixed denotations
areinterpretedand components with unconstrained denotationsiaigterpreted We avoid doing so in this
section to avoid confusion with the primary subject of tlyeioterpretations.



We will say more about this shortly. Usually interpretasatescribe how to map structures
for the target signature to structures for the source sigeat

The precise definition of a theory interpretation varieseAsonable definition for our
discussion here is that given by Hodges [24]. This treatrasatimes a single type in both
the source and destination signatures, though it does d@lewmage of the source type
under the interpretation map to be a cartesian product détiget type, in general. It allows
for the target theory having a predicate on the image of tlheecsotype that characterises
which elements in this image are valid. It also allows foraiy in the source theory to
map to an equivalence relation in the target theory. Botbdlieatures arise in our treatment
of type refinement in Section 9.

As a simple example, consider the interpretation of thertheb the rationals in the
theory of the integers. The type of the ration@$s mapped to the type of pairs of integers
Z x Z. The predicate restricts 2nd elements of these pairs to beem, and equality is
mapped to the equivalence relation on pairs

(a,b)=(c,d) = ad=bc

Hodges discussemdmissibility conditions-axioms introduced in the target theory to
ensure equivalence relations are respected by functiaheetations—which directly corre-
spond to axioms we introduce in type refinement. Hodges néimeesiap on sentences the
reductionmap and the map on structures tteeordinatemap. Hodges defines two proper-
ties concerning how an interpretation affects validity:

— Left Totality: The co-ordinate map maps every structure of the targetyhearstructure
of the source theory. This implies that if a sentence is vialithe source theory (true in
all the structures associated with the source theoryydtsstation by the reduction map
is valid in the target theory.

— Right Totality:For each source structuhere is a target structure that is mapped by the
coordinate map to a structure isomorphicstd his implies that if a translated sentence
is valid in the target theory, the untranslated sentencalid in the source theory.

Sometimes left-totality is built-in to the notion of a thganterpretation [17]. We do not
do this, as we want to allow interpretations to weaker tlesorfror example, an interpreted
function in the source theory might become uninterpretdtiertarget theory. We do always
require our translations to be right-total in order for thearbe sound: if an 8T solver
establishes the validity of a translated VC, we want to knbat the original VC is also
valid.

The algebraic specification community has long formulatetibns of theory interpreta-
tions for many-sorted theories (theories with many typestamts), often for the purpose of
modelling data-type refinement. For example, Blaine andi®aiy [8], following Turski and
Maibaum [40] and drawing on the more abstract presentati®aonella and Tarlecki [39],
define theory interpretations that introduce quotient af@ns andelativisationpredicates
for restricting the target domain, much as we do. A primaterest is that facts that are
true about a theory are preserved by interpretation magafepretations in the algebraic
specification literature are required to be left-total. Whhe algebraic specification litera-
ture considers some examples of data refinement, for examplefinement of finite sets
by lists without duplicates, we have not been able to findgm&gions of the specific trans-
lations we consider here.
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3 The SPARK Language and Toolset

The SPARK [5] subset of Ada was first defined in 1988 by Carré and Jesman@outhamp-
ton University and is currently supported by Praxis. The Adbset was chosen to simplify
verification: it excludes features such as dynamic heapebdata-structures that are hard to
reason about automaticallypSRK adds to Ada a language of program annotations. These
allow programmers to express assertions and attach themmvteoftcontrol points in pro-
grams. The program annotations take the form of Ada commsatSPARK programs are
compilable by standard Ada compilers.

SPARK inherits from Ada several less-common language featuegsthid useful spec-
ification information into programs. This information theoes not have to be explicitly in-
cluded in program annotations. One can specify types teatudiranges of integer, floating-
point and enumeration types. For example, one can write:

subtype Index is Integer range 1 .. 10;

One can also definmodulartypes which have values.0.n— 1 wheren is some power of
2, and require all arithmetic on these values to be mddodular types not only affect how
Ada compilers treat arithmetic operations on those typesalso constrain integer values
that can be injected into the types.

As with Ada, functions and procedures iR&RK are grouped intpackagesA package
can also contain other packages, so in general one has achief packages. Packages
always have two distinct parts,specificationand abodyor implementation. Collectively,
packages, functions and procedures are referredgmgsam units Figure 1 shows a pack-
age definition containing a single procedure that does éntdiyision by repeated subtrac-
tion 8. The textpackage P introduces the specification of a package nameahd the text
package body P introduces the definition of the body of packagé.ines starting with--#
are S’ARK annotations. Ada defines all text on a line afterdaoken as a comment, so these
annotations are ignored by Ada compilers. The specificdtioludes annotations for the
precondition and postcondition of thevide procedure. Preconditions and postconditions
define assertions that are expected true at the start ancespelctively of procedures and
functions. The body also includes an assertion annotatiahdefines a loop invariant, a
property true each time the start of the loop is reached.

The derives annotation concerns how output arguments are dependemtpoi ar-
guments. Praxis’s BARK toolset checkslerives annotations using an information flow
analysis rather than generating and proving VCs.

The Examiner tool from Praxis generates VCs frorn8K programs. It is often very
tedious for programmers to specify assertions using ationt& so, for common cases,
the Examiner can add assertions automatically. For exaniptan add type-safety side
conditions for each expression and statement that chedkdoabsence of run-time errors
such as array index out of bounds, arithmetic overflow, tioteof subtype constraints and
division by zero.

The Examiner reads in files for the annotated source code migagm and writes the
VCs for each program unit into 3 files:

— A declarationsfile declaring functions and constants and defining arragorce and
enumeration types,

— arule file assigning values to constants and defining propertidatai-types. For exam-
ple, some properties axiomatically characterise funstimapping between enumeration
types and sub-ranges of the integers.

8 This example is drawn from ther&RK book [5]
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package P is
procedure Divide(M, N : in Integer;
Q, R : out Integer);
—--# derives Q, R from M,N;
——# pre (M >= 0) and (N > 0);
-—# post (M =Q * N +R) and (R < N) and (R >= 0);
end P;

package body P is
procedure Divide(M, N : in Integer;
Q, R : out Integer)
is
begin
Q :=

--# assert (M = Q * N + R) and (R >= 0);
exit when R < N;

Q:=Q+1;

R :=R - Nj;
end loop;
end Divide;

end P;

Fig. 1 A SPARK program for integer division

— averification condition goafile containing a list of verification goals. A goal consisfs o
a list of hypotheses and one or more conclusions. Conclsisisnimplicitly conjuncted
rather than disjuncted as in some sequent calculi [28].

The language used in these files is known as.F

Figure 2 shows one of the 7 VC goals that the Examiner gersefatehe procedure
shown in Figure 1. As the comment at the start of the goal atdi; this VC is for an
execution path that starts and ends at the loop invariaettass

assert (M = Q * N + R) and (R >= 0);

at the start of the main program loop. In other words, it iscesned with preservation of this
loop invariant. Each label with prefix introduces a hypothesis of the goal and each label
with prefix ¢ introduces a conclusion. As remarked above, the conclasaoa implicitly
conjoined, so each conclusion must be proved in order toepitey whole goal. Hypotheses
H1 andH2 can be seen to come directly from the assertion of the locgrigwt at the path
start. Conclusions1 andc2 are the weakest precondition [15] of the code in the loop body
and the loop invariant assertion. The other hypotheses@mdusions are mostly concerned
with machine bounds on the valuesafteger-typed variables.

An excerpt of the accompanying declarations file is shownigute 3. Here, declara-
tions are given of the constants and variables referredtteeigoal. Semantically, constants
and (free) variables in a goal are treated the same: botimglecitly universally quantified
over. The difference is thatdt variables refer to values of program variables, wheraas F
constants have the same value in all program states.

An excerpt of the accompanying rule file is shown in Figure dréHve have definitions
of the values of the constants in the goal: Hag _be_replaced_ by relation is logically the
same as equality.

The VCs considered in our experiments often involve more-dirder logic structure and
a richer range of datatypes. An example VC is shown in abatediform in Figure 5.
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For path(s) from assertion of line 17 to assertion of line 17:

procedure_divide_4.

Hi: m=q*xn+r .

H2: r >0 .

H3: m >= integer__first
H4: m <= integer__last
H5: n >= integer__first
H6: n <= integer__last
H7: m > 0 .

H8: n>0.

H9: r >= integer__first
H10: r <= integer__last

Hi1l: not (r < n)

H12: q >= integer__first

H13: q <= integer__last

H14: q + 1 >= integer__first .
H15: q + 1 <= integer__last

H16: r >= integer__first
H17: r <= integer__last
H18: r - n >= integer__first .
H19: r - n <= integer__last
->
Ci: m=(qg+1) *n+ (r-n
C2: r -n>0.
C3: m >= integer__first
C4: m <= integer__last
C5: n >= integer__first
C6: n <= integer__last
C7: m>= 0 .
C8: n>0 .

Fig. 2 Example VC goal from the integer division program in Figure 1

const integer__size : integer = pending;
const integer__last : integer = pending;
const integer__first : integer = pending;
var m : integer;

var n : integer;
var q : integer;
var r : integer;

Fig. 3 Example declarations for the integer division program guiré 1

divide_rules(4):
divide_rules(5):
divide_rules(6):
divide_rules(7):

integer__first may_be_replaced_by -2147483648.
integer__last may_be_replaced_by 2147483647.
integer__base__first may_be_replaced_by -2147483648.
integer__base__last may_be_replaced_by 2147483647.

Fig. 4 Example rules for the integer division program in Figure 1

This includes instances of operators on records (the fidkeCt®®s £1d_msg_count and
fld_initial) and arrays (the 1 dimensional array element select fumetiement (_,
[_.1)), arithmetic operators and relations, and quantifiess (211).

The Simplifier tool from Praxis can automatically prove mamyification goals. It is
called theSimplifierbecause it returns simplified goals in cases when it cantigtdtove
the goals generated by the Examiner. Users can then resant itderactive proof tool to
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H3: subaddress_idx <= lru_subaddress_index__last .

