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Abstract We have constructed a tool for using SMT (SAT Modulo Theories) solvers to
discharge verification conditions (VCs) from programs written in the SPARK language. The
tool has API interfaces for some solvers and can drive any solver supporting the SMT-L IB

standard input language.
SPARK is a subset of Ada used primarily in high-integrity systems in the aerospace,

defence, rail and security industries. Formal verificationof SPARK programs is supported
by tools produced by the UK company Altran Praxis.

We report in this paper on our experience in proving SPARK VCs using the popular SMT

solvers CVC3, Yices, Z3 and Simplify, and compare these solvers with Praxis’s automatic
prover. We find that the SMT solvers can prove virtually all the VCs that are discharged
by Praxis’s prover, and sometimes more. Average run-times of the fastest SMT solvers are
observed to be roughly 1−2× that of the Praxis prover.

Significant work is sometimes needed in translating VCs intoa form suitable for in-
put to the SMT solvers. A major contribution of the paper is a detailed presentation of the
translations we implement. This is expected to be of interest to other users of SMT solvers.

Keywords SMT solver·SAT modulo theories solver·Ada·SPARK· theory interpretation·
data-type refinement

1 Introduction

1.1 Overview

Software is deployed in an ever increasing range of applications where its safety is paramount,
in aerospace, rail and road transport, and medical equipment, for example. The UK com-
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pany Altran Praxis provides verification tools that give mathematically-rigorous assurances
of the correctness of SPARK-Ada programs. Examples of majorprojects that Praxis deploy
SPARK and their tools on include an upgrade to the UK civilianair-traffic control system
and monitoring software for jet engines. This paper reportson work to improve the capabil-
ities of Praxis’s verification tools. Specifically the paperis concerned with how SMT solvers
could augment or replace Praxis’s in-house automatic prover technology. Praxis’s customers
currently exert significant effort to work around the limitsof this technology. Improvements
in prover technology could broaden the range of projects on which use of the Praxis verifi-
cation tools is cost effective and deepen the formal analysis the tools provide.

We find that significant formal engineering is required to make use of SMT solvers, and
much of the paper is devoted to a careful exposition of what wehave implemented. We
expect this exposition to be of significant interest to others who are wanting to use SMT

solvers for software or system verification.

1.2 Softare Verification using Verification Conditions

There are a variety of techniques currently used for formal verification of software. These
include software model checking [26] and abstract interpretation [13]. Many involve attach-
ing assertions to positions in the procedures and functionsof programs. These assertions
are predicates on the program state that are desired to be true whenever the flow of control
passes them.

Praxis use a verification technique that involves generatiing and proving of predicate
logic formulas calledverification conditions(VCs for short). For each assertion, one can
analyse the surrounding program structure and generate a set of VCs that, if proven, guar-
antee that the assertion will always be satisfied when reached. Usually VCs for an assertion
are generated under the assumption that immediately prior assertions on the control flow
path were satisfied. While VCs use mathematical analogs of program data types such as
arrays, records and enumerated types, they are otherwise free of program syntax. A con-
sequence is that provers for VCs need no knowledge of the semantics of the programming
language beyond these mathematical data types. All relevant semantic information on how
programming language statements execute is captured in theVC generation process.

1.3 SMT Solvers

SMT (SAT Modulo Theories) solvers combine recent advances in techniques for solving
propositional satisfiability (SAT) problems [42] with the ability to handle first-order theories
using approaches derived from Nelson and Oppen’s work on cooperating decision proce-
dures [35]. The core solvers work on quantifier free problems, but many also can instantiate
quantifiers using heuristics developed for the non-SAT-based prover Simplify [14]. Common
theories that SMT solvers handle include linear arithmetic over the integersand rationals,
equality, uninterpreted functions, and datatypes such as arrays, bitvectors and records. Such
theories are common in VCs, so SMT solvers are well suited to automatically proving them.
An SMT solver proves a VC by checking that a conjunction of the VC’s hypotheses and the
negation of the VC’s conclusion is unsatisfiable.

The experiments we report on here use three popular SMT solvers: CVC3 [1], Yices [16]
and Z3 [33]. All these solvers featured in recent annual SMT-COMP competitions compar-
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ing SMT solvers1 in categories which included handling quantifier instantiation. We also
include Simplify in our evaluation because it is highly regarded and, despite its age (the
latest public release was in 2002), it is still competitive with current SMT solvers. Simplify
was used in the popular ESC/Java VC-based software verification tool [20] and continues to
be the default prover for use with the successor tool ESC/Java2 [2]. And we include Praxis’s
automatic prover, which is the usual tool that SPARK users employ to discharge verification
conditions.

One advantage that SMT solvers have over Praxis’s prover is their ability to produce
counterexample witnesses to VCs that are not valid. These counterexamples can be of great
help to SPARK program developers and verifiers: they can point out scenarios highlighting
program bugs, or indicate what extra assertions such as loopinvariants need to be provided.
They also can reduce wasted time spent in attempting to interactively prove false VCs.

1.4 Targetting the SPARK language

Tackling SPARK programs rather than say Java or C programs is appealing for acouple of
reasons. Firstly, there is a community of industrial SPARK users who have a need for strong
assurances of program correctness and who are already writing formal specifications and
using formal analysis tools. This community is a receptive audience for our work and we
have already received strong encouragement from Praxis. Secondly, SPARK is semantically
relatively simple and well defined. This eases the challenges of achieving higher levels of
VC proof automation.

1.5 Contributions of Paper

This paper makes two contributions:

1. It gives a detailed presentation of the process of translating VCs into forms suitable
for passing to the SMT solvers. While some of the translation steps by themselves are
well known and straightforward, several, especially thoserelating to translating finite
types, are less so. We see value in presenting the details of them, explaining options and
subtleties, and how the steps interact. This presentation could act as a guide to others
needing to construct similar translations for SMT solvers.

2. It investigates how current SMT solvers perform on industrially relevant examples.

1.6 Wider Context of Reported Work

The longer-term goals of the work reported here are to improve the level of automation
of SPARK VC verification and to extend the range of properties that canbe automatically
verified.

Often there is a requirement that all VCs associated with a program are checked by
some means. Typically 95–98% of VCs are proved automatically by Praxis’s prover. A large
project might have 105 VCs, so the remaining several thousand VCs must be justified by
other means. Alternative approaches for checking these VCsinclude checking them by hand
and using an interactive theorem prover provided as part of the Praxis toolset. Interactive

1 http://www.smtcomp.org/
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proofs are usually brittle, they often fail when VCs change slightly because of changes to
code or to annotations. Another approach that has been foundmore robust is to add axioms
that provide hints to the automatic prover for completing VCproofs. Obviously, care is
needed to avoid inadvertently introducing inconsistencies. All these approaches are highly
skilled and very time consuming. Increasing the level of automation reduces the cost of
complete VC checking, and makes complete checking affordable by a wider range of SPARK

users.
These concerns over the cost of handling non-automatically-proven VCs impact the

range of program properties that SPARK users try to check. If users try to check richer prop-
erties, the number of non-automatically-proved VCs increases and so does verification cost.
Most SPARK users settle for verifying little more than the absence of run-time exceptions
caused by arithmetic overflow, divide by zero, or array bounds violations.

Cost concerns also place constraints on SPARK programming style. SPARK users learn
programming idioms that lead to the generation of VCs that are more likely to be proved by
Praxis’s automatic prover.

1.7 Organisation of Paper

Section 2 compares our VC translation approach to that of other popular VC-based pro-
gram verification systems. Section 3 gives more background on SPARK. Section 4 gives an
overview of our VC translation tool. The translation is presented in detail in Sections 5 to
13. Readers interested in the experiments may choose to skipthese sections. Case study pro-
grams are summarised in Section 14, and Sections 15, 16 and 17present our experiments
on the VCs from these programs. Current and future work is covered in Section 18, and
conclusions are in Section 19.

2 Related Work

We discuss here several related strands of research. In Sections 2.1 and 2.2 we consider
verification-condition-based program verification, both for imperative languages in general
and for Ada in particular. Then we look more broadly at research that has dealt with similar
translations. SMT solvers support a variety of input languages and some of these languages
have many of the features found in the FDL VC language our translation takes as a starting
point. We discuss these input languages in Section 2.3. Thissurvey of SMT solver input
languages also serves to motivate the translation efforts we have gone to. Also there are
similarities between many interactive theorem prover languages and FDL, and there has
been strong interest in developing interfaces between interactive theorem provers and SMT

solvers. We survey some work in this area in Section 2.4.
Our translations are theory interpretations of mathematical logic. In Section 2.5 we ex-

plore this formal basis for our translations and also brieflydiscuss the closely-related topic
of theory interpretations in algebraic specification.
2.1 VC-based program verification

Systems for verifying programs by proving VCs have been around since the 1960s. King’s
PhD thesis [27] is the first description of such a system. Notable systems since include the
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Stanford Pascal Verifier [30] Gypsy [21] and ESC/Java [20]. Popular contemporary sys-
tems includeWhy verification platform [19], theSpec# static program verifier [7], and
ESC/Java2 [2].

ESC/Java2 generates VCs for Java programs. The standard VC language is that of the
Simplify prover, though experimental translations into the SMT-L IB format (see Section 2.3)
and into the input language of the PVS theorem prover2 are also available. While PVS has a
rich type system, the PVS translation translates to an embedding of the Simplify language,
and so makes relatively little use of these types.

Spec# is targetted at the C# language. Originally it generated VCsin the Simplify lan-
guage. Currently it proves VCs using the Z3 prover, though itis not known whether it con-
tinues to use the Simplify language as the interface language.

The Why tool provides a VC generator for theWhy intermediate-level programming
language (Why PL) and can translate these VCs into the input languages of both SMT solvers
and interactive theorem provers [19]. The associated Krakatoa tool translates annotated Java
into Why PL, and Caduceus and its successor Frama-C translate annotated C intoWhy PL.
The VC language is a simply-typed polymorphic language without sub-types.

Both ESC/Java2 andSpec# also translate into a simple intermediate-level abstract progam-
ming language before generating VCs. In the case ofSpec#, there is an alternate front end
for C and an alternate VC generator that outputs in the input syntax of the Isabelle/HOL
interactive theorem prover3.