H6: for_all(i___2: word_index,
((i___2 >= word_index__first) and (
i___2 <= word_index__last))

- (...))

Hi1: f1d_msg_count (element (bc_to_rt, [dest])) >=
lru_subaddress_index__first .

H29: fld_initial(element(bc_to_rt, [dest])) <=
lru_start_index__last .
->

Ci: fld_initial(element(bc_to_rt, [dest])) + (
subaddress_idx - 1) >= valid_msg_index__first .
C2: fld_initial(element(bc_to_rt, [dest])) + (
subaddress_idx - 1) <= valid_msg_index__last .
C3: subaddress_idx - 1 >= all_msg_index__base__first .
C4: subaddress_idx - 1 <= all_msg_index__base__last .

Fig. 5 An example VC involving an explicit quantifier and severaiatygpes

try to prove these remaining simplified goals. In practités proof tool requires rather
specialised skills and is used much less frequently thaSimmelifier.

The Simplifier has been in development since at least far 8ad©97 and drew on ear-
lier code for an interactive proof checker. Praxis contstgeimprove it. It employs a num-
ber of heuristics involving applying predicate logic ryleswriting, forward and backward
chaining, and applying special purpose arithmetic rulesnvéler it does not incorporate
decision procedures for linear arithmetic or propositiageasoning, for example.

As of 2009, Praxis’s BARK toolkit is freely available under a GNU Public Licenge
This release includes both source code and user-level dagation for the Examiner and
the Simplifier.

4 Architecture of the VC Translator and Prover Driver
4.1 Overview

Our VCT (VC Translator) tool reads in the VC file triples outfiy the Praxis VC gener-
ator tool, suitably translates the VCs for a selected pratepresent one of @3, Yices,
Z3 or Simplify, and runs the prover on each VC goal. Fig. 6 jifes an overview of the
architecture. The tool is divided into three parts:

1. A preprocessowhich parses the VC files and puts VCs into a standard intéonad,
resolving various features particular to thetHanguage.

2. Atranslatorwhich performs a variety of optional translation steps @WCs in order
to prepare them for the different provers.

3. Adriver which translates to the concrete syntax or syntax tree datetsres required
by the provers, orchestrates invocations of the proveids|ags results.

9 http://libre.adacore.com/libre/
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These parts are described in more detail in the followingeations. We consider the pre-
processor first, and then the driver before the translasathe@driver description motivates
the discussion of the translation. A final subsection dbssrhow VCs are represented in
the translator.

Currently our tool consists of around 20,000 lines of C++e&;ddcluding comments
and blank lines.

4.2 Preprocessor

Operations carried out by the preprocessor include:

— Eliminating special rule syntaX-pL rules give hints as to how they could be used. For
example, an equality:

integer__first = -2147483648
that defines a value for a constant is expressed as:

integer__first may_be_replaced_by -2147483648

This special syntax was eliminated, as none of the proversomsidered had any way
of handling it.

— Typing free variables in rules, closing ruteBDL rules have untyped free variables,
implicitly universally quantified. The preprocessor irsféypes for these variables from
their contexts and adds explicit quantifiers to close thestul

— Adding missing declarations of constarE®L has some built-in assumptions about the
definition of constants, for the lowest and highest valuemtieger and real subrange
types, for example.

— Reordering type declarationdost solver input languages require types to be declared
before use, but such an ordering is not requiredon.F

— Resolving polymorphism and overloadirfgpr instance, BL uses the same symbols
for the order relations and successor functions on integdresmumerated types, for
arithmetic on the integers and reals, and for operationgraygwith different element
and index types. After resolution, each function and refakias a definite concrete type.

4.3 Driver

There are various alternatives for interfacing withiSsolvers. We have experimented with
several of these, partly out of necessity, partly to undecstheir pros and cons. The alter-
natives we have explored so far are as follows:

— SMT-LiB file-level interface
The SuT-LI1B standard input language fom$ solvers was introduced in Section 2.3.
We translate into the 8T-L 1B sub-logics:
— AUFLIA: Closed linear formulas over the theory of integeraas with free sort,
function and predicate symbols,
— AUFNIRA: Closed formulas with free function and predicayendols over a theory
of arrays with integer indices and real elements.
In each case we just use the support for integer arithmetth:the AUFLIA sub-logic
the support is for linear integer arithmetic, with the AURM sub-logic the support is
for possibly non-linear integer arithmetic. We do not cathemake use of the support
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for arrays. This support is rather limited: our current slation requires any support
for arrays to be over a range of index and element types. Eenslation work would
be needed to make do with just the available index and eletypes. While we have
a need for a theory of reals, the AUFNIRA sub-logic suprisingrovides no proper
support for mixed integer real arithmetic: for example itissing a function injecting
the integers into the reals.
Currently, Gsc3 and Z3 support AUFNIRA, and &3, Yices and Z3 and support AU-
FLIA.
Our SvT-LiB file-level interface writes 87-LiB format files in either AUFLIA or
AUFNIRA, runs an appropriate prover in a sub-process, aads®ack the results.
The SuT-LIB standard treats formulas and terms as distinct syntactégoges, fol-
lowing the tradition in virtually all text-book presentatis of first-order logic. This is
in contrast to the case with theoE language where formulas are just terms of Boolean
type.

— Simplify file-level interface
This interface uses the language of the Simplify proversTanguage is essentially
single-sorted. All functions and relations have integguarent sorts, and all functions
have integer result sorts. Formulas are in a distinct stictaategory from terms. The
Simplify language is accepted by Simplify itself and by Z3.
Our Simplify interface shares much of its code with thetSL 1B file-level interface.

— Cvc3 APl interface
Cvc3 supports a rich native input language. We translate &rays, records, integers
and reals directly to the corresponding types in this inpngliage. We use \&3's
integer subrange type to realise translations for enueetgpes.
Cvc3requires a strict distinction between formulas and terhiBoolean type. Boolean
terms are translated to the 1-bit bit-vector type.
The interface uses functions inv€3’'s C++ API to build the term and formula expres-
sions .

— Yices APl interface
Yices’s native input language is similar tov€3’s. The main difference is that Yices'’s
language does not distinguish between formulas and terBeaéan type.

We define a single API that is shared by all of the above integaThis API includes
functions for initialising solvers, asserting formulas]limg solvers, and checking results.
Our top-level driver module works above this API, sequegdhre API function calls and
performing other tasks such as collecting timing informatand writing report files. The
top-level module writes both to a log file and a comma-sepdraalue file where it records
summaries of each solver invocation. This allows easy coisgra between results from
runs with different options and solvers.

4.4 Translator

Each translation step performed by the translator oper@tesets of VCs in a standard
internal form. The information held in this internal formdgscribed in Section 4.5. An

overview of the main translation steps is as follows. Fohesiep we give references to later
parts of this paper that cover the step in more detail.

— Enumerated Type Elimination
This involves replacing uses of enumerated types with etegbrange types, and pro-
viding alternate definitions for functions and relationsasated with enumerated types.
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We use this step with all our driver options. It is for sure ¢ex when translating to
SmT-LiB or Simplify format, as neither supports enumerated typésesrand @c3
do support enumerated types via their APIs, but these type®tcome with an order
defined on them, and do not define successor and predecesstoriis, as needed by
FDL. We could introduce an order relation and the successor @tk pessor functions
axiomatically, but currently do not do so.
See Section 5 for details.

— Formula/Term Separation
When we need distinct syntactic categories of formulas anmtig, we establish both
term-level and formula-level versions of the propositidlogic operators. As needed,
we suitably resolve every occurrence of a function invajvBoolean arguments or re-
turn value to be either at the formula or the term level. Thimatimes results in a
Boolean-valued term where a formula is expected, or viceajaand, as necessary, we
add in special operators that convert between Boolean tnohformulas. See Section 8
for details.

— Type Refinement
Type refinement carries out refinement translations that ttae flavour of data-type
refinements considered in the program refinement literatWieen a type is refined, it
is considered as a subtype of some new base type, and allesvareemade for equality
on the unrefined type possibly not corresponding to equalityhe base type. Special
treatment is given to arrays and records to allow arrays ecdrds over base types to
be used to model arrays and records over the original uncefypes.
The primary use of type refinement is to eliminate finite typesh as integer subrange
types and the Boolean type. These types are not supportée [3atr-L 18 and Simplify
input file formats.
See Section 9 for details.

— Array and Record Elimination
We can eliminate redundant array and record operators and>damatically charac-
terise array and record types. An example of a redundantatipes a record construc-
tor. This is redundant if a default record constant and kkfietd update operators are
available. The axiomatic characterisations are usefuhvwhe targetted solver or solver
format does not provide explicit support for arrays and résoFor example, we use
axiomatic characterisations when translating for tiver&.18 and Simplify formats.
See Section 6 for details on array elimination, and Sectifon @etails on record elimi-
nation.

— Boolean Term Elimination
Term-level Boolean operations can be made uninterpreté@doms can be introduced
that express that the operations have the same behavidwginformula-level counter-
parts. Also the Boolean type itself along with the true argef@oolean constants can
be made uninterpreted. These steps are required bymhmel$8 and Simplify formats.
See Section 10 for details.

— Arithmetic Simplification
We simplify arithmetic expressions that are semanticafigdr into expressions that
are obviously syntactically linear. This improves what ve@ @rove with Yices which
rejects non-linear arithmetic expressions, and improkiegquality of the VCs we can
generate in linear 81-L 1B formats.
See Section 11 for details.

— Arithmetic Elimination
Options are provided for making uninterpreted varioushargtic operators that some
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provers cannot handle, integer division and modulus, famgle. In some cases, we add
axioms that partially or fully characterise the behaviouthe operators. See Section 12
for details.

— Defined Type and Abstract Type Elimination
To cope with the Simplify prover we need to eliminate all uaipreted types and de-
fined types. See Section 13 for detalils.

In Table 1 we summarise the steps that are used to at leaststemt by each of the drivers.

Translation step Yices APl CVC3 APl SMTLIB  Simplify
Enumerated Type Elimination ° . ° °
Formula/Term Separation ° °
Type Refinement . .
Array & Record Elimination ° °
Boolean Term Elimination . .
Arith Simplification ° ° . °
Arith Elimination ° ° . °
Defined & Abstract Type Elimination| .

Table 1 Translation steps used by the different prover drivers

The usual order of applying the steps is as they are listedeabo

There are some dependencies between steps, so not alhgslare sensible. For ex-
ample, Type Refinement has some special treatment for mreh-Booleans, so it must
come after they are introduced by Formula/Term SeparaBonlean Term Elimination is
designed to come after Type Refinement.

Some ordering alternatives yield different translati¢its.example, the Array and Record
Elimination is shown after Type Refinement, but it also cdagdpositioned before, in which
case the axioms introduced would be different at the endeofrtinslation. See Section 17.2
for a discussion of some preliminary results on the effecirdéring on prover run-times. In
other cases, the ordering is unimportant. For example,ritiereetic steps could be carried
out at any stage with no change to the final result.

4.5 Standard Internal Representation for VCs

Each step of translation works orvarification Condition Unibr VC Unit, for short. A VC
Unit gathers all the VCs associated with Ba®Kk program unit (usually a procedure or a
function) into a standard internal data-structure. Theé@megntations of the translation steps
then share a common set of utility functions for operatingtos data-structure. The infor-
mation in a VC unit is derived by the Preprocessor code fromafrthe 3-file sets output
by the Praxis’'s VC generator as described in Section 3. litiaddeach VC Unit extends
this information about a particular set of VCs with informoat about the theory these VCs
are over. This is helpful in tracking how the translatiorpstehange the background theory
of the VCs and in checking that translations have been diyreltosen and sequenced. Our
notion of a VC Unit is a concrete realisation of the abstraxttam of theory introduced in
Section 2.5.

The elements making up a VC Unit include:
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— ldentification of logic variant used
The variants are

— Strict First Order Logic(Strict FOL) where formulas are a distinct syntactic category

from terms.

— Quasi First Order LogiqQuasi FOL where formulas are terms of Boolean type.
For simplicity, we present the rest of the VC Unit elementstfee Strict FOL vari-
ant. The changes for Quasi FOL are straightforward. For @l@melation declarations
are not distinct from function declarations—they are justldrations of functions of
Boolean result type.

— Type-constant declarations and definitions
This introduces the set of type constant names that can laeiggpe expressions. It
includes constants for both interpreted types such as #ig aed integers, and uninter-
preted types. We writ€ : Type to declare tha€ is a type-constant, ard: Type = T
to define type consta as a definition for type expressidn
For convenience, we assume that there are sufficient typeittefs that every type in
a formula and every argument type to a type constructor orighehand side of a type
definition can be a declared or defined type. We do not allow tygnstructors at such
positions. A similar condition is enforced in the&Rk subset of Ada and thedt VC
language.

— Type constructors
Eachtype constructoconstructs a new type from 0 or more existing types and plyssib
other information. Examples include: enumerated typesydwypes, record types and
integer subrange types.
Taken together, the type-constants and the type constsugemerate the language of
types.
All the type constructors we consider have intended in&tgtions, usually parame-
terised by the interpretations of their components.

— Term signature
This declares constants and functions. We waitel to declare that constanthas type
Tandf : (S,...,S)T to declare that functiorf has argument typeS;,..., S, and
result typeT. We keep track of whether each has some intended interpretaind, if
so, what that interpretation is.
We assume that there is no overloading or polymorphismyesastant or function has
a unique type. To enforce this condition, we create monohiorpstances of naturally
polymorphic operators in5i, such as the functions for updating and accessing array
elements. We structure the constant and function idergtifiech that polymorphic base
names are easily extractable. This is needed when handiv@ajoals to 341 solvers
that expect some polymorphic operators.
The term signature along with typed variables generatelattgriage of terms.
We optionally allow into the language of terrifishen-elseoperators of formiTE (¢, a,b),
whereg is a formula anda andb are terms of typd . ITEt (¢, a,b) is equal toa when
@is true, ando wheng is false.

— Relation signature
The relation signature declares atomic relations. We wRite (S, ...,S,) to declare
that relationr has argument typeS;, ..., S,. As with the term signature, we track any
intended interpretations and assume all relations are morghic. In particular, we cre-
ate a monomorphic instance of equality for each typel we need to express equality
at.
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The relation signature, together with usual propositidogic operatorsA, V, -, <, =)
and typed existential and universal quantifiers:(T. ¢ and 3x: T. @), generate the
languagee of formulas.

— Intended interpretations
We keep track of whether each declared type constant, temstamt, function and rela-
tion has an intended interpretation or is uninterpretedn|éntity is interpreted, then we
also keep track of the nature of that interpretation. Ugub# interpretations are the ex-
pected ones: the tyfet is interpreted as the integers. Occasionally, the intéapons
are not the ones immediately suggested by the entity naroeexemple, we sometimes
interpret the typ@ool as the integers when the prover language being translatizbto
not have any type containing just two-elements. This is #geavith the input language
of the Simplify prover and the $T-L 1B sub-logics we use.

— Rules
Rules are formulas. Commonly they introduce equality-Batefinitions of term con-
stants and function constants, and, more generally, peaibmatic characterisations
of types and associated terms. It is expected that ruledwagasatisfiable.

— Goals
A goal is composed of a list of hypothesis formulas and a listomclusion formulas.
The logical sense of a goal is that the conjunction of the thgmes implies the con-
junction of the conclusions. A goal is considered valid ifrite in all interpretations
satisfying the rules and giving interpreted types, cortstdonctions and relations their
intended interpretations.

The next sections of this paper give details on how each ofréimeslation steps intro-
duced in Section transforms a VC Unit.

5 Enumerated Type Elimination
5.1 Enumerated Types irDE

A named enumerated tygde containing constantky, ..., k,_1 is introduced with the type
definition
E: Type = {ko,...,Kn-1}

Associated witle are operators
posg : (E)Int
valg @ (Int)E
succg : (E)E
predg : (E)E
and relations
<g: (E,E)Bool
<g: (E,E)Bool

We usually write the relations using infix notation.

These functions and relations are not primitive inLEinstead they are uninterpreted
and are characterised by axioms. Tfw®g andvalg functions define an isomorphism be-
tween the typeS and the integer subrand®, ...,n— 1} such thaposg (ki) = i. Thesuccg
andpredg functions are successor and predecessor functions. Fopdaucce (ki) = ki1
wheni < n— 1. The axioms leaveucce (kn—1) andpredg (Kg) unconstrained.
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5.2 Elimination by Translation to Integer Subranges
We change the type definition to
E:Type = {0..n—-1} |

so the typename is just a name for the integer subrange tyfjfe.n— 1}. We declare the
enumerated type constants as uninterpreted constantagdrakioms

k =0

kno1=n-1

We remove all original axioms characterising the enumdratpe operators and relations,
replacing them with the axioms

VX 1 E.valg(X) =t X

VX : E. posg(X) =nt X

VX :E.x<n—1 = succe(X) =t X+1
VX E.O0<X = predg(X) = X—1

We replace all occurrences of thg and <g relations in rules and goals with the integer
relations< and<.

When we use integer subrange types, it is not the case thanharg types of functions
and relations always match expected types exactly. In getgrve checking which such
subrange types can involve arbitary non-linear arithmeg&soning. In practice so far we
have found we can type check VC Units using just syntactickhelypechecking currently
just uses the conventional integer typing forand—, the knowledge thé is a subtype of
Int, and the typingk..k} for integer literalk.

6 Array Elimination
6.1 Arrays in oL
The SPARK FDL language has primitive dimensional arrays. A type definition of form
A:Type = Array(S,..., S, T)

introduces am dimensional array namefl with S theith index type and is the type of
elements. The index types are usually integers, integeansgbs or enumeration types. The
element type can be any type.

For simplicity, we consider here the 1 dimensional case

A: Type = Array(ST)

The generalisation to dimensional arrays is straightforward.
Associated with the array typkare
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— Array constructorsof form

mk_arraya(to, [S1] i=1t1,..., [S] i=t) fork>0

or of form
mk_arraya([S1] '=11,..., [S] :==tk) fork>0

These constructors make an array vtitht indexs. With the first form a default valuig

is provided. With the second, the assumption is that theegadi all indices are explicitly
set. Here we use extra syntactic sugar to improve readabiliithout this sugar the
function names would need further decoration so the coctstrel of different arities
have different names.dt also allows for assigning a value to a range of indices. The
latest versions of our tool provides support for this, butdeenot describe our support
in this paper.

A selectfunctionselectp(a, s) for selecting the element of arrayat indexs. Theselect
function is sometimes known as array readfunction.

An updatefunctionupdatep (@, s,t) for updating the element of arrayat indexsto new
valuet. Theupdatefunction is sometimes known as array write function.

6.2 Eliminating array constructors

We introduce a constant and operator

defaultp : A
constp @ (T)A

with a characterising axiom

Wt @ T.Vs: S selecta(consta(t),s) =t t

The constructomk_arraya(to, [S1] =11, ..., [S] :=1k) is replaced by the termy, recursively

defined by

ap = consta(to)
a = updatep(@i—1,S,1) forO<i<k

The constructomk_arraya([s1] :=t1,...,[S] := ) is replaced by the terra, recursively

defined by

ap = defaultp
a = updatep(@j_1,S,1) forO<i<k

6.3 Eliminating interpreted arrays

We eliminate the need to have a standard interpretatiomrifay &ypeA and functionselecta
andupdaten by introducing suitable axioms. Assume we havedéfaulta andconsta con-
stant and function introduced above in Section 6.2. Theragiare

Va: A Vs: S Vt:T.selecta(updatea(a s,t),s) =1t
Va: A Vs :SVt:T.s#sS = selecta(updates(a,s,t),s) =t selecta(a,s)
Va,a : A. (Vs: S selecta(a,s) =t selecta(d,s)) = a=ad
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The first two of the axioms are often callegbd-write axioms. The first axiom describes
how, if we write valuet at indexs in arraya and then read from the same index, we get
back valuet. The second describes how, if we read at indeafter writing to a distinct
indexs, we get the same result as if we had performed the read béfenarite. The third

is a statement ofrray extensionalityit states that two arrays should be considered equal
when they contain the same elements. The extensionalipyragbuld also be stated with
< rather than=. We choose the form with>, as the axiom for= is just a trivial statement
thatselecta respects equality in its first argument. All provers havdtbniknowledge of
this. With these axioms, we drop the type definitibn Type = Array(S T), but retain a
type declaration foA, soA is now an uninterpreted type.