In all the above cases, extensive axiomatisations of the source language data types and
memory models has been carried out by the time VCs are generated. In the case of the
Simplify language, the only interpreted type left is the integers; in the case ofWhy, there
is also a Boolean interpreted type, for example.Why has a feature for allowing additional
types to be interpreted. As far as we understand, this feature is used mainly when translating
for VCs in interactive theorem prover languages. Nearly allthis axiomatisation appears to
happen at stages before the intermediate-level programming language representations are
generated.

In contrast, with the VCs generated for SPARK programs, mathematical analogs of most
of the SPARK level data-types survive in the VCs. That this is possible isin part due to the
simplicity of the SPARK data types, memory model and mode of passing data between pro-
cedures: with SPARK there are no reference types or pointer types, there is no dynamically
allocated memory, and all data appears to be passed by value on procedure calls and returns.
This richer VC language then gives us more work when translating to a relatively simple
language like SMT-L IB, where the only interpreted type we might make use of is the integer
type.

There are some similarities between our translation steps and those employed in ESC/Java,
ESC/Java2,Spec# and theWhy front-ends before intermediate language generation. For ex-
ample, our step for abstracting term-level Boolean operations (see Section 10) are derived
from those in ESC/Java2. There are also significant differences. For example, our under-
standing is that the translations in these other systems aremore monolithic than ours: they
are not broken down into a series of distinct steps. And we have not seen parts of the transla-
tions in these other systems having a direct analog to our data refinement step (see Section 9).
In these other systems, any data refinement is directly builtinto the introduced axioms.

A common observation in descriptions of these axiomatisations is the need to carefully
phrase the axiomatisations and to provide hints on when and how to instantiate quantifiers

2 http://pvs.csl.sri.com
3 http://www.cl.cam.ac.uk/research/hvg/Isabelle/
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involved in the axiomatisations. This attention can much improve the performance of the
quantifier instantiation heuristics built-in to SMT solvers which otherwise can be very poor.
In the work described here, our experience so far has been that our axiomatisations are
handled relatively well by SMT solvers However, we are aware that most of the VC examples
we have tried do not thoroughly exercise our axiomatisations, so further experimentation is
necessary.

2.2 Verification of Ada programs

The Ada language was originally designed for use in mission-critical real-time and embed-
ded systems. Users of the language have a natural interest inthe safety and correctness of
their programs and have supported the development of formalverification systems targeted
at subsets of Ada such as SPARK.

Earlier examples of systems include Penelope [23] from Odyssey Research Associates
and SDVS (State Delta Verification System) [32] from Aerospace Corporation. Both made
use of an automatic prover from Aerospace Corporporation that was similar to that used in
the Stanford Pascal Verifier. This prover used the Nelson Oppen technique [35] for combin-
ing provers for such theories as bit-strings, arrays, uninterpreted functions and linear integer
arithmetic.

The Compliance Tool [37] takes as input SPARK programs and specifications written
in the Z specification language. It generates VCs in Z which are then discharged either
interactively or automatically using the ProofPower theorem prover [4]. The Compliance
Tool is used in conjunction with the ClawZ system [3] for generating Z specifications of
Simulink models of avionics systems. The Compliance Tool enables checking that SPARK

code correctly implements the Simulink models.
The Hi-Lite4 project currently underway is modifying the GNU GNAT compiler for

Ada so it can handle SPARK annotations and generate intermediate-level code in theWhy

program verification language (see Section 2.1).
See Section 3 for a description of the formal verification capabilities of the SPARK

toolset from Praxis.

2.3 SMT solver front-end translations

Both Yices and CVC3 have rich native input languages, with many of the featuresfound in
FDL. These SMT solvers both support (linear) arithmetic over the integersand reals, arrays,
records and subtypes. Minor differences are that CVC3 makes a strict distinction between
formulas and Boolean-valued terms and that neither supportthe ordered enumeration types
found in FDL. The details of how these systems handle types such as records, arrays and
subtypes are not well documented in published documents. Inboth cases there appears to be
some translation away of subtypes similar to that which we consider in this paper. We expect
that both systems avoid introducing the non-trivial equivalence relations on types we need
to consider in some circumstances, as they have more controlover the types that are directly
supported by their core reasoning engines. For example, both support Boolean-valued terms,
while some of the translations we need to consider have to translate to languages without
Boolean-valued terms. We have observed experimentally that CVC3 does not handle array

4 http://www.open-do.org/projects/hi-lite/
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extensionality at all, as we do, though Yices does. At the time of writing, we had asked the
Yices developers about how they handle array extensionality, but have not heard back from
them. There are several published papers on how to reason about subsets of the quantified
theory of arrays (see [11], for example) and we conjecture both systems implement special
purpose translations for arrays, more sophisticated than what we consider here.

The Z3 prover native input language is simpler than that of Yices or CVC3 in that it does
not support sub-types, but does support arrays and records.

The SMT-L IB initiative5 has been promoting a common input language and standard
background theories for SMT solvers since 2003. This is to facilitate research and devel-
opment in SMT techniques and support an annual competition SMT-COMP between SMT

solvers. However, the standard background theories supported by SMT-L IB are consider-
ably simpler than the range of types found in FDL. Our understanding is that the SMT-L IB

architects chose to keep things simple in order to minimise the extra effort required of po-
tential SMT-COMP participants to support SMT-L IB.

The SMT-L IB language distinguishes between formulas and terms. As the FDL language
starting point of our translation does not, this is a distinction we need to introduce.

Background theories and restrictions on syntax (e.g. requiring that all arithmetic is linear
or that there are no quantifiers) are grouped together intosub-logics. Developers of support
for SMT-L IB choose to support certain of the sub-logics defined by SMT-L IB and a category
of SMT-COMP is established for each of the sub-logics.

The sub-logics appropriate as a target from FDL include quantifiers, the theories of inte-
ger and real arithmetic, uninterpreted functions, and limited support for arrays. They do not
include support for sub-types, record types or enumerationtypes. See Section 4.3 for further
discussion of these sub-logics.

While it would be simpler for us to just support the native input languages of solvers
such as Yices and CVC3, we have been keen to enable experimentation with as wide a range
of solvers as possible, so we have gone to the extra effort of providing translations from
FDL into appropriate SMT-L IB sub-logics. This has also enabled us to contribute VCs from
the SPARK programs we examine to the SMT-L IB benchmarks collection. This collection is
a valuable resource for all SMT solver developers and is used as a source of problems for
SMT-COMP.

The Simplify input language just includes the type of integers. Because of the historical
importance of Simplify and its continued competitive performance, we support a translation
to its input language.

2.4 Interfaces between interactive theorem provers and SMT solvers

Developers and users of interactive theorem provers widelyrecognise the utility of the proof
automation provided by SMT solvers.

The PVS interactive theorem prover links to the Yices solver, making use of Yices’s
native input language. Both Yices and PVS are developed within the same team at SRI, and,
not suprisingly, the match between the languages is very good.

The 2011 release of the Isabelle/HOL prover6 has interfaces to CVC3, Yices and Z3,
and, independently, an interfaceismt to Yices has been constructed [18]. HOL-Light has an
interface [31] to CVC-L ITE, a predecessor of CVC3, and HOL4 has an interface [41] to Z3.

5 http://www.smtlib.org/
6 http://isabelle.in.tum.de/
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The HOL languages typically include recursive data-types,records, polymorphism, higher-
order functions, and atomic types of reals, integers and Booleans. They do not support sub-
typing directly: when sub-typing is needed, it is usually encoded into the term language in
a similar way to that we describe in this paper. Different translations support all these types
to varying degrees. Sometimes the translations are sound, but incomplete – axioms fully
characterising some of the types and their associated operators are missing. The interfaces
are both to native input languages and to SMT-L IB. In general, the translations to the native
languages are more complete, as the work involved in creating the translation is less.

A common concern is handling polymorphic types: the translations typically handle
these by introducing a distinct set of terms and axioms for each monomorphic instance of a
polymorphic type. Our translation does something similar when handling FDL ’s array types.

A large concern of several of these interface projects is thetrustworthiness of the SMT

solver [31,9]. Interactive theorem provers are typically engineered so that the correctness of
all proofs relies on a small relatively-simple kernel of code. In contrast, SMT solvers have
relatively-large code bases and employ highly-complex combinations of algorithms. These
projects circumvent concerns about the correctness of SMT solvers by having the solvers
output proofs that can be checked within the theorem prover or by some small independent
proof checker tool.

Further examples of interfaces are the interface [12] between the Coq theorem prover
and the Alt-Ergo SMT solver and the link [22] between Intel’s Forte theorem prover and
CVC-L ITE.

A frustration in trying to analyse much of this work is the lack of proper documentation
of what has been implemented.

2.5 Formal background for translations

Each of the translation steps we consider is formally described in mathematical logic as a
theory interpretation. A sketch of the notion of a theory interpretation, appropriate for our
purposes, is as follows. Atheoryconsists of

– a signature which declares one or more type symbols, and usesthese types in the spec-
ification of argument and value types as appropriate for someset of constant, function
and relation symbols.

– a set of first-order-logic sentences over this signature,
– a subset of the set of all structures that model the sentences.

We allow the set of structures to be a subset of the set of all models of the theory sentences
in order to permit some components of the signature to have fixed denotations and others to
have their denotations unconstrained7.

A theory interpretation is a map from some source theory to some target theory, where,
in general, each element of the source signature is mapped tosome type, term or formula
built over the target signature. This mapping then induces amapping that takes each sentence
contructible over the source signature to some sentence over the target signature. An inter-
pretation places some requirements on the relationship between the validity of sentences in
the source theory and the validity of the mappings of these sentences in the target theory.

7 Elsewhere in this paper, following common practice, we say that components with fixed denotations
areinterpretedand components with unconstrained denotations areuninterpreted. We avoid doing so in this
section to avoid confusion with the primary subject of theory interpretations.
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We will say more about this shortly. Usually interpretations describe how to map structures
for the target signature to structures for the source signature.

The precise definition of a theory interpretation varies. A reasonable definition for our
discussion here is that given by Hodges [24]. This treatmentassumes a single type in both
the source and destination signatures, though it does allowthe image of the source type
under the interpretation map to be a cartesian product of thetarget type, in general. It allows
for the target theory having a predicate on the image of the source type that characterises
which elements in this image are valid. It also allows for equality in the source theory to
map to an equivalence relation in the target theory. Both these features arise in our treatment
of type refinement in Section 9.