Some provers are not able to use extensionality axioms lgxastated here, because
they cannot use the formute= & as a pattern to match against in order to derive instantia-
tions. To this end, we provide the option of replacing eadaéity at an array type in rules
and goals with a new relatiasy, with trivial defining axiom

Va,d : A eqa(ad) & a=ad

These axioms only characterise the array type up to isorspii the index typeSis
finite. If Sis infinite, one model involveé denoting the subset of functions of tyBe— T
with all but finite number of values the same: the array opesadnly allow us to explicitly
construct such functions. Another model, non-isomorpbithis one, uses all functions of
typeS—T.

While arrays with integer rather than finite range indices@mmon at various stages
of translation, arrays always start off as having finite intges in $ARK programs. We
expect any VCs involving cardinalities of array types toédlveir truth values maintained
by our translation steps, without us adding extra axiomsehaure that abstract types for
arrays always have the expected cardinalities.

7 Record Elimination
7.1 Records in BL

A type definition
R: Type = Record(f1:T1,...,fn:Th)

introduces a record type namBdvith fields f4,..., f, of typesTy, ..., T, respectively.
For simplicity, we consider here a record with two fields:

R: Type = Record(fst: S snd: T)

Associated with the record tygeare

— arecord constructoiof form
mk_recordgr(fst :==s, snd :=t)
As a prefix operator, we can write this @&_recordr(s,t) and declare it with
mk_recordr : (ST)R ,

though here we will continue using the more verbose syntax.
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— recordfield selecoperators

select_fst : (R)S
select_snd : (R)T

— recordfield updateoperators
defaultgr : R
update_fst : (R SR
update_snd : (RT)R

For exampleypdate_fst(r,s) updates thést field of recordr with values.

The generalisation to the case of a record with more field$régghtforward. In the
general case, for a record withfields, we have a constructor that takesrgumentsn
field select operators (one for each field), still a singleadifconstant, and field update
operators (again, one for each field).

7.2 Eliminating record constructors
We replace the record constructok_recordr(fst := S, snd :=t) with
update_sndg(update_fsty(defaultgr,s),t)

wheredefaultr is a new uninterpreted constant of tylRe

7.3 Eliminating record updates

We can choose to keep record constructors and have the upoiigtions be derived. We
have the identities

update_fstg(r,S) = mk_recordr(fst := S,snd := select_sndR(r))

update_sndg(r,t) = mk_recordr(fst := select_fstr(r),snd :=t,)

There is the choice of either applying these identitiesitniakte all occurrences of the
update operators, or making the update operators unietegpband adding the identities as
axioms. If we eliminate update operators ofrafield record, we get a factor ofincrease
in size of each update expression, and the sub-expressiends replicatingi — 2 times.

If records have high numbers of fields, updates are nestedhare is no structure sharing
in expressions, this replication could result in a hugeaase in expression size. For this
reason we currently introduce the identities as quantifiéohas.

7.4 Eliminating interpreted records

We eliminate the need to have a standard interpretationefmrd typeR and associated
operators by introducing suitable axioms. We implement approaches, depending on
whether constructors or updates are first eliminated.
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If constructors have been eliminated, we use axioms

Vr : R Vs: S select_fstr(update_fsty(r,s)) =sS

Vr : R Vs: S select_sndr(update_fstg(r,s)) =t select_sndgr(r)
Vr @ RVt : T. select_fstr(update_sndg(r,t)) =g select_fstr(r)
Vr: RVt : T. select_sndr(update_sndg(r,t)) =1 t

These axioms are somewhat similar to the array read-writgrexdiscussed in Section 6.3.
The 1st and 4th axioms here state that if we access a recatdifaljust has been updated,
we get the updated value. The 2nd and 3rd axioms state tha dowess some field of a
record distinct from a field that just has been updated, wdagekt the same result as if we
had accessed the same field before the update. For a recerditym fields, we neead?
such axioms, one for each choice of field being updated aneéldftieing accessed.

If we choose to treat the record constructor as primitivegthte operators as derived,
an alternative axiom set is

Vs: S Wt : T. select_fstr(mk-recordr(fst :=S,snd :=t)) =s S
Vs: S vt : T. select_sndr(mk_recordr(fst :=S,snd :=t)) =1 t

For a record type withn fields, we neea such axioms, one for each choice of selected field.
While this approach yields fewer axioms than when constrsdtave been eliminated, it is
not clear which approach might give best prover performance

There are two ways of axiomatising record extensionalibe first

Vr iR VI’ : R select_fstr(r) =sselect fstr(r’) A select_sndr(r) =t select_sndgr(r’) = r =1’

only makes use of the select operators. It states that tvawdeshould be considered equal
when their fields are equal. The second way

Vr : R mk_recordr(fst := select_fstr(r), snd := select_sndr(r)) =r r

relies on constructors not being eliminated. The two wagseasily shown as equivalent.
For example, the second can be derived from the first by dgogr in the first to

mk_recordr(fst := select_fstr(r’), snd := select_sndr(r’))

and simplifying using the select-constructor axioms giedove. We implement both ap-
proaches. As with arrays, we have the option of introducinigfined relation for equality
at record types in order to make the first style of extensignakiom easier to instantiate.
We suspect the that most provers can make little use of tledeaxiom, unless they resort
to instantiating universally quantified hypotheses with terms of the correct type, which
can be very costly.

8 Separation of Formulas and Terms

The FoL language does not make the traditional first-order-loggtimition between for-
mulas and terms: formulas inDE are terms of Boolean type. While some provers do not
make this distinction, some do, and so we implement a traoslatep that starts with a VC
unit where no distinction is made, and introduce the disitimc

The translation is in two phases:



26

1. Resolve each occurrence of a logical connective, quantfbolean-valued function, or
Boolean constant to either a formula or a term level version.

2. Add appropriate operators to convert between terms withlézan type and formulas
in order to ensure well-formedness—that we do not have a venere a formula is
expected, or vice versa.

The scope for what resolutions are available depends orotihersion operators used. We
define an operatds2p from the Boolean typ&ool to propositions (formulas) as

b2p(X) = X =Bool truep
and an operatags2b the other way as

p2b(p) = ITEgool(p,truep,falsep)

Here,ITET(p,X,y) (ITE standing forif-then-elsg is equal to the termt of type T when the
formulapis true and to the termof type T when the formulg is false, andrue, andfalsey,
are theBool-typed constants for truth and falsity. Some provers andgurtormats support
anITE construct, others do not. Even if it is not supported, it carebminated using, for
example, the identity

PITEr(p.er,2)] < (pA@E])V(=pAglel])

where @[] is an atomic formula with a sub-term.However, this identity must be used
with care, as in general it can result in exponential growtformula size.

We describe below how we carry out the resolutions, botherctise that a2b operator
is available, and in the case it is not.

8.1 Resolution into formulas and terms

Our implementation by default adopts two basic heuristics:

1. Use formula versions when possible, arguing that thisibtm enable provers to run
more efficiently as they have special built-in support fanfala-level reasoning.

2. Avoid if possible introducing two versions, because tumplicates and slows provers
reasoning.

In what follows, let us refer to rules, goal hypotheses aral gonclusions collectively
asclauses

The resolution procedure examines in turn every subtermverfyeclause of a VC Unit
in order to identify occurrences of terms that need resglvirhis examination is completed
before the resolutions are actually carried out.

The resolution distinguishes whether a subterm is farmula contexior aterm con-
text A subterm is in a formula context if all the operators abdveup to the root of the
clause—are just formula constructors (propositionaldaginnectives and predicate logic
guantifiers). Otherwise it is in a term context.

Resolution of each kind of operator is as follows by default:

— logical connectives(A, V, —, <, =) andlogical constants(true, false): If the con-
nective or constant is in a term context apzb is not available, use a term version.
Otherwise use a formula version. We ussuffixes to distinguish term versions of these
connectives and constants from the formula versions. Famele, we writen,, for the
term-level version of\.
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— quantifiers (v, 3): No provers requiring term/formula separation suppornntéevel
quantifiers, so we always use formula versions.

— Bool-valued functions and Bool-valued uninterpreted constants If there is at least
one occurrence of the function or constant in a term contesd,a term level function
or constant for all occurrences. Otherwise use a relatigmapositional variable for all
occurrences.

One exception is with relations for which provers have builsupport: equality and
order relations on integers. In this case, a term versioses wnly when essential, that
is, when the occurrence is in a term context @@t is not available. This strategy, in
general, results in VC Units that contain instances of betimtlevel and formula-level
versions of each of these relations. When we get both veysiba relation, we add an
axiom asserting that they are equivalent.

Another exception is with array and record select operatahen the array happens to
have aBool element type or the record field select function is f@oal-valued field. In
this case, we always use a term-level function to ensuréntesd of array and record
operator typing is always uniform.

8.2 Insertion of operators converting between formulastands

We insert ab2p operator whenever Bool-typed term is at a position where a formula is
expected, and we insertp@2b operator whenever a formula is at a position wheioal-
typed term is expected. This ensures that each of our VC lanises is a well-formed strict
first-order-logic formula.