As a simple example, consider the interpretation of the theory of the rationals in the
theory of the integers. The type of the rationalsQ is mapped to the type of pairs of integers
Z ×Z. The predicate restricts 2nd elements of these pairs to be non-zero, and equality is
mapped to the equivalence relation on pairs

〈a,b〉 ≡ 〈c,d〉
.
= ad = bc .

Hodges discussesadmissibility conditions—axioms introduced in the target theory to
ensure equivalence relations are respected by functions and relations—which directly corre-
spond to axioms we introduce in type refinement. Hodges namesthe map on sentences the
reductionmap and the map on structures theco-ordinatemap. Hodges defines two proper-
ties concerning how an interpretation affects validity:

– Left Totality:The co-ordinate map maps every structure of the target theory to a structure
of the source theory. This implies that if a sentence is validin the source theory (true in
all the structures associated with the source theory), its translation by the reduction map
is valid in the target theory.

– Right Totality:For each source structureSthere is a target structure that is mapped by the
coordinate map to a structure isomorphic toS. This implies that if a translated sentence
is valid in the target theory, the untranslated sentence is valid in the source theory.

Sometimes left-totality is built-in to the notion of a theory interpretation [17]. We do not
do this, as we want to allow interpretations to weaker theories. For example, an interpreted
function in the source theory might become uninterpreted inthe target theory. We do always
require our translations to be right-total in order for themto be sound: if an SMT solver
establishes the validity of a translated VC, we want to know that the original VC is also
valid.

The algebraic specification community has long formulated notions of theory interpreta-
tions for many-sorted theories (theories with many type constants), often for the purpose of
modelling data-type refinement. For example, Blaine and Goldberg [8], following Turski and
Maibaum [40] and drawing on the more abstract presentation of Sannella and Tarlecki [39],
define theory interpretations that introduce quotient operations andrelativisationpredicates
for restricting the target domain, much as we do. A primary interest is that facts that are
true about a theory are preserved by interpretation maps, sointerpretations in the algebraic
specification literature are required to be left-total. While the algebraic specification litera-
ture considers some examples of data refinement, for examplethe refinement of finite sets
by lists without duplicates, we have not been able to find presentations of the specific trans-
lations we consider here.
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3 The SPARK Language and Toolset

The SPARK [5] subset of Ada was first defined in 1988 by Carré and Jennings at Southamp-
ton University and is currently supported by Praxis. The Adasubset was chosen to simplify
verification: it excludes features such as dynamic heap-based data-structures that are hard to
reason about automatically. SPARK adds to Ada a language of program annotations. These
allow programmers to express assertions and attach them to flow-of-control points in pro-
grams. The program annotations take the form of Ada comments, so SPARK programs are
compilable by standard Ada compilers.

SPARK inherits from Ada several less-common language features that build useful spec-
ification information into programs. This information thendoes not have to be explicitly in-
cluded in program annotations. One can specify types that are subranges of integer, floating-
point and enumeration types. For example, one can write:

subtype Index is Integer range 1 .. 10;

One can also definemodular types which have values 0. . .n−1 wheren is some power of
2, and require all arithmetic on these values to be modn. Modular types not only affect how
Ada compilers treat arithmetic operations on those types, but also constrain integer values
that can be injected into the types.

As with Ada, functions and procedures in SPARK are grouped intopackages. A package
can also contain other packages, so in general one has a hierarchy of packages. Packages
always have two distinct parts, aspecificationand abodyor implementation. Collectively,
packages, functions and procedures are referred to asprogram units. Figure 1 shows a pack-
age definition containing a single procedure that does integer division by repeated subtrac-
tion 8. The textpackage P introduces the specification of a package namedP, and the text
package body P introduces the definition of the body of packageP. Lines starting with--#
are SPARK annotations. Ada defines all text on a line after a-- token as a comment, so these
annotations are ignored by Ada compilers. The specificationincludes annotations for the
precondition and postcondition of theDivide procedure. Preconditions and postconditions
define assertions that are expected true at the start and end respectively of procedures and
functions. The body also includes an assertion annotation that defines a loop invariant, a
property true each time the start of the loop is reached.

The derives annotation concerns how output arguments are dependent on input ar-
guments. Praxis’s SPARK toolset checksderives annotations using an information flow
analysis rather than generating and proving VCs.

The Examiner tool from Praxis generates VCs from SPARK programs. It is often very
tedious for programmers to specify assertions using annotations, so, for common cases,
the Examiner can add assertions automatically. For example, it can add type-safety side
conditions for each expression and statement that check forthe absence of run-time errors
such as array index out of bounds, arithmetic overflow, violation of subtype constraints and
division by zero.

The Examiner reads in files for the annotated source code of a program and writes the
VCs for each program unit into 3 files:

– A declarationsfile declaring functions and constants and defining array, record and
enumeration types,

– a rule file assigning values to constants and defining properties ofdata-types. For exam-
ple, some properties axiomatically characterise functions mapping between enumeration
types and sub-ranges of the integers.

8 This example is drawn from the SPARK book [5]
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package P is

procedure Divide(M, N : in Integer;

Q, R : out Integer);
--# derives Q, R from M,N;

--# pre (M >= 0) and (N > 0);

--# post (M = Q * N + R) and (R < N) and (R >= 0);

end P;

package body P is

procedure Divide(M, N : in Integer;

Q, R : out Integer)

is

begin
Q := 0;

R := M;

loop

--# assert (M = Q * N + R) and (R >= 0);

exit when R < N;
Q := Q + 1;

R := R - N;

end loop;

end Divide;

end P;

Fig. 1 A SPARK program for integer division

– averification condition goalfile containing a list of verification goals. A goal consists of
a list of hypotheses and one or more conclusions. Conclusions are implicitly conjuncted
rather than disjuncted as in some sequent calculi [28].

The language used in these files is known as FDL.
Figure 2 shows one of the 7 VC goals that the Examiner generates for the procedure

shown in Figure 1. As the comment at the start of the goal indicates, this VC is for an
execution path that starts and ends at the loop invariant assertion

assert (M = Q * N + R) and (R >= 0);

at the start of the main program loop. In other words, it is concerned with preservation of this
loop invariant. Each label with prefixH introduces a hypothesis of the goal and each label
with prefix C introduces a conclusion. As remarked above, the conclusions are implicitly
conjoined, so each conclusion must be proved in order to prove the whole goal. Hypotheses
H1 andH2 can be seen to come directly from the assertion of the loop invariant at the path
start. ConclusionsC1 andC2 are the weakest precondition [15] of the code in the loop body
and the loop invariant assertion. The other hypotheses and conclusions are mostly concerned
with machine bounds on the values ofInteger-typed variables.

An excerpt of the accompanying declarations file is shown in Figure 3. Here, declara-
tions are given of the constants and variables referred to inthe goal. Semantically, constants
and (free) variables in a goal are treated the same: both are implicitly universally quantified
over. The difference is that FDL variables refer to values of program variables, whereas FDL

constants have the same value in all program states.
An excerpt of the accompanying rule file is shown in Figure 4. Here we have definitions

of the values of the constants in the goal: themay be replaced by relation is logically the
same as equality.
The VCs considered in our experiments often involve more first-order logic structure and
a richer range of datatypes. An example VC is shown in abbreviated form in Figure 5.
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For path(s) from assertion of line 17 to assertion of line 17:

procedure_divide_4.

H1: m = q * n + r .

H2: r >= 0 .

H3: m >= integer__first .
H4: m <= integer__last .

H5: n >= integer__first .

H6: n <= integer__last .

H7: m >= 0 .
H8: n > 0 .

H9: r >= integer__first .

H10: r <= integer__last .

H11: not (r < n) .

H12: q >= integer__first .
H13: q <= integer__last .

H14: q + 1 >= integer__first .

H15: q + 1 <= integer__last .

H16: r >= integer__first .

H17: r <= integer__last .
H18: r - n >= integer__first .

H19: r - n <= integer__last .

->

C1: m = (q + 1) * n + (r - n) .

C2: r - n >= 0 .
C3: m >= integer__first .

C4: m <= integer__last .

C5: n >= integer__first .

C6: n <= integer__last .

C7: m >= 0 .
C8: n > 0 .

Fig. 2 Example VC goal from the integer division program in Figure 1

const integer__size : integer = pending;
const integer__last : integer = pending;

const integer__first : integer = pending;

var m : integer;

var n : integer;
var q : integer;

var r : integer;

Fig. 3 Example declarations for the integer division program in Figure 1

divide_rules(4): integer__first may_be_replaced_by -2147483648.
divide_rules(5): integer__last may_be_replaced_by 2147483647.

divide_rules(6): integer__base__first may_be_replaced_by -2147483648.

divide_rules(7): integer__base__last may_be_replaced_by 2147483647.

Fig. 4 Example rules for the integer division program in Figure 1

This includes instances of operators on records (the field selectors fld msg count and
fld initial) and arrays (the 1 dimensional array element select function element( ,

[ ])), arithmetic operators and relations, and quantifiers (for all).
The Simplifier tool from Praxis can automatically prove manyverification goals. It is

called theSimplifierbecause it returns simplified goals in cases when it cannot fully prove
the goals generated by the Examiner. Users can then resort toan interactive proof tool to
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...

H3: subaddress_idx <= lru_subaddress_index__last .

...

H6: for_all(i___2: word_index,

((i___2 >= word_index__first) and (
i___2 <= word_index__last))

-> (...))

...

H11: fld_msg_count(element(bc_to_rt, [dest])) >=

lru_subaddress_index__first .
...

H29: fld_initial(element(bc_to_rt, [dest])) <=

lru_start_index__last .

->
C1: fld_initial(element(bc_to_rt, [dest])) + (

subaddress_idx - 1) >= valid_msg_index__first .

C2: fld_initial(element(bc_to_rt, [dest])) + (

subaddress_idx - 1) <= valid_msg_index__last .

C3: subaddress_idx - 1 >= all_msg_index__base__first .
C4: subaddress_idx - 1 <= all_msg_index__base__last .

Fig. 5 An example VC involving an explicit quantifier and several datatypes

try to prove these remaining simplified goals. In practice, this proof tool requires rather
specialised skills and is used much less frequently than theSimplifier.

The Simplifier has been in development since at least far backas 1997 and drew on ear-
lier code for an interactive proof checker. Praxis continues to improve it. It employs a num-
ber of heuristics involving applying predicate logic rules, rewriting, forward and backward
chaining, and applying special purpose arithmetic rules. However it does not incorporate
decision procedures for linear arithmetic or propositional reasoning, for example.

As of 2009, Praxis’s SPARK toolkit is freely available under a GNU Public Licence9.
This release includes both source code and user-level documentation for the Examiner and
the Simplifier.

4 Architecture of the VC Translator and Prover Driver

4.1 Overview

Our VCT (VC Translator) tool reads in the VC file triples output by the Praxis VC gener-
ator tool, suitably translates the VCs for a selected prover, at present one of CVC3, Yices,
Z3 or Simplify, and runs the prover on each VC goal. Fig. 6 provides an overview of the
architecture. The tool is divided into three parts:

1. A preprocessorwhich parses the VC files and puts VCs into a standard internalform,
resolving various features particular to the FDL language.

2. A translatorwhich performs a variety of optional translation steps on the VCs in order
to prepare them for the different provers.

3. A driver which translates to the concrete syntax or syntax tree data structures required
by the provers, orchestrates invocations of the provers, and logs results.

9 http://libre.adacore.com/libre/
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Fig. 6 Architecture of our VC translator and Prover Driver



15

These parts are described in more detail in the following subsections. We consider the pre-
processor first, and then the driver before the translator, as the driver description motivates
the discussion of the translation. A final subsection describes how VCs are represented in
the translator.

Currently our tool consists of around 20,000 lines of C++ code, including comments
and blank lines.

4.2 Preprocessor

Operations carried out by the preprocessor include:

– Eliminating special rule syntax: FDL rules give hints as to how they could be used. For
example, an equality:

integer__first = -2147483648

that defines a value for a constant is expressed as:

integer__first may_be_replaced_by -2147483648

This special syntax was eliminated, as none of the provers weconsidered had any way
of handling it.

– Typing free variables in rules, closing rules: FDL rules have untyped free variables,
implicitly universally quantified. The preprocessor infers types for these variables from
their contexts and adds explicit quantifiers to close the rules.

– Adding missing declarations of constants: FDL has some built-in assumptions about the
definition of constants, for the lowest and highest values ininteger and real subrange
types, for example.

– Reordering type declarations: Most solver input languages require types to be declared
before use, but such an ordering is not required in FDL.

– Resolving polymorphism and overloading: For instance, FDL uses the same symbols
for the order relations and successor functions on integer and enumerated types, for
arithmetic on the integers and reals, and for operations on arrays with different element
and index types. After resolution, each function and relation has a definite concrete type.

4.3 Driver

There are various alternatives for interfacing with SMT solvers. We have experimented with
several of these, partly out of necessity, partly to understand their pros and cons. The alter-
natives we have explored so far are as follows:

– SMT-L IB file-level interface
The SMT-L IB standard input language for SMT solvers was introduced in Section 2.3.
We translate into the SMT-L IB sub-logics:

– AUFLIA: Closed linear formulas over the theory of integer arrays with free sort,
function and predicate symbols,

– AUFNIRA: Closed formulas with free function and predicate symbols over a theory
of arrays with integer indices and real elements.

In each case we just use the support for integer arithmetic: with the AUFLIA sub-logic
the support is for linear integer arithmetic, with the AUFNIRA sub-logic the support is
for possibly non-linear integer arithmetic. We do not currently make use of the support
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for arrays. This support is rather limited: our current translation requires any support
for arrays to be over a range of index and element types. Extratranslation work would
be needed to make do with just the available index and elementtypes. While we have
a need for a theory of reals, the AUFNIRA sub-logic suprisingly provides no proper
support for mixed integer real arithmetic: for example it ismissing a function injecting
the integers into the reals.
Currently, CVC3 and Z3 support AUFNIRA, and CVC3, Yices and Z3 and support AU-
FLIA.
Our SMT-L IB file-level interface writes SMT-L IB format files in either AUFLIA or
AUFNIRA, runs an appropriate prover in a sub-process, and reads back the results.
The SMT-L IB standard treats formulas and terms as distinct syntactic categories, fol-
lowing the tradition in virtually all text-book presentations of first-order logic. This is
in contrast to the case with the FDL language where formulas are just terms of Boolean
type.

– Simplify file-level interface
This interface uses the language of the Simplify prover. This language is essentially
single-sorted. All functions and relations have integer argument sorts, and all functions
have integer result sorts. Formulas are in a distinct syntactic category from terms. The
Simplify language is accepted by Simplify itself and by Z3.
Our Simplify interface shares much of its code with the SMT-L IB file-level interface.

– CVC3 API interface
CVC3 supports a rich native input language. We translate FDL arrays, records, integers
and reals directly to the corresponding types in this input language. We use CVC3’s
integer subrange type to realise translations for enumerated types.
CVC3 requires a strict distinction between formulas and terms of Boolean type. Boolean
terms are translated to the 1-bit bit-vector type.
The interface uses functions in CVC3’s C++ API to build the term and formula expres-
sions .

– Yices API interface
Yices’s native input language is similar to CVC3’s. The main difference is that Yices’s
language does not distinguish between formulas and terms ofBoolean type.

We define a single API that is shared by all of the above interfaces. This API includes
functions for initialising solvers, asserting formulas, calling solvers, and checking results.
Our top-level driver module works above this API, sequencing the API function calls and
performing other tasks such as collecting timing information and writing report files. The
top-level module writes both to a log file and a comma-separated-value file where it records
summaries of each solver invocation. This allows easy comparison between results from
runs with different options and solvers.

4.4 Translator

Each translation step performed by the translator operateson sets of VCs in a standard
internal form. The information held in this internal form isdescribed in Section 4.5. An
overview of the main translation steps is as follows. For each step we give references to later
parts of this paper that cover the step in more detail.

– Enumerated Type Elimination
This involves replacing uses of enumerated types with integer subrange types, and pro-
viding alternate definitions for functions and relations associated with enumerated types.
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We use this step with all our driver options. It is for sure needed when translating to
SMT-L IB or Simplify format, as neither supports enumerated types. Yices and CVC3
do support enumerated types via their APIs, but these types do not come with an order
defined on them, and do not define successor and predecessor functions, as needed by
FDL. We could introduce an order relation and the successor and predecessor functions
axiomatically, but currently do not do so.
See Section 5 for details.

– Formula/Term Separation
When we need distinct syntactic categories of formulas and terms, we establish both
term-level and formula-level versions of the propositional logic operators. As needed,
we suitably resolve every occurrence of a function involving Boolean arguments or re-
turn value to be either at the formula or the term level. This sometimes results in a
Boolean-valued term where a formula is expected, or vice versa, and, as necessary, we
add in special operators that convert between Boolean termsand formulas. See Section 8
for details.

– Type Refinement
Type refinement carries out refinement translations that have the flavour of data-type
refinements considered in the program refinement literature. When a type is refined, it
is considered as a subtype of some new base type, and allowances are made for equality
on the unrefined type possibly not corresponding to equalityon the base type. Special
treatment is given to arrays and records to allow arrays and records over base types to
be used to model arrays and records over the original unrefined types.
The primary use of type refinement is to eliminate finite typessuch as integer subrange
types and the Boolean type. These types are not supported by the SMT-L IB and Simplify
input file formats.
See Section 9 for details.

– Array and Record Elimination
We can eliminate redundant array and record operators and can axiomatically charac-
terise array and record types. An example of a redundant operator is a record construc-
tor. This is redundant if a default record constant and record field update operators are
available. The axiomatic characterisations are useful when the targetted solver or solver
format does not provide explicit support for arrays and records. For example, we use
axiomatic characterisations when translating for the SMT-L IB and Simplify formats.
See Section 6 for details on array elimination, and Section 7for details on record elimi-
nation.

– Boolean Term Elimination
Term-level Boolean operations can be made uninterpreted and axioms can be introduced
that express that the operations have the same behaviour as their formula-level counter-
parts. Also the Boolean type itself along with the true and false Boolean constants can
be made uninterpreted. These steps are required by the SMT-L IB and Simplify formats.
See Section 10 for details.

– Arithmetic Simplification
We simplify arithmetic expressions that are semantically linear into expressions that
are obviously syntactically linear. This improves what we can prove with Yices which
rejects non-linear arithmetic expressions, and improves the quality of the VCs we can
generate in linear SMT-L IB formats.
See Section 11 for details.

– Arithmetic Elimination
Options are provided for making uninterpreted various arithmetic operators that some
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provers cannot handle, integer division and modulus, for example. In some cases, we add
axioms that partially or fully characterise the behaviour of the operators. See Section 12
for details.

– Defined Type and Abstract Type Elimination
To cope with the Simplify prover we need to eliminate all uninterpreted types and de-
fined types. See Section 13 for details.

In Table 1 we summarise the steps that are used to at least someextent by each of the drivers.

Translation step Yices API CVC3 API SMTLIB Simplify
Enumerated Type Elimination • • • •
Formula/Term Separation • • •
Type Refinement • •
Array & Record Elimination • •
Boolean Term Elimination • •
Arith Simplification • • • •
Arith Elimination • • • •
Defined & Abstract Type Elimination •

Table 1 Translation steps used by the different prover drivers

The usual order of applying the steps is as they are listed above.
There are some dependencies between steps, so not all orderings are sensible. For ex-

ample, Type Refinement has some special treatment for term-level Booleans, so it must
come after they are introduced by Formula/Term Separation.Boolean Term Elimination is
designed to come after Type Refinement.

Some ordering alternatives yield different translations.For example, the Array and Record
Elimination is shown after Type Refinement, but it also couldbe positioned before, in which
case the axioms introduced would be different at the end of the translation. See Section 17.2
for a discussion of some preliminary results on the effect ofordering on prover run-times. In
other cases, the ordering is unimportant. For example, the arithmetic steps could be carried
out at any stage with no change to the final result.