8.3 Options

It is not clear if the resolution heuristics described absheuld alway be applied, and we
have options to enable other heuristics, such as alwaysrges-level versions, or always
prefer formula level versions, whenever possible.

We also implement an option to initially convert equalit@®r terms of typéool into
if-and-only-if formulas. This is in line with the heuristio maximise the amount of structure
resolved to the formula level.

9 Finite Type Elimination by Type Refinement

We consider here a translation for eliminating finite tygfes,example, for replacing the
Boolean typeBool and an integer subrange typ@.. 9} with the integer typént, and a type

Array({0..9},Record(fst : {0..9}, snd : Bool))

with the type
Array(Int,Record(fst : Int, snd : Int))

These type changes are accompanied by changes to formuldaheanddition of axioms,
in order to ensure the validity of each goal in a VC unit is wargded. We call this trans-
lation atype refinementranslation, as the translations of each type are simildata-type
refinements. See the end of Section 2.5 for further infolonedind references. We first give
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a simplified account of the translation, and later, in Sec8i®, discuss a few details of how
the translation is actually implemented.

The translation works simultaneously on all types of a VQ.ufor each named type,
we introduce

— atypeT ™, thebase typdor T
— aunary relatiorer on T, themembership predicater T,
— abinary relatior=r on T, theequivalence relatiorfor T.

Usually applications of=7 are infix, so we writex =7 y rather tharet (x,y). The intent
is that=t is an equivalence relation when restricted{to: T*| €1 (x)} , and there is a
1-to-1 correspondence between the equivalence classesrefstricted to{x : T*| et (x)}
and the elements of T. We place no requirements=gnwhen either argument does not
satisfyer. We say a membership predicate is trivial if €1 (x) is true for allx. We say an
equivalence relatiosst is trivial if =t (x,y) is the same as = y for all x,y.

Sometimes we have intended interpretationsTfor €t and=t. Other timesT ™ might
be a defined type, and we introduce axioms characterisingnd=r.

9.1 Translation of theory elements

— Type constant declarationC : Type.
Replace by type constant declaraton : Type.
If Cis uninterpreted, we declare that is trivial, and allow the option of declaring that
€c is trivial. See Section 13 for discussion of when this opi®uoseful.
If C has an intended interpretation, there might be type-spetitidifications to the
declaration or the interpretation. Currently, there argoo@l modifications for th&ool
type constant. See Section 10 for details. For the otherprated type constantsng,
Real), there are no changes.
— Type constant definitionC: Type = T.
The expected cases forare
— Array type
— Record type
— Integer subrange type
— Type constant
Enumerated types are not expected. For the first 3 caseshesempropriate section
below for changes to the definition and other theory elemdtdsT a type constant,
replace the definition with type constant definition

ct=T*%

and add axioms
iTH ec(x) & er (X

VXY :Tt.X=cy & x=t1YVY

Refinement of array and record types is not strictly necgsiarthe SvT-L1B and
Simplify translation targets: these types can be elimoh&efore type refinement. We
consider their refinement, as the1$ provers might be more efficient with elimination
of these types after refinement. We are also looking forw@tdanslating for Z3's native
language and the Higher-Order-Logic languages of popataractive theorem provers.
All these languages have support for arrays and recordsdbstub-types.
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— Constant declarationc : T
Replace by constant declaration T+. If ¢ is uninterpreted, add a subtyping axiom
et (c). If cis interpreted before refinement, a new interpretation aé@te specified.
— Function declaration f : (T.
Replace by function declaratidhn: (S")T.
If the function is uninterpreted, add a subtyping axiom afahationality axiom

VxSt es(X) = 1 (f(X)
Xy : St €s(X) A €s(y) A x=sy = f(x) =7 f(y)

These axioms ensure that each model of the function aftesl&tion can be translated
into a model of the function before translation. As remarke8ection 2.5, part of the
mathematics of theory interpretations involves consingctmaps of structures of the
target theory into structures of the source theory.

An alternative to the above subtyping axiom is the strong&ama

Vx: Stoer (f(x)

where thecg precondition is omitted. A model will still exist, providinwe are careful
in ensuring that all axioms constrainirfgare translated properly so they provide no
constraints on values dfon arguments not satisfyings. Using stronger axioms of this
kind should result in better prover performance, sinceuas is required in producing
useful instantiations of them.
Itis generally not consistent to omit th; preconditions in the functionality axiom.
If the function f is interpreted before refinement, a new interpretation a¢®le spec-
ified.
The generalisation fam-ary functions is straightforward.

— Relation declarationr : (T).
Replace by relation declaration: (T*). If the relationr is uninterpreted, add a func-
tionality axiom

X,y : St es(X) A €s(y) A Xx=sy = r(x) < r(y)

This axiom ensures that each model of the relation afteska#ion can be translated
into a model of the relation before translationr Ifs interpreted before refinement, a
new interpretation afterwards is needed.
The generalisation fam-ary relations is straightforward.

— Formulas.
Formulavx : T. P(x) become&/x: Tt. er (x) = P/(x), whereP'(x) is the translation
of P(x).
Formuladx : T. P(x) becomesix : T*. €1 (x) A P/(X).
Formulas =1 t becomes =t t.
All other formulas are unchanged.
This translation of quantifiers is commonly referred torelativisation As a simple
example, consider a theory interpretation from the nasuxathe integers: the formula
Vx : 4. P(x) translates ta/x : Z. x>0 = P/(x).
If we are in strict first-order logic, we introduce both tetevel and formula-level ver-
sions ofs=t t, corresponding to the term and formula level versions-ef t, and we
add an axiom stating how they correspond.

— Intended interpretations
The changes required are described in Sections 9.2-9.5.
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In many cases, whear (x) is always true or whemw =t y is simply x =1+ y, the added
axioms simplify, sometimes to the extent that they becomimlagies and are unnecessary.

9.2 Translation of Array Types

We consider here translating a one dimensional array wité tefinition
A:Type = Array(ST)

The generalisation to multi-dimensional arrays is stréiagivard.

The translation of the index tyf&and element typ& induces a translation of the array
type A. We consider that refinement of the element typmay introduce a non-trivial base
type T™, a non-trivial membership predicatg- and a non-trivial equivalence relatieny,
and refinement of the index tyfmay introduce a non-trivial base ty@& and a non-trivial
membership predicates. However, we assume thak is trivial. We need to do this to keep
updateoperators straightforwardly defined in possible laterdtation stages that introduce
axiomatic characterisations of these operators. Thiséasanable assumption as e&cts
normally the integers, some subrange of the integers, onamerated type. If ever there
were some reason for wanting to relax this assumption, itavoat be difficult to do so.

The refinement introduces a new array type definition

At Type = Array(S",T™)

The functions and constants associated with a&@gquire new type declarations, as
described above in Section 9.1.

defaultp @ A"

consta @ (TH)AT

selectp 1 (AT, SHTT
updatep @ (AT, ST THAT

After the translationdefaulta andconsta remain uninterpreted, argtlecta and updatea
now have interpretations as the select and update opefatdhe typeArray(S", T+). Also
as described above in Section 9.1, the axiontéost, introduced in Section 6.2 is suitably
relativised, and new functionality and subtyping axioms sutroduced fordefaulta and
consta.

Now let us consider how to suitably defimg, and =4, and, if needed, add axioms,
so that the use of the refined array type is essentially isphiorto the orginal type. We
ensure that new arrays store elements satisfgingt indices satisfyinges. We consider
two options for what happens at indices not satisfying either require that some default
element ofet always be stored, or place no constraints. How the transkaire tailored
for each of these cases is as follows.

— Out-of-bounds elements constrained
We use the definitions

ea(@ =Vs:Sh (es(s) = e (selecta(a,s)))
A (- E€s(S) = selecta(a,s) =T any_elementy)
=a(a,&) =Vs: S". selecta(a,s) =t selecta(@,s)

whereany_element, has declaration

any_elementp @ T
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and no constraining axioms. In the event that is trivial, the definition of=a (a,&)
amounts to extensional array equality and so we can useaihste

=a(ad) = a=pr @

— OQOut-of-bounds elements unconstrained
We use the definitions

ea(@) =Vs: S es(s) = er (selecta(a,s))
=a(a,@) =Vs: S". €5(s) = selecta(a,s) =t selecta(d,9)

9.3 Translation of Record Types

For simplicity we consider refining only two field records.
R: Type = Record(fst: S snd: T)

The generalisation to records with other numbers of fieldsraghtforward.
We have that

R* = Record(fst : St, snd : TT)
€r(r) = €s(selectAfst(r)) A €1 (select_snd(r))
=g (1,1') = select_fst(r) =g select_fst(r') Aselect_snd(r) =t select_snd(r’)

9.4 Relaxing integer subrange types to Iiftetype

We refine an integer subrange constant definition

S: Type = {j,...,k}

wherej <k, using the definitions

St = Int
€s(x) =j<xAx<k
=s(XY) = X=Int Y

9.5 Relaxing the Boolean type to the integer type

We implement two alternative translations that tgeas a base type:
Bool ™ = Int

The translations apply if initially thBool type has an interpretation as some two element
type containing distinct interpretations of the constanisy, andfalse, and the logical op-
erators all have their usual interpretations on this type.

With both alternatives, we interpretue, as 1 andalsep, as 0, and require new interpre-
tations for the Boolean logical operators and Booleanedltelations that treat 1 as true
and all other integers as false, and that only have valued0 or
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9.5.1 Booleans as subtype of integers

We consider th®ool type as a 2 element subset of the integer type. We use thetidefni

€Bool (X) = X=1nt 0 V X=t 1 (oro<x<1
X=Bool Y =X =Int Y

wherex,y are of typelnt.

9.5.2 Booleans as quotient of integers

We consider th&ool type as being derived from two equivalence classes of insegy@ro-

duce

€Bool (X) = True
X =Bool Y = bZP(X) < b2p(Y)

9.6 Implementation details

— We do not invent new type names for the base typesinstead we just reuse the name

T

— We track the trivialness of the membership predicateand equivalence relatiosr
for each typeT, and use this information to simplify and sometimes elirtérthe new
axioms introduced by the translation. For example, fumetidy axioms for functions
are unneeded when the equivalence relations for all theragutypes are trivial. This
requires that the translation works on types in the ordey #Hre defined, and works
through the function, constant and relation declaratidtes ¢he types have been con-

sidered.

10 Boolean Type Elimination

We consider here eliminating the Boolean type and assakiaterpreted constants, func-
tions and relations. We allow for the interpretation of theoan typeBool initially being
the integers as well as some two element domain.

10.1 Eliminating Boolean-valued functions and relations

We introduce the axioms

Vp : Bool. b2p(—pp) < —b2p(p)

¥p,q : Bool. b2p(pApQ) < b2p(p) Ab2p(q)
Vp,q : Bool. b2p(pVhq) < b2p(p)V b2p(q)
Vp,q : Bool. b2p(p<p @) < b2p(p) < b2p(Q)
VXY : T. b2p(term_eqr(X,y)) < X=T1Y

X,y 1 TT. b2p(term_equiv (X,y)) & X=1Yy
Vi, j @ Int. b2p(term_lent(i, j)) < 1< j

VX : T.b2p(termr(X)) < r(X)
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and remove the requirements that the functions and retatiase intended interpretations.

Hereterm_eqt is the term-level version of formula-level equalityr, term_equivt is the

term-level version of the equivalence relatieq introduced by type refinementgrm_lej,;

is the term-level version ok over the integers, antkrm.r is the term-level version of

uninterpreted relation. These axioms are consistent with the initial explicit iptetations

of the functions, whetheBool is interpreted as the integers or some two element domain.
We introduce these axioms after type refinement rather teéordy as this avoids the

introduction of relativisation preconditions that mighavs provers. For example, if we were

to introduce the axiom fon, before type refinement and we requested refinement to refine

the typeBool to be a subtype of the integers, the axiom after refinementdnumei

Vp,q : Bool. €gool (P)A €Bool (@) = b2p(PAbd) < b2p(p) Ab2p(Q)

Also, if we eliminated the Boolean propositional logic ogters before refinement, we
would also get refinement adding extra unnecessary sulgtgxioms such as

VP, q : Bool. €gool (PAbQ)

or
Vp,q : Bool. €gool (P)A EBool (U) = E€ool (PAL)
depending on whether generation of strong subtyping axisasschosen or not.

10.2 Eliminating coercions between formulas and terms

We substitute out occurrences of tbep coercion from term-level Booleans to formulas
and thep2b coercion from formulas to term-level Booleans using thanilies mentioned
earlier in Section 8:

b2p(X) = X =pool true

p2b(p) = ITEBOO|(p,trueb,faIseb)

10.3 Eliminating the Boolean type and constants

We implement two alternatives for when we remove intendéstmetations of the Boolean
type Bool and the logical constantsue, andfalsey,.
If the Boolean typeBool has interpretation as the integers, we change the typerdecla
tion of Bool to a type definition
Bool : Type = Int
and add axioms
falsep =|nt O
truep =|nt 1

If Bool is interpreted as some abstract two element type, we kegpégleclaration
Bool : Type

and add axioms
VP : Bool. p=pgeol truep Vp P =Bool falsep

truey, # falsep

The first axiom could be hard for automatic provers to useiefftty, so this may not be a
desirable option.
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11 Arithmetic Simplification

We use various simplifications to turn arithmetic exprassithat are semantically linear
into expressions that are obviously syntactically lin€ar. example, we

— substitute out constantsif there is some hypothesis that= k wherek is an integer
literal. Such hypotheses are very common in the VCs gereest®raxis’s 8ARK VC
generator tool.

— normalise arithmetic expressions involving multiplicatiand integer division by con-
stants.

— evaluate ground arithmetic expressions involving muittggion, exponentiation by non-
negative integers, integer division and the modulus famncti

Examples of the normalisation are replacigx €) x (k' x €) with (kx k') x (ex €) and
replacing(k x e) div k' with (k div k') x ewhenk’ dividesk. Herek, k' are integer constants
ande, € are arbitrary integer-valued terms.

We also allow exponentiation by non-negative integers texganded away, for when
solvers can handle non-linear arithmetic, but not expoaton.

12 Elimination of Arithmetic Types and Operators

Options we support include

— Replace natural number literals above some threshualith a new uninterpreted con-
stantsn; ...ng and add axioms$ < n; < ny... < ng asserting how these constants are
ordered.

This is an attempt to avoid arithmetic overflow in provershsas Simplify that use fixed
precision rather than bignum arithmetic. This approachseduvith Esc/Java when it
uses the Simplify solver [29].

— Replace all integer and real multiplications that are nati@lsly syntactically linear
by new uninterpreted functions. This forces non-lineathametic expressions to look
linear, as required by several solvers.

— Make exponentiation of integer and real expressions bynewative integers uninter-
preted.

— Make integer division and the modulus function uninterpdetAdd characterising ax-
ioms such as:

VX,y:Int. 0<y = 0<Xmody

vX,y:Int.0<y = Xmody <y

VX y:iIint. 0< XA 0<y = yx (xdivy) < X
YXY:iInt. 0<X A O<y = X—y < yx (Xdivy)
VX y:ilnt. X<0 A 0<y = X < yx (xdivy)
VX Y:iInt. X<O0 A 0<y = yx (Xdivy) < X+Vy

— Make real division uninterpreted.
— Make the real type and all functions involving reals unipteted.
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— Make uninterpreted functions over integers expressiregedf bit-wise operations. Add
characterising axioms for these such as:

0<x A 0<y = 0<bitor(X,y)

VX, y:Int. 0<Xx A 0<y = x<bitor(X,y)
VX y:Int. 0<x A 0<y = y<bit_or(X,y)
VX, y:Int. 0 <X A 0<y = bitor(X,y) < X+Vy

13 Uninterpreted Type and Defined Type Elimination

The prover Simplify does not support uninterpreted typebtgpe definitions. Essentially it
assumes that all functions and relations are on the singl®kimtegers.

As observed by Bouillaguet et al. [10], if it is consistent &l uninterpreted types to
have interpretations with the same cardinality, then itas mecessary to use a many-to-
single sort relativisation translation where a predicatelefined carving out each of the
many sorts from a single sorted universe. Instead, it isisterg to drop these predicates
and give all uninterpreted types the same interpretation.

We have not established that every uninterpreted typerikR& VC units is free from
any axiomatic constraints that rule out the integers as silpesmodel. There might be con-
straints that only allow finite models of some uninterpreigzk. Types with natural models
with larger cardinality than the integers (e.qg. the reat)ygre not an issue, as the Downward
Lowenheim-Skolem theorem guarantees in these cases toainéable model also exists.
We therefore refine every uninterpreted type using an umiréeed membership predicate
function (see Section 9.1) in order to ensure every unindéed type can be modelled by
the integers.

We allow type definitions to be eliminated by expanding thignitéons.

14 Case Study SPARK Programs

For our experiments we work with three readily availableregbes.

— Autopilot: the largest case study distributed with thea8k book [5]. It is for an au-
topilot control system for controlling the altitude and tiesy of an aircraft.

— Simulator: a missile guidance system simulator written by Adrian éfilas part of his
PhD project. It is freely available on the w€under the GNU General Public Licence.

— Tokeneer. the Tokeneer ID Station is a biometric software system fanaging access
to a secure area [6]. This case study was commissioned by $hNational Security
Administration in order to evaluate Praxis’s ‘Correct byrStuction’ SPARK-based
high-integrity software development methodology. All thaterials from this case study
were made publically available on the web late 2608

Some brief statistics on each of these examples and thesponding verification conditions
are given in Table 2.

The lines-of-code estimates are rather generous, beingysiime sum of the number
of lines in the Ada specification and body files for each exampheannotationscount

10 http://www.suslik.org/Simulator/index.html
11 http://www.adacore.com/tokeneer



36

Table 2 Statistics on Case Studies

| Autopilot | Simulator | Tokeneer

Lines of code 1075 19259 30441
No. funcs & procs 17 330 286
No. annotations 17 37 194
No. VC goals 133 1806 1880

is the number of BARK precondition, postcondition and assertion annotationallithe
Ada specification and body files. In the Autopilot and Simodaxamples, almost all the
annotations were assertions. In the Tokeneer example tere roughly equal number of
the three kinds. The VC goal counts are for the goals outpuhbyExaminer, excluding
those goals the Examiner proves internally. The Examineviges no information about
these goals other than that it discharged them, so thetégdoint in us considering them.

In all cases, most of the VCs are from exception freedom chéderted by the Ex-
aminer tool. The VCs from all examples involve enumeratguesy linear and non-linear
integer arithmetic, integer division and uninterpretedctions. In addition, the Simulator
and Tokeneer examples includes VCs with records, arrayshenghodulo operator.

15 Experimental Conditions

The provers tools we linked to ourdf tool were:

— Cvc32.2,

— Yices 1.0.24,
- 732.3.1,

— Simplify 1.5.4.

We compared our results against those obtained with thedPaitomatic prover/simplifier
from the 8.1.1 GPL release of Praxis'®/ARK toolkit. As explained in the Introduction,
our interest is to do better than this prover, so it is impurtae compare against it. All
experiments used a 2.67 GHz Intel Xeon X5550 4 core procesitor50 GB of physical
memory and running Scientific Linux 5.

As distributed, all the Tokeneer VCs are described as thoeigh not all are necessarily
directly machine provable. The distributed VC goals falbi3 categories:

— (94.1%) those proved using Simplifier, Praxis’s automataver,
— (2.3%) those proved using Checker, Praxis’s interactiosgr and
— (3.6%) those deemed true by inspection.

The interactive proofs drew on auxiliary rule files that ura#d definitions of specification
functions used in the B\RK program annotations. Whenever some of the VCs of a program
unit were proved using the Checker tool and the Checker meglefian auxiliary rule file,
we also read in that rule file when attempting proof of VCs at tmit. For a fair comparison,
we report in our results section below on the Praxis autanpativer’'s performance running
with these auxiliary rule files. It seems the Tokeneer deyai® never tried this, perhaps
because the earlier version of the automatic prover they disenot have this option.