4.5 Standard Internal Representation for VCs

Each step of translation works on aVerification Condition Unitor VC Unit, for short. A VC
Unit gathers all the VCs associated with a SPARK program unit (usually a procedure or a
function) into a standard internal data-structure. The implementations of the translation steps
then share a common set of utility functions for operating onthis data-structure. The infor-
mation in a VC unit is derived by the Preprocessor code from one of the 3-file sets output
by the Praxis’s VC generator as described in Section 3. In addition, each VC Unit extends
this information about a particular set of VCs with information about the theory these VCs
are over. This is helpful in tracking how the translation steps change the background theory
of the VCs and in checking that translations have been correctly chosen and sequenced. Our
notion of a VC Unit is a concrete realisation of the abstract notion of theory introduced in
Section 2.5.

The elements making up a VC Unit include:
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– Identification of logic variant used
The variants are

– Strict First Order Logic(Strict FOL) where formulas are a distinct syntactic category
from terms.

– Quasi First Order Logic(Quasi FOL) where formulas are terms of Boolean type.
For simplicity, we present the rest of the VC Unit elements for the Strict FOL vari-
ant. The changes for Quasi FOL are straightforward. For example, relation declarations
are not distinct from function declarations—they are just declarations of functions of
Boolean result type.

– Type-constant declarations and definitions
This introduces the set of type constant names that can be used in type expressions. It
includes constants for both interpreted types such as the reals and integers, and uninter-
preted types. We writeC : Type to declare thatC is a type-constant, andC : Type = T
to define type constantC as a definition for type expressionT.
For convenience, we assume that there are sufficient type definitions that every type in
a formula and every argument type to a type constructor on theright-hand side of a type
definition can be a declared or defined type. We do not allow type constructors at such
positions. A similar condition is enforced in the SPARK subset of Ada and the FDL VC
language.

– Type constructors
Eachtype constructorconstructs a new type from 0 or more existing types and possibly
other information. Examples include: enumerated types, array types, record types and
integer subrange types.
Taken together, the type-constants and the type constructors generate the language of
types.
All the type constructors we consider have intended interpretations, usually parame-
terised by the interpretations of their components.

– Term signature
This declares constants and functions. We writec : T to declare that constantc has type
T and f : (S1, . . . ,Sn)T to declare that functionf has argument typesS1, . . . ,Sn and
result typeT. We keep track of whether each has some intended interpretation, and, if
so, what that interpretation is.
We assume that there is no overloading or polymorphism: every constant or function has
a unique type. To enforce this condition, we create monomorphic instances of naturally
polymorphic operators in FDL, such as the functions for updating and accessing array
elements. We structure the constant and function identifiers such that polymorphic base
names are easily extractable. This is needed when handing off VC goals to SMT solvers
that expect some polymorphic operators.
The term signature along with typed variables generates thelanguage of terms.
We optionally allow into the language of termsif-then-elseoperators of formITET(φ ,a,b),
whereφ is a formula anda andb are terms of typeT. ITET(φ ,a,b) is equal toa when
φ is true, andb whenφ is false.

– Relation signature
The relation signature declares atomic relations. We writeR : (S1, . . . ,Sn) to declare
that relationr has argument typesS1, . . . ,Sn. As with the term signature, we track any
intended interpretations and assume all relations are monomorphic. In particular, we cre-
ate a monomorphic instance of equality=T for each typeT we need to express equality
at.
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The relation signature, together with usual propositionallogic operators (∧,∨,¬,⇔,⇒)
and typed existential and universal quantifiers (∀x : T. φ and∃x : T. φ ), generate the
languagee of formulas.

– Intended interpretations
We keep track of whether each declared type constant, term constant, function and rela-
tion has an intended interpretation or is uninterpreted. Ifan entity is interpreted, then we
also keep track of the nature of that interpretation. Usually the interpretations are the ex-
pected ones: the typeInt is interpreted as the integers. Occasionally, the interpretations
are not the ones immediately suggested by the entity names. For example, we sometimes
interpret the typeBool as the integers when the prover language being translated todoes
not have any type containing just two-elements. This is the case with the input language
of the Simplify prover and the SMT-L IB sub-logics we use.

– Rules
Rules are formulas. Commonly they introduce equality-based definitions of term con-
stants and function constants, and, more generally, provide axiomatic characterisations
of types and associated terms. It is expected that rules are always satisfiable.

– Goals
A goal is composed of a list of hypothesis formulas and a list of conclusion formulas.
The logical sense of a goal is that the conjunction of the hypotheses implies the con-
junction of the conclusions. A goal is considered valid if ittrue in all interpretations
satisfying the rules and giving interpreted types, constants, functions and relations their
intended interpretations.

The next sections of this paper give details on how each of thetranslation steps intro-
duced in Section transforms a VC Unit.

5 Enumerated Type Elimination

5.1 Enumerated Types in FDL

A named enumerated typeE containing constantsk0, . . . ,kn−1 is introduced with the type
definition

E : Type = {k0, . . . ,kn−1} .

Associated withE are operators
posE : (E)Int

valE : (Int)E
succE : (E)E
predE : (E)E

and relations
≤E : (E,E)Bool

<E : (E,E)Bool .

We usually write the relations using infix notation.
These functions and relations are not primitive in FDL: instead they are uninterpreted

and are characterised by axioms. TheposE andvalE functions define an isomorphism be-
tween the typeSand the integer subrange{0, . . . ,n−1} such thatposE(ki) = i. ThesuccE

andpredE functions are successor and predecessor functions. For example,succE(ki) = ki+1

wheni < n−1. The axioms leavesuccE(kn−1) andpredE(k0) unconstrained.
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5.2 Elimination by Translation to Integer Subranges

We change the type definition to

E : Type = {0..n−1} ,

so the typenameE is just a name for the integer subrange type{0 .. n−1}. We declare the
enumerated type constants as uninterpreted constants, andadd axioms

k0 = 0
...

kn−1 = n−1 .

We remove all original axioms characterising the enumerated type operators and relations,
replacing them with the axioms

∀x : E. valE(x) =Int x
∀x : E. posE(x) =Int x
∀x : E. x < n−1 ⇒ succE(x) =Int x+1
∀x : E. 0 < x ⇒ predE(x) =Int x−1 .

We replace all occurrences of the≤E and<E relations in rules and goals with the integer
relations≤ and<.

When we use integer subrange types, it is not the case that argument types of functions
and relations always match expected types exactly. In general type checking which such
subrange types can involve arbitary non-linear arithmeticreasoning. In practice so far we
have found we can type check VC Units using just syntactic checks. Typechecking currently
just uses the conventional integer typing for+ and−, the knowledge thatE is a subtype of
Int, and the typing{k ..k} for integer literalk.

6 Array Elimination

6.1 Arrays in FDL

The SPARK FDL language has primitiven dimensional arrays. A type definition of form

A : Type = Array(S1, . . . ,Sn,T)

introduces ann dimensional array namedA with Si the ith index type andT is the type of
elements. The index types are usually integers, integer subranges or enumeration types. The
element type can be any type.

For simplicity, we consider here the 1 dimensional case

A : Type = Array(S,T) .

The generalisation ton dimensional arrays is straightforward.
Associated with the array typeA are
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– Array constructorsof form

mk arrayA(t0, [s1] := t1, . . . , [sk] := tk) for k≥ 0

or of form
mk arrayA([s1] := t1, . . . , [sk] := tk) for k > 0 .

These constructors make an array withti at indexsi . With the first form a default valuet0
is provided. With the second, the assumption is that the values at all indices are explicitly
set. Here we use extra syntactic sugar to improve readability. Without this sugar the
function names would need further decoration so the constructors of different arities
have different names. FDL also allows for assigning a value to a range of indices. The
latest versions of our tool provides support for this, but wedo not describe our support
in this paper.

– A selectfunction selectA(a,s) for selecting the element of arraya at indexs. Theselect
function is sometimes known as anarray readfunction.

– An updatefunctionupdateA(a,s, t) for updating the element of arraya at indexs to new
valuet. Theupdatefunction is sometimes known as anarray write function.

6.2 Eliminating array constructors

We introduce a constant and operator

defaultA : A
constA : (T)A

with a characterising axiom

∀t : T. ∀s : S. selectA(constA(t),s) =T t .

The constructormk arrayA(t0, [s1] := t1, . . . , [sk] := tk) is replaced by the termak, recursively
defined by

a0 = constA(t0)
ai = updateA(ai−1,si, ti) for 0 < i ≤ k .

The constructormk arrayA([s1] := t1, . . . , [sk] := tk) is replaced by the termak, recursively
defined by

a0 = defaultA

ai = updateA(ai−1,si, ti) for 0 < i ≤ k .

6.3 Eliminating interpreted arrays

We eliminate the need to have a standard interpretation for array typeA and functionsselectA

andupdateA by introducing suitable axioms. Assume we have thedefaultA andconstA con-
stant and function introduced above in Section 6.2. The axioms are

∀a : A. ∀s : S. ∀t : T. selectA(updateA(a,s, t),s) =T t

∀a : A. ∀s,s′ : S. ∀t : T. s 6=S s′ ⇒ selectA(updateA(a,s, t),s′) =T selectA(a,s′)

∀a,a′ : A. (∀s : S. selectA(a,s) =T selectA(a′,s)) ⇒ a =A a′
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The first two of the axioms are often calledread-writeaxioms. The first axiom describes
how, if we write valuet at indexs in arraya and then read from the same index, we get
back valuet. The second describes how, if we read at indexs′ after writing to a distinct
indexs, we get the same result as if we had performed the read before the write. The third
is a statement ofarray extensionality: it states that two arrays should be considered equal
when they contain the same elements. The extensionality axiom could also be stated with
⇔ rather than⇒. We choose the form with⇒, as the axiom for⇐ is just a trivial statement
that selectA respects equality in its first argument. All provers have built-in knowledge of
this. With these axioms, we drop the type definitionA : Type = Array(S,T), but retain a
type declaration forA, soA is now an uninterpreted type.

Some provers are not able to use extensionality axioms exactly as stated here, because
they cannot use the formulaa = a′ as a pattern to match against in order to derive instantia-
tions. To this end, we provide the option of replacing each equality at an array type in rules
and goals with a new relationeqA with trivial defining axiom

∀a,a′ : A. eqA(a,a′) ⇔ a =A a′ .

These axioms only characterise the array type up to isomorphism if the index typeS is
finite. If S is infinite, one model involvesA denoting the subset of functions of typeS→ T
with all but finite number of values the same: the array operators only allow us to explicitly
construct such functions. Another model, non-isomorphic to this one, uses all functions of
typeS→ T.

While arrays with integer rather than finite range indices are common at various stages
of translation, arrays always start off as having finite index types in SPARK programs. We
expect any VCs involving cardinalities of array types to have their truth values maintained
by our translation steps, without us adding extra axioms that ensure that abstract types for
arrays always have the expected cardinalities.

7 Record Elimination

7.1 Records in FDL

A type definition
R : Type = Record( f1 : T1, . . . , fn : Tn)

introduces a record type namedR with fields f1, . . . , fn of typesT1, . . . ,Tn respectively.
For simplicity, we consider here a record with two fields:

R : Type = Record(fst : S, snd : T) .

Associated with the record typeRare

– a record constructorof form

mk recordR(fst := s, snd := t) .

As a prefix operator, we can write this asmk recordR(s, t) and declare it with

mk recordR : (S,T)R ,

though here we will continue using the more verbose syntax.
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– recordfield selectoperators

select fst : (R)S
select snd : (R)T .

– recordfield updateoperators

defaultR : R
update fst : (R,S)R
update snd : (R,T)R .

For example,update fst(r,s) updates thefst field of recordr with values.

The generalisation to the case of a record with more fields is straightforward. In the
general case, for a record withn fields, we have a constructor that takesn arguments,n
field select operators (one for each field), still a single default constant, andn field update
operators (again, one for each field).

7.2 Eliminating record constructors

We replace the record constructormk recordR(fst := s, snd := t) with

update sndR(update fstR(defaultR,s), t) ,

wheredefaultR is a new uninterpreted constant of typeR.

7.3 Eliminating record updates

We can choose to keep record constructors and have the updateoperations be derived. We
have the identities

update fstR(r,s) = mk recordR(fst := s, snd := select sndR(r))

update sndR(r, t) = mk recordR(fst := select fstR(r), snd := t,)

There is the choice of either applying these identities to eliminate all occurrences of the
update operators, or making the update operators uninterpreted and adding the identities as
axioms. If we eliminate update operators of ann-field record, we get a factor ofn increase
in size of each update expression, and the sub-expressionr needs replicatingn−2 times.
If records have high numbers of fields, updates are nested, and there is no structure sharing
in expressions, this replication could result in a huge increase in expression size. For this
reason we currently introduce the identities as quantified axioms.

7.4 Eliminating interpreted records

We eliminate the need to have a standard interpretation for record typeR and associated
operators by introducing suitable axioms. We implement twoapproaches, depending on
whether constructors or updates are first eliminated.
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If constructors have been eliminated, we use axioms

∀r : R. ∀s : S. select fstR(update fstR(r,s)) =S s

∀r : R. ∀s : S. select sndR(update fstR(r,s)) =T select sndR(r)

∀r : R. ∀t : T. select fstR(update sndR(r, t)) =S select fstR(r)

∀r : R. ∀t : T. select sndR(update sndR(r, t)) =T t

These axioms are somewhat similar to the array read-write axioms discussed in Section 6.3.
The 1st and 4th axioms here state that if we access a record field that just has been updated,
we get the updated value. The 2nd and 3rd axioms state that if we access some field of a
record distinct from a field that just has been updated, we getback the same result as if we
had accessed the same field before the update. For a record type with n fields, we needn2

such axioms, one for each choice of field being updated and of field being accessed.
If we choose to treat the record constructor as primitive andupdate operators as derived,

an alternative axiom set is

∀s : S. ∀t : T. select fstR(mk recordR(fst := s, snd := t)) =S s

∀s : S. ∀t : T. select sndR(mk recordR(fst := s, snd := t)) =T t

For a record type withn fields, we needn such axioms, one for each choice of selected field.
While this approach yields fewer axioms than when constructors have been eliminated, it is
not clear which approach might give best prover performance.

There are two ways of axiomatising record extensionality. The first

∀r : R. ∀r ′ : R. select fstR(r) =Sselect fstR(r ′) ∧ select sndR(r) =T select sndR(r ′)⇒ r =R r ′

only makes use of the select operators. It states that two records should be considered equal
when their fields are equal. The second way

∀r : R. mk recordR(fst := select fstR(r), snd := select sndR(r)) =R r

relies on constructors not being eliminated. The two ways are easily shown as equivalent.
For example, the second can be derived from the first by specialising r in the first to

mk recordR(fst := select fstR(r ′), snd := select sndR(r ′))

and simplifying using the select-constructor axioms givenabove. We implement both ap-
proaches. As with arrays, we have the option of introducing adefined relation for equality
at record types in order to make the first style of extensionality axiom easier to instantiate.
We suspect the that most provers can make little use of the second axiom, unless they resort
to instantiating universally quantified hypotheses with any terms of the correct type, which
can be very costly.

8 Separation of Formulas and Terms

The FDL language does not make the traditional first-order-logic distinction between for-
mulas and terms: formulas in FDL are terms of Boolean type. While some provers do not
make this distinction, some do, and so we implement a translation step that starts with a VC
unit where no distinction is made, and introduce the distinction.

The translation is in two phases:
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1. Resolve each occurrence of a logical connective, quantifier, Boolean-valued function, or
Boolean constant to either a formula or a term level version.

2. Add appropriate operators to convert between terms with Boolean type and formulas
in order to ensure well-formedness—that we do not have a termwhere a formula is
expected, or vice versa.

The scope for what resolutions are available depends on the conversion operators used. We
define an operatorb2p from the Boolean typeBool to propositions (formulas) as

b2p(x)
.
= x =Bool trueb

and an operatorp2b the other way as

p2b(p)
.
= ITEBool(p, trueb, falseb)

Here,ITET(p,x,y) (ITE standing forif-then-else) is equal to the termx of typeT when the
formulap is true and to the termy of typeT when the formulap is false, andtrueb andfalseb

are theBool-typed constants for truth and falsity. Some provers and prover formats support
an ITE construct, others do not. Even if it is not supported, it can be eliminated using, for
example, the identity

φ [ITET(p,e1,e2)] ⇔ (p∧φ [e1])∨ (¬p∧φ [e2])

whereφ [·] is an atomic formula with a sub-term ‘·’. However, this identity must be used
with care, as in general it can result in exponential growth in formula size.

We describe below how we carry out the resolutions, both in the case that ap2b operator
is available, and in the case it is not.

8.1 Resolution into formulas and terms

Our implementation by default adopts two basic heuristics:

1. Use formula versions when possible, arguing that this ought to enable provers to run
more efficiently as they have special built-in support for formula-level reasoning.

2. Avoid if possible introducing two versions, because thiscomplicates and slows provers
reasoning.

In what follows, let us refer to rules, goal hypotheses and goal conclusions collectively
asclauses.

The resolution procedure examines in turn every subterm of every clause of a VC Unit
in order to identify occurrences of terms that need resolving. This examination is completed
before the resolutions are actually carried out.

The resolution distinguishes whether a subterm is in aformula contextor a term con-
text. A subterm is in a formula context if all the operators above it—up to the root of the
clause—are just formula constructors (propositional logic connectives and predicate logic
quantifiers). Otherwise it is in a term context.

Resolution of each kind of operator is as follows by default:

– logical connectives(∧, ∨, ¬, ⇔, ⇒) and logical constants(true, false): If the con-
nective or constant is in a term context andp2b is not available, use a term version.
Otherwise use a formula version. We useb suffixes to distinguish term versions of these
connectives and constants from the formula versions. For example, we write∧b for the
term-level version of∧.
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– quantifiers (∀, ∃): No provers requiring term/formula separation support term-level
quantifiers, so we always use formula versions.

– Bool-valued functions andBool-valued uninterpreted constants: If there is at least
one occurrence of the function or constant in a term context,use a term level function
or constant for all occurrences. Otherwise use a relation orpropositional variable for all
occurrences.
One exception is with relations for which provers have built-in support: equality and
order relations on integers. In this case, a term version is used only when essential, that
is, when the occurrence is in a term context andp2b is not available. This strategy, in
general, results in VC Units that contain instances of both term-level and formula-level
versions of each of these relations. When we get both versions of a relation, we add an
axiom asserting that they are equivalent.
Another exception is with array and record select operators, when the array happens to
have aBool element type or the record field select function is for aBool-valued field. In
this case, we always use a term-level function to ensure treatment of array and record
operator typing is always uniform.

8.2 Insertion of operators converting between formulas andterms

We insert ab2p operator whenever aBool-typed term is at a position where a formula is
expected, and we insert ap2b operator whenever a formula is at a position where aBool-
typed term is expected. This ensures that each of our VC unit clauses is a well-formed strict
first-order-logic formula.

8.3 Options

It is not clear if the resolution heuristics described aboveshould alway be applied, and we
have options to enable other heuristics, such as always prefer term-level versions, or always
prefer formula level versions, whenever possible.

We also implement an option to initially convert equalitiesover terms of typeBool into
if-and-only-if formulas. This is in line with the heuristicto maximise the amount of structure
resolved to the formula level.

9 Finite Type Elimination by Type Refinement

We consider here a translation for eliminating finite types,for example, for replacing the
Boolean typeBool and an integer subrange type{0..9} with the integer typeInt, and a type

Array({0..9},Record(fst : {0..9}, snd : Bool))

with the type
Array(Int,Record(fst : Int, snd : Int)) .

These type changes are accompanied by changes to formulas and the addition of axioms,
in order to ensure the validity of each goal in a VC unit is unchanged. We call this trans-
lation atype refinementtranslation, as the translations of each type are similar todata-type
refinements. See the end of Section 2.5 for further information and references. We first give
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a simplified account of the translation, and later, in Section 9.6, discuss a few details of how
the translation is actually implemented.

The translation works simultaneously on all types of a VC unit. For each named typeT,
we introduce

– a typeT+, thebase typefor T
– a unary relation∈T on T+, themembership predicatefor T,
– a binary relation≡T on T+, theequivalence relationfor T.

Usually applications of≡T are infix, so we writex ≡T y rather than≡T (x,y). The intent
is that≡T is an equivalence relation when restricted to{x : T+| ∈T (x)} , and there is a
1-to-1 correspondence between the equivalence classes of≡T restricted to{x : T+| ∈T (x)}
and the elements of T. We place no requirements on≡T when either argument does not
satisfy∈T . We say a membership predicate∈T is trivial if ∈T (x) is true for allx. We say an
equivalence relation≡T is trivial if ≡T (x,y) is the same asx =T y for all x,y.