We report here on experiments with 6 choices BifrfSolver and interface mode.

— CvC3/API
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— Yices/API. Here we let Yices reject individual hypotheses and comahssthat it deems
non-linear. It does accept universally quantified hypatsesith non-linear multiplica-
tions, and does find useful linear instantiations of thegmtheses.

— Cvc3/SvT-L 1B file interface, using the AUFNIRA ™T-L1B sub-logic.

— Yices/3uT-L B file interface, using the AUFLIA S4T-LiB sub-logic. Here we needed
to abstract all non-linear multiplications, including #eoin quantified hypotheses, in
order to conform to the AUFLIA requirements.

— Z3/SmT-L 1B file interface, using the AUFNIRA #T-LIB sub-logic.

— Simplify/Simplify file interface

Unless otherwise stated, all solvers were run with a 1 setiorebut, except for Yices with
the APl interface, since the Yices API we use provides notfanality for setting timeouts.
We refer to each of these setups of a prover with some inerfaade as gest configuration
For convenience we also refer to running the Praxis provartast configuration.

16 Experimental Results

In this section we report our observations of the coveragaindd with each test configura-
tion and of the distribution of prover run-times on the diffiet problems. Our ¥T tool can
work through all the VCs for all the program units of a caselgtn a single run, and output
a comma-separated-value record of data concerning eathiTgeamade it straightforward
to produce the various statistics listed in this section.

In Section 17 we give an analysis of these observations, lzowl sxamples of VCs that
illustrate differences between solvers. Section 17 alstudtes remarks on soundness and
robustness issues encountered in the experiments.

Table 3 Coverage of VC goals (%)

Prover Cvc3  Yices Gvc3 Yices Z3  Simplify | Praxis
Interface ‘ API APl SMT-LIB  SMT-LIB  SMT-LIB file

Autopilot 96.2 95.5 96.2 91.7 98.5 96.p 97.0
Simulator 94.6 94.0 94.5 93.6 95.5 93.p 955
Tokeneer 96.6 97.0 95.3 95.7 97.0 86.4 95.0

The coverage obtained with each test configuration is sumeethin Table 3. The table
shows the percentage of VC goals from each case study thafaaneed true with each
configuration.

Some of the Simplify runs halted on Simplify failing an intat runtime assertion check.
This happened on 2.3% of the Simulator goals, and 0.5% ofdkerieer goals.

Table 4 Average run time per goal (msec)

Prover Cvc3 Yices (6Y/ex] Yices Z3 Simplify | Praxis
Interface API APl SmT-LIB SMT-LIB  SMT-LIB file

Autopilot | 111 (100) 18 (7) 91 (73) 32 (15) 42 (25) 34(17) 16
Simulator | 190 (173) 25(8) 171 (146) 51 (26) 74 (50) 69 (44) 33
Tokeneer | 358 (322) 53(18) 251 (206) 85 (40) 83(38) 415(370) 50
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Table 4 shows the total run time for each test configuratioreach case study. The
unparenthesised times are normalised by being dividedeéogiuimber of goals in each case.
The parenthesised numbers are normalised estimates afrthespent in the actual prover
code rather than the & tool's code. In the case of Yices with the API interface, it is
estimated that, if there had been support to enforce a 1 deoorout, the Tokeneer times
would have been 7sec shorter and there would have been ngechathe Autopilot and
Simulator times.

Table 5 Run time distribution for Tokeneer case study goals (sec)

Prover Cvc3  Yices Gvc3 Yices Z3  Simplify
Interface API APl SMT-LIB  SMT-LIB  SMmT-LIB file
30% 0.11 0.02 0.04 0.03 0.02 0.05
50% 0.25 0.03 0.06 0.03 0.03 0.28
70% 0.48 0.04 019 0.04 0.04 0.58
90% 0.66 0.05 0.71 0.05 0.06 1.01
95% 0.73 0.06 1.00 0.06 0.07 1.10
98% 0.81 0.07 >20.00 0.11 0.10 >20
99% 5.49 0.16 >20.00 4.05 >20.00 >20

Table 6 Run time distribution for Tokeneer case study goals (sedy(proven goals)

Prover Cvc3  Yices Gve3 Yices Z3  Simplify

Interface API APl SMT-LIB  SMT-LIB  SMmT-LIB file

30% 0.11 0.02 0.04 0.02 0.02 0.04
50% 0.25 0.03 0.05 0.03 0.03 0.29
70% 0.47 0.04 0.15 0.04 0.04 0.56
90% 0.65 0.05 0.62 0.05 0.05 0.98
95% 0.70 0.05 0.79 0.05 0.07 1.04
98% 0.76 0.07 0.99 0.06 0.08 1.13
99% 0.78 0.08 1.13 0.07 0.09 1.42
100% 0.85 0.27 12.34 0.26 0.82 12.65

The average run times for the provers are often heavily sttdwyelong run times for
relatively few of the goals, especially as it is common foovars to time out rather than
terminate on goals they cannot prove. To give an indicatidmow run times on goals are
distributed, we sorted the run times in each case, and shdabile 5 these goal run times at
a few percentiles. For example, the 50% line in the tablesgilre median run times. We ran
the tests for this data with a timeout of 20sec rather 1sempoave the quality of the data
on slower goals. Itis also interesting to look at the disttitn of run-times for just the goals
that each prover is able to prove. This makes it easy to sedinm@out thresholds affect the
coverage. This data is shown in Table 6. The entry for sometegiguration on the 50%
row shows that 50% of the final coverage for a 20sec timeout thiat configuration was
obtained with run-times of the indicated value or less.

Numbers are not given for the Praxis’s prover in these talaests log files do not
provide a breakdown of its run time on individual goals.
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17 Discussion of Results
17.1 Coverage

We discuss in this section the coverage results summarisibie 3 in the previous section,
considering each case study in turn.

Autopilot

The goals in this case study are all thought to be true, adégeih, with a timeout of of 10
seconds rather than 1 second, Z3 reports them all to be true.

The goals that failed to be proved under one or more test agafign all involved
bounding properties of arithmetic formulas that includateger division or the modulo
operator. For example, the goal

H1i: j>=o0.
H2: j <= 100
H3: k>0 .
H4: j<=k.
H5: m <= 45 .
H6: m>O0 .

Cl: (m * j) div k <= 45 .

was not provable in any of the test configurations, thoughad @ih the same hypotheses
and the similar conclusion

Cl: (m * j) div k >= -45 .

was proved with the Praxis and Z3 configurations. These dmet goals presented in this
section are all abstracted and simplified to show the esdeitiicture: common subexpres-
sions are abstracted to variables, irrelevant hypothesgsa@nclusions are removed, and
constants with literal values are often substituted out.

A slightly harder example of a bounds theorem that cannoblved just by considering
how the bounds on each argument to the division operatactdfie bounds of its value is:

Hi: f>0.
H2: f <= 100 .
H3: v >=0 .
H4: v <= 100 .
->
Ci: (100 * £f) div (f + v) <= 100 .

This was proved in the Z3 configuration and also in thecG-API configuration if we
raised the timeout to 20sec.

The coverage with Yices/APl was lower because Yices/ARdatejd most hypotheses
and conclusions with non-linear multiplication, whereastinear multiplication was ac-
cepted in all other configurations except YicesSLiB. Usefully, Yices via its APl accepted
non-linear multiplication within universally quantifieg/potheses, and permitted linear in-
stantiations of these hypotheses. For example, in proving

Hi: f >= -1000 .
H2: f <= 1000 .
H3: t >= -1000 .
H4: t <= 1000 .

C1: (t - £) div 12 >= -180 .
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for the case wheh— f is non negative, Yices can instantiate the hypothesis
VX Y:iIint. 0<X A 0<y = Xx—y<yx(xdivy)
to derive the new linear hypothesis that
t—f—12<12x ((t— f)divl2)

from which the conclusion
(t— f)divi2> —180

follows. Unfortunately, should Yices find a non-linear enstiation, it currently immediately
terminates rather than ignoring the instantiation.

One reason for the lower coverage with YicagfSL B is that then, with linearity re-
quired everywhere, the non-linear multiplication in qutked hypothesis such as above is
abstracted to an uninterpreted function. This makes sugipatihesis much less useful.

Cvc3, Z3 and Simplify all accept non-linear multiplicationseeywhere in their input
formulas.

Simulator

While the VC goals here were richer than with the Autopiloseatudy in that they also
involved array and record expressions, the goals on whiokigps gave different results
again all involved arithmetic beyond linear arithmeticr Ekample, Z3 and the Praxis prover
both proved the goal

Hi: s >=0 .
H2: s <= 971 .
->
C1i: 43 + s * (37 + s * (19 + 8)) >= 0 .
C2: 43 + s x (37 + s * (19 + s)) <= 214783647 .
and the goal
Hi: m = 971 .
H2: kO =0 .
H3: k1 =2°32 -1

C1: el mod m * (e2 mod m) mod m >= kO .
C2: el mod m * (e2 mod m) mod m <= k1 .

The rounding of the coverage figures for Z3 and the Praxisgurbides the fact that the
Praxis prover discharages 1 more goal. This in essence is:

Hi: p>1.
H2: p <= 1000 .
H3: d >0

H4: d <= 92

H5: r >0 .
H6: r <= 100 .
->
Ci: (942 + d * (d * d) div 2000) * r div 100 * p div 2 >= -1000000 .
C2: (942 + d * (d * d) div 2000) * r div 100 * p div 2 <= 1000000 .
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To read the conclusions, note thaand integer divisioriv have the same precedence and
are left associative. The conclusions follow by intervéihemetic and bounding properties
of div: one can compute that the left-hand-side expression indhelgsion is in the range
0...665672.

The remaining 3% of unproved goals are all false as far as weetlaThe author of the
Simulator case study code had neither the time nor the needsiare that all goals for all
sub-programs were true.

Coverage is obviously sensitive to how timeout values arersgease the timeout value
and often coverage increases too. However, there usualyiimseout value beyond which
no further coverage is obtained. For example, with Z3 thereiincrease in coverage with
a timeout of 20sec rather than 1sec, and bottc®API and G/c3/SMT-LiBconverge on
proving the same 94.6% of goals at a 20sec timeout.

Tokeneer

The best coverage was obtained with the Yices/API and Z3gunaiions. They succeeded
in proving all 94.1% of goals originally proven by the Pragi®ver, all 2.3% of goals that
were originally proven by the interactive Checker tool, adlas 0.6% of the 3.6% proven
by manual review. We have inspected the goals unproven tBs¥dl and Z3, and in every
case it seems there are missing hypotheses, making theseagadated false. Many of the
goals are missing hypotheses characterising specificttiaions.

Praxis’s automatic prover was able to use the rules orilgimairoduced for the inter-
active prover to increase its coverage by 0.9%. All thesésgbaewly proved were goals
originally proved using the interactive prover.

The goals that Yices and Z3 prove and Praxis’s automaticgproisses appear to mostly
involve straightforward linear arithmetic and Booleans@aing. The issue here is that
Praxis’s prover does not implement decision proceduresirfear arithmetic and Boolean
reasoning, rather it uses a set of finely-tuned heuristicqmores.

One slightly more interesting example of such a goal is
H2 p < (f - 1) div 100 + 1
H3 1 <=1
->
Cl: £ - (p - 1) * 100 >= 101

The drop in Simplify’s coverage compared to that of Z3 is dua tombination of a low
timeout, Simplify halting on assertion failure, and thedmpleteness introduced by making
large constants symbolic. With a timeout of 20sec rathen theec, Simplify’s coverage
increased from 86.4% to 94%. See Section 17.3 for more digmusf the latter 2 issues.

17.2 Runtimes

Average run times are shown in Table 4 and the distributiorunfimes for the Tokeneer
case study is shown in Tables 5 and 6. We make here some gesraeaks on these results.
It is important not to read too much into the numbersiTSsolvers have many op-
tions for selecting alternative heuristics, problem tfamaations and resource limits, all of
which can significantly affect performance. The numbere lage for the default settings of
the solvers, which in some cases (e.g. Z3) involve the s@lutsmatically choosing some
parameter settings based on the input problem. We have teon@ted to tune option set-
tings for the $ARK VCs. In very preliminary investigations, we have found isg#o get
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factor of two changes in run times. Also, we have made no gttesm far to optimise our
tool to reduce the often significant contribution it makegh® overall run times.

Looking at the run-time distributions, W©3/API is an order of magnitude slower than
Yices/API, Yices/T-L1B or Z3at most percentiles.

The Cvc3/SmT-LiIB configuration is significantly faster than thes€3/API configura-
tion at lower percentiles, but slower at the highest. Thisasdoubt at least partly due to
the different nature of the translations in the two casesekample, with the API transla-
tion, Cvc3 can bring to bear specialised handling for the differepetyin goals. With the
SMT-L1B translation, there are many more quantified axioms intreduo characterise the
different types, and €c3 has to fall back on its default heuristics for instantigtthese
axioms. This might account for the better performance ah lpgrcentiles with the API
translation.

Yices/API and Yices/8T1-LiB run time distributions are similar, except at the highest
run times, maybe again because, with the API, each type cgivée individualised treat-
ment.

The performance of Simplify is impressive, especially givis age (the version used
dates from 2002) and that it does not employ the cose &gorithms used in the N8t
solvers. Part of this performance edge must be due to the fueed-precision integer
arithmetic rather than some multi-precision arithmetickaae such agmpwhich is used
by Yices and @c3. We are not sure of why there is a slip in the comparative csjpée
Simplify on the Tokeneer case study. Perhaps it is relatédednigher number of explicit
assertions in the Tokeneer code that then results in moreleg'Cs.

Also too, we observe that Praxis’s prover has run times coafgpa to the best observed
with any of the other configurations.

We have carried some preliminary experiments to see whettsfthe translation options
have on #17-L1B and Simplify run times. So far we see at best relatively sitadinges in
the overall run times. For example, if we use the constrestbect rather than the update-
select axiomatisation of records, Z3 runs about 10% fastethere is little change Yices'’s
run time.

17.3 Soundness

The use of fixed-precision 32-bit arithmetic by Simplify kvitttle or no overflow checking
is rather alarming from a soundness point of view. For exarpimplify will claim
(IMPLIES

(EQ x 2000000000)
(EQ (+ x x) (- 294967296)))

to be valid.

As mentioned earlier, when Simplify was used witadElava, an attempt was made to
soften the impact of this soundness problem by replacing@ger constants with magni-
tude above a threshold by symbolic constants. When we tiis@pproach with a threshold
of 100,000, the value suggested in thed&dava paper [29], several examples of false goal
slices from the Simulator example were asserted to be vgliiimplify. One such slice in
essence was

Hi: lo >= 0 .

H2: lo <= 655635 .
H3: hi >=0 .

H4: hi <= 65535 .
H5: 100000 < k200000

->
C1: lo + hi * 65536 <= k200000 .
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wherek200000 is the symbolic constant replacing the intege#000. These particular goals
became unproven with a slightly lower threshold of 50,000.

One indicator of when overflow is happening is when Simplifprs because of the
failure of a run-time assertion left enabled in its code.tAd reported errors in the Simplify
runs are due to failure of an assertion checking that anéntegut to a function is positive.
We guess this is due to silent arithmetic overflow. Of couasghmetic overflow can easily
result in a positive integer, so this check only catches soveeflows.

We investigated how low a threshold was needed for elimigathe errors with the
Simulator VCs and found all errors did not go away until weuaztl the threshold to 500.

To get a handle on the impact of using a threshold on protghbile reran the Yices/API
test on the Simulator example using various thresholdsh \MD,000 the fraction of goals
proven by Yices dropped to 90.8%, with 500 to 90.4% and withd289.6%. Since Yices
rejects any additional hypotheses or conclusions whicimaide non-linear by the introduc-
tion of symbolic versions of integer constants, these tesatlicate that under 2% of the
Simulator goal slices involve linear arithmetic problemghwnultiplication by constants
greater than 20.

17.4 Robustness

Over the course of developing our prover interface tool, aechworked with several ver-
sions of different provers, and have found some versionsepto generating segmentation
faults or running into failed assertions. This was partdyl a problem when interfacing to
the prover through its API, because every fault would briogml our iteration through the
goals of a case study. We resorted to a tedious process afineggoals to be excluded
from runs in a special file, with a new entry manually addecdis file after each observed
crash. Fortunately prover developers are generally ressgoio bug reports.

One incentive for running provers in a subprocess is thatahimg program is insulated
from crashes of the subprocess.

18 Current and future work

One aim of this work is to get thePBRK user community engaged with the latest state-of-
the-art provers for their VCs. To this end, we publicallyegsed our tool in 2010 under a
GPL licence!?. Also in 2010, Praxis integrated an experimental releaseiofool into their
SPARK toolset and have distributed it to all their customers. A GBtsion of this toolset is
now availablé3.

Another aim is to provide VC challenge problems to the autechaeasoning research
community. We provided the Tokeneer VCs in tha1SL 18 format to the 2009 8T com-
petition, and hope that members of thea&k user community will in future use our tool to
generate further benchmarks.

Next steps in the development of oucVtool include:

— Extending coverage of theDt VC language, especially including support for the reals
which are currently used for modeling floating-point nunsb&fany SSARK users make
much use of floating-point arithmetic.

12 Visit http://homepages . inf .ed.ac.uk/pbj/spark/victor . html
13 Visit https://1libre.adacore.com/libre/tools/spark-gpl-edition/
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Adding support for the 8T-Lis 2.0 format introduced in 2016. This promises to
simplify providing support for the reals.

Improving interfaces for interactive theorem provers. Example, we already have 2
versions of a preliminary interface to the Isabelle theopeaver [36].

Exploring how to provide proof explanations that are corhpresible by software engi-
neers and that could be used in proof review processes.

Figuring out how best to present VC counterexamplesrar users.

Adding an alternate front-end preprocessor for VC Units inae vanilla standardised
syntax, so the T tool could easily be used with VCs generated from other laggs.

We are also working in several directions to improve autéonabptions. These in-
clude building translations to the input languages of papuiteractive theorem provers,
and exploring integrating a variety of existing techniqfsproving problems involving
non-linear arithmetic [38]. Some of this work is in conjunct with the Z3 development
team who have made significant improvements to Z3's noraticapabilities [34].

19 Conclusions

We have demonstrated that state-of-the-art Solvers such as Yices, Z3 and/C3 are well
able to discharge verification conditions arising fromASK programs. These solvers are
able to prove nearly the same VCs as Praxis’s prover. Oueafelarly 4000 VCs considered,
we found 42 proved by solvers and not Praxis’s prover: thegdighted incompletenesses
in the heuristic proof strategy employed by Praxis’s prokany involved simple linear
arithmetic and propositional reasoning, We also found oB8ealiécharged by Praxis’s prover
and not any BIT solver involving non-linear interval arithmetic calcutais. We observed
average run-times for the fastest of the solvers of roughl2k that of Praxis’s prover.

In this article we have described the architecture of oarYool for translating VCs into
input formats of ™71 solvers and for driving those solvers. The translation lve®a num-
ber of steps such as eliminating array and record types riakilegy data type refinements,
and separating formulas and terms. There are a number @ingpsubtleties and interac-
tions of these steps. We have given a detailed presentdttbese steps as a guide to others
who wish to implement similar translations, and to encoerdigcussion of improvements
to such translations.

AcknowledgementsThanks to Angela Wallenburg at Altran Praxis and the anomsme-
viewers of this article for their helpful and constructiventments.
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