Sometimes we have intended interpretations forT+, ∈T and≡T . Other timesT+ might
be a defined type, and we introduce axioms characterising∈T and≡T .

9.1 Translation of theory elements

– Type constant declarationC : Type.
Replace by type constant declarationC+ : Type.
If C is uninterpreted, we declare that≡C is trivial, and allow the option of declaring that
∈C is trivial. See Section 13 for discussion of when this optionis useful.
If C has an intended interpretation, there might be type-specific modifications to the
declaration or the interpretation. Currently, there are optional modifications for theBool

type constant. See Section 10 for details. For the other interpreted type constants (Int,
Real), there are no changes.

– Type constant definitionC : Type = T.
The expected cases forT are

– Array type
– Record type
– Integer subrange type
– Type constant

Enumerated types are not expected. For the first 3 cases, see the appropriate section
below for changes to the definition and other theory elements. For T a type constant,
replace the definition with type constant definition

C+ = T+

and add axioms
∀x : T+. ∈C (x) ⇔ ∈T (x)

∀x,y : T+. x≡C y ⇔ x≡T y .

Refinement of array and record types is not strictly necessary for the SMT-L IB and
Simplify translation targets: these types can be eliminated before type refinement. We
consider their refinement, as the SMT provers might be more efficient with elimination
of these types after refinement. We are also looking forward to translating for Z3’s native
language and the Higher-Order-Logic languages of popular interactive theorem provers.
All these languages have support for arrays and records, butnot sub-types.
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– Constant declarationc : T
Replace by constant declarationc : T+. If c is uninterpreted, add a subtyping axiom
∈T (c). If c is interpreted before refinement, a new interpretation needs to be specified.

– Function declaration f : (S)T.
Replace by function declarationf : (S+)T+.
If the function is uninterpreted, add a subtyping axiom and afunctionality axiom

∀x : S+. ∈S (x) ⇒∈T ( f (x))
∀x,y : S+. ∈S (x) ∧ ∈S (y) ∧ x≡S y ⇒ f (x)≡T f (y) .

These axioms ensure that each model of the function after translation can be translated
into a model of the function before translation. As remarkedin Section 2.5, part of the
mathematics of theory interpretations involves constructing maps of structures of the
target theory into structures of the source theory.
An alternative to the above subtyping axiom is the stronger axiom

∀x : S+. ∈T ( f (x))

where the∈S precondition is omitted. A model will still exist, providing we are careful
in ensuring that all axioms constrainingf are translated properly so they provide no
constraints on values off on arguments not satisfying∈S. Using stronger axioms of this
kind should result in better prover performance, since lesswork is required in producing
useful instantiations of them.
It is generally not consistent to omit the∈S preconditions in the functionality axiom.
If the function f is interpreted before refinement, a new interpretation needs to be spec-
ified.
The generalisation forn-ary functions is straightforward.

– Relation declarationr : (T).
Replace by relation declarationr : (T+). If the relationr is uninterpreted, add a func-
tionality axiom

∀x,y : S+. ∈S (x) ∧ ∈S (y) ∧ x≡S y ⇒ r(x) ⇔ r(y) .

This axiom ensures that each model of the relation after translation can be translated
into a model of the relation before translation. Ifr is interpreted before refinement, a
new interpretation afterwards is needed.
The generalisation forn-ary relations is straightforward.

– Formulas.
Formula∀x : T. P(x) becomes∀x : T+. ∈T (x) ⇒ P′(x), whereP′(x) is the translation
of P(x).
Formula∃x : T. P(x) becomes∃x : T+. ∈T (x) ∧ P′(x).
Formulas=T t becomess≡T t.
All other formulas are unchanged.
This translation of quantifiers is commonly referred to asrelativisation. As a simple
example, consider a theory interpretation from the naturals to the integers: the formula
∀x : ♮. P(x) translates to∀x : Z. x≥ 0 ⇒ P′(x).
If we are in strict first-order logic, we introduce both term-level and formula-level ver-
sions ofs≡T t, corresponding to the term and formula level versions ofs=T t, and we
add an axiom stating how they correspond.

– Intended interpretations
The changes required are described in Sections 9.2–9.5.
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In many cases, when∈T (x) is always true or whenx ≡T y is simply x =T+ y, the added
axioms simplify, sometimes to the extent that they become tautologies and are unnecessary.

9.2 Translation of Array Types

We consider here translating a one dimensional array with type definition

A : Type = Array(S,T) .

The generalisation to multi-dimensional arrays is straightforward.
The translation of the index typeSand element typeT induces a translation of the array

typeA. We consider that refinement of the element typeT may introduce a non-trivial base
typeT+, a non-trivial membership predicate∈T and a non-trivial equivalence relation≡T ,
and refinement of the index typeSmay introduce a non-trivial base typeS+ and a non-trivial
membership predicate∈S. However, we assume that≡S is trivial. We need to do this to keep
updateoperators straightforwardly defined in possible later translation stages that introduce
axiomatic characterisations of these operators. This is a reasonable assumption as eachSi is
normally the integers, some subrange of the integers, or an enumerated type. If ever there
were some reason for wanting to relax this assumption, it would not be difficult to do so.

The refinement introduces a new array type definition

A+ : Type = Array(S+,T+) .

The functions and constants associated with arrayA acquire new type declarations, as
described above in Section 9.1.

defaultA : A+

constA : (T+)A+

selectA : (A+,S+)T+

updateA : (A+,S+,T+)A+

After the translation,defaultA and constA remain uninterpreted, andselectA andupdateA
now have interpretations as the select and update operatorsfor the typeArray(S+,T+). Also
as described above in Section 9.1, the axiom forconstA introduced in Section 6.2 is suitably
relativised, and new functionality and subtyping axioms are introduced fordefaultA and
constA.

Now let us consider how to suitably define∈A and≡A, and, if needed, add axioms,
so that the use of the refined array type is essentially isomorphic to the orginal type. We
ensure that new arrays store elements satisfying∈T at indices satisfying∈S. We consider
two options for what happens at indices not satisfying∈S: either require that some default
element of∈T always be stored, or place no constraints. How the translations are tailored
for each of these cases is as follows.

– Out-of-bounds elements constrained
We use the definitions

∈A (a)
.
= ∀s : S+. (∈S (s) ⇒∈T (selectA(a,s)))

∧ (¬ ∈S (s) ⇒ selectA(a,s) =T any elementA)
≡A (a,a′)

.
= ∀s : S+. selectA(a,s)≡T selectA(a′,s)

whereany elementA has declaration

any elementA : T+
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and no constraining axioms. In the event that≡T is trivial, the definition of≡A (a,a′)
amounts to extensional array equality and so we can use instead

≡A (a,a′)
.
= a =A+ a′ .

– Out-of-bounds elements unconstrained
We use the definitions

∈A (a)
.
= ∀s : S+. ∈S (s) ⇒∈T (selectA(a,s))

≡A (a,a′)
.
= ∀s : S+. ∈S (s) ⇒ selectA(a,s) ≡T selectA(a′,s)

9.3 Translation of Record Types

For simplicity we consider refining only two field records.

R : Type = Record(fst : S, snd : T) .

The generalisation to records with other numbers of fields isstraightforward.
We have that

R+ .
= Record(fst : S+, snd : T+)

∈R (r)
.
= ∈S (select fst(r)) ∧ ∈T (select snd(r))

≡R (r, r ′)
.
= select fst(r)≡S select fst(r ′) ∧ select snd(r)≡T select snd(r ′) .

9.4 Relaxing integer subrange types to theInt type

We refine an integer subrange constant definition

S: Type = { j, . . . ,k} ,

where j ≤ k, using the definitions

S+ .
= Int

∈S (x)
.
= j ≤ x∧x≤ k

≡S (x,y)
.
= x =Int y .

9.5 Relaxing the Boolean type to the integer type

We implement two alternative translations that useInt as a base type:

Bool+
.
= Int .

The translations apply if initially theBool type has an interpretation as some two element
type containing distinct interpretations of the constantstrueb andfalseb and the logical op-
erators all have their usual interpretations on this type.

With both alternatives, we interprettrueb as 1 andfalseb as 0, and require new interpre-
tations for the Boolean logical operators and Boolean-valued relations that treat 1 as true
and all other integers as false, and that only have values 0 or1.
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9.5.1 Booleans as subtype of integers

We consider theBool type as a 2 element subset of the integer type. We use the definitions

∈Bool (x)
.
= x =Int 0 ∨ x =Int 1 (or 0≤ x≤ 1)

x≡Bool y
.
= x =Int y

wherex,y are of typeInt.

9.5.2 Booleans as quotient of integers

We consider theBool type as being derived from two equivalence classes of integers. Intro-
duce

∈Bool (x)
.
= True

x≡Bool y
.
= b2p(x) ⇔ b2p(y) .

9.6 Implementation details

– We do not invent new type names for the base typesT+. Instead we just reuse the name
T.

– We track the trivialness of the membership predicate∈T and equivalence relation≡T

for each typeT, and use this information to simplify and sometimes eliminate the new
axioms introduced by the translation. For example, functionality axioms for functions
are unneeded when the equivalence relations for all the argument types are trivial. This
requires that the translation works on types in the order they are defined, and works
through the function, constant and relation declarations after the types have been con-
sidered.

10 Boolean Type Elimination

We consider here eliminating the Boolean type and associated interpreted constants, func-
tions and relations. We allow for the interpretation of the Boolean typeBool initially being
the integers as well as some two element domain.

10.1 Eliminating Boolean-valued functions and relations

We introduce the axioms

∀p : Bool. b2p(¬bp) ⇔ ¬b2p(p)

∀p,q : Bool. b2p(p∧b q) ⇔ b2p(p)∧b2p(q)

∀p,q : Bool. b2p(p∨b q) ⇔ b2p(p)∨b2p(q)

∀p,q : Bool. b2p(p⇔b q) ⇔ b2p(p) ⇔ b2p(q)

∀x,y : T. b2p(term eqT(x,y)) ⇔ x =T y

∀x,y : T+. b2p(term equivT(x,y)) ⇔ x≡T y

∀i, j : Int. b2p(term leInt(i, j)) ⇔ i ≤ j

∀x : T. b2p(term r(x)) ⇔ r(x)
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and remove the requirements that the functions and relations have intended interpretations.
Here term eqT is the term-level version of formula-level equality=T , term equivT is the
term-level version of the equivalence relation≡T introduced by type refinement,term leInt

is the term-level version of≤ over the integers, andterm r is the term-level version of
uninterpreted relationr . These axioms are consistent with the initial explicit interpretations
of the functions, whetherBool is interpreted as the integers or some two element domain.

We introduce these axioms after type refinement rather than before, as this avoids the
introduction of relativisation preconditions that might slow provers. For example, if we were
to introduce the axiom for∧b before type refinement and we requested refinement to refine
the typeBool to be a subtype of the integers, the axiom after refinement would be

∀p,q : Bool. ∈Bool (p)∧ ∈Bool (q) ⇒ b2p(p∧b q) ⇔ b2p(p)∧b2p(q) .

Also, if we eliminated the Boolean propositional logic operators before refinement, we
would also get refinement adding extra unnecessary subtyping axioms such as

∀p,q : Bool. ∈Bool (p∧b q)

or
∀p,q : Bool. ∈Bool (p)∧ ∈Bool (q) ⇒ ∈Bool (p∧b q)

depending on whether generation of strong subtyping axiomswas chosen or not.

10.2 Eliminating coercions between formulas and terms

We substitute out occurrences of theb2p coercion from term-level Booleans to formulas
and thep2b coercion from formulas to term-level Booleans using the identities mentioned
earlier in Section 8:

b2p(x) = x =Bool trueb

p2b(p) = ITEBool(p, trueb, falseb) .

10.3 Eliminating the Boolean type and constants

We implement two alternatives for when we remove intended interpretations of the Boolean
typeBool and the logical constantstrueb andfalseb.

If the Boolean typeBool has interpretation as the integers, we change the type declara-
tion of Bool to a type definition

Bool : Type = Int

and add axioms
falseb =Int 0
trueb =Int 1 .

If Bool is interpreted as some abstract two element type, we keep itstype declaration

Bool : Type

and add axioms
∀p : Bool. p =Bool trueb ∨b p =Bool falseb

trueb 6= falseb

The first axiom could be hard for automatic provers to use efficiently, so this may not be a
desirable option.
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11 Arithmetic Simplification

We use various simplifications to turn arithmetic expressions that are semantically linear
into expressions that are obviously syntactically linear.For example, we

– substitute out constantsc if there is some hypothesis thatc = k wherek is an integer
literal. Such hypotheses are very common in the VCs generated by Praxis’s SPARK VC
generator tool.

– normalise arithmetic expressions involving multiplication and integer division by con-
stants.

– evaluate ground arithmetic expressions involving multiplication, exponentiation by non-
negative integers, integer division and the modulus function.

Examples of the normalisation are replacing(k×e)× (k′×e′) with (k×k′)× (e×e′) and
replacing(k×e) div k′ with (k div k′)×e whenk′ dividesk. Herek,k′ are integer constants
ande,e′ are arbitrary integer-valued terms.

We also allow exponentiation by non-negative integers to beexpanded away, for when
solvers can handle non-linear arithmetic, but not exponentiation.

12 Elimination of Arithmetic Types and Operators

Options we support include
– Replace natural number literals above some thresholdt with a new uninterpreted con-

stantsn1 . . .nk and add axiomst < n1 < n2 . . . < nk asserting how these constants are
ordered.
This is an attempt to avoid arithmetic overflow in provers such as Simplify that use fixed
precision rather than bignum arithmetic. This approach is used with ESC/Java when it
uses the Simplify solver [29].

– Replace all integer and real multiplications that are not obviously syntactically linear
by new uninterpreted functions. This forces non-linear arithmetic expressions to look
linear, as required by several solvers.

– Make exponentiation of integer and real expressions by non-negative integers uninter-
preted.

– Make integer division and the modulus function uninterpreted. Add characterising ax-
ioms such as:

∀x,y : Int. 0 < y ⇒ 0≤ x mod y

∀x,y : Int. 0 < y ⇒ x mod y < y

∀x,y : Int. 0≤ x ∧ 0 < y ⇒ y× (x div y) ≤ x

∀x,y : Int. 0≤ x ∧ 0 < y ⇒ x−y < y× (x div y)

∀x,y : Int. x≤ 0 ∧ 0 < y ⇒ x ≤ y× (x div y)

∀x,y : Int. x≤ 0 ∧ 0 < y ⇒ y× (x div y) < x+y

– Make real division uninterpreted.
– Make the real type and all functions involving reals uninterpreted.
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– Make uninterpreted functions over integers expressing effect of bit-wise operations. Add
characterising axioms for these such as:

0≤ x ∧ 0≤ y ⇒ 0≤ bit or(x,y)

∀x,y : Int. 0≤ x ∧ 0≤ y ⇒ x≤ bit or(x,y)

∀x,y : Int. 0≤ x ∧ 0≤ y ⇒ y≤ bit or(x,y)

∀x,y : Int. 0≤ x ∧ 0≤ y ⇒ bit or(x,y)≤ x+y .

13 Uninterpreted Type and Defined Type Elimination

The prover Simplify does not support uninterpreted types and type definitions. Essentially it
assumes that all functions and relations are on the single sort of integers.

As observed by Bouillaguet et al. [10], if it is consistent for all uninterpreted types to
have interpretations with the same cardinality, then it is not necessary to use a many-to-
single sort relativisation translation where a predicate is defined carving out each of the
many sorts from a single sorted universe. Instead, it is consistent to drop these predicates
and give all uninterpreted types the same interpretation.

We have not established that every uninterpreted type in SPARK VC units is free from
any axiomatic constraints that rule out the integers as a possible model. There might be con-
straints that only allow finite models of some uninterpretedtype. Types with natural models
with larger cardinality than the integers (e.g. the real type) are not an issue, as the Downward
Löwenheim-Skolem theorem guarantees in these cases that acountable model also exists.
We therefore refine every uninterpreted type using an uninterpreted membership predicate
function (see Section 9.1) in order to ensure every uninterpreted type can be modelled by
the integers.

We allow type definitions to be eliminated by expanding the definitions.

14 Case Study SPARK Programs

For our experiments we work with three readily available examples.

– Autopilot : the largest case study distributed with the SPARK book [5]. It is for an au-
topilot control system for controlling the altitude and heading of an aircraft.

– Simulator: a missile guidance system simulator written by Adrian Hilton as part of his
PhD project. It is freely available on the web10 under the GNU General Public Licence.

– Tokeneer: the Tokeneer ID Station is a biometric software system for managing access
to a secure area [6]. This case study was commissioned by the US National Security
Administration in order to evaluate Praxis’s ‘Correct by Construction’ SPARK-based
high-integrity software development methodology. All thematerials from this case study
were made publically available on the web late 200811.

Some brief statistics on each of these examples and the corresponding verification conditions
are given in Table 2.

The lines-of-code estimates are rather generous, being simply the sum of the number
of lines in the Ada specification and body files for each example. Theannotationscount

10 http://www.suslik.org/Simulator/index.html
11 http://www.adacore.com/tokeneer
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Table 2 Statistics on Case Studies

Autopilot Simulator Tokeneer
Lines of code 1075 19259 30441
No. funcs & procs 17 330 286
No. annotations 17 37 194
No. VC goals 133 1806 1880

is the number of SPARK precondition, postcondition and assertion annotations inall the
Ada specification and body files. In the Autopilot and Simulator examples, almost all the
annotations were assertions. In the Tokeneer example, there were roughly equal number of
the three kinds. The VC goal counts are for the goals output bythe Examiner, excluding
those goals the Examiner proves internally. The Examiner provides no information about
these goals other than that it discharged them, so there is little point in us considering them.

In all cases, most of the VCs are from exception freedom checks inserted by the Ex-
aminer tool. The VCs from all examples involve enumerated types, linear and non-linear
integer arithmetic, integer division and uninterpreted functions. In addition, the Simulator
and Tokeneer examples includes VCs with records, arrays andthe modulo operator.

15 Experimental Conditions

The provers tools we linked to our VCT tool were:

– CVC3 2.2,
– Yices 1.0.24,
– Z3 2.3.1,
– Simplify 1.5.4.

We compared our results against those obtained with the Praxis automatic prover/simplifier
from the 8.1.1 GPL release of Praxis’s SPARK toolkit. As explained in the Introduction,
our interest is to do better than this prover, so it is important we compare against it. All
experiments used a 2.67 GHz Intel Xeon X5550 4 core processorwith 50 GB of physical
memory and running Scientific Linux 5.

As distributed, all the Tokeneer VCs are described as true, though not all are necessarily
directly machine provable. The distributed VC goals fall into 3 categories:

– (94.1%) those proved using Simplifier, Praxis’s automatic prover,
– (2.3%) those proved using Checker, Praxis’s interactive prover, and
– (3.6%) those deemed true by inspection.

The interactive proofs drew on auxiliary rule files that included definitions of specification
functions used in the SPARK program annotations. Whenever some of the VCs of a program
unit were proved using the Checker tool and the Checker made use of an auxiliary rule file,
we also read in that rule file when attempting proof of VCs of that unit. For a fair comparison,
we report in our results section below on the Praxis automatic prover’s performance running
with these auxiliary rule files. It seems the Tokeneer developers never tried this, perhaps
because the earlier version of the automatic prover they used did not have this option.

We report here on experiments with 6 choices of SMT solver and interface mode.

– CVC3/API
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– Yices/API. Here we let Yices reject individual hypotheses and conclusions that it deems
non-linear. It does accept universally quantified hypotheses with non-linear multiplica-
tions, and does find useful linear instantiations of these hypotheses.

– CVC3/SMT -L IB file interface, using the AUFNIRA SMT-L IB sub-logic.
– Yices/SMT -L IB file interface, using the AUFLIA SMT-L IB sub-logic. Here we needed

to abstract all non-linear multiplications, including those in quantified hypotheses, in
order to conform to the AUFLIA requirements.

– Z3/SMT -L IB file interface, using the AUFNIRA SMT-L IB sub-logic.
– Simplify/Simplify file interface

Unless otherwise stated, all solvers were run with a 1 secondtimeout, except for Yices with
the API interface, since the Yices API we use provides no functionality for setting timeouts.
We refer to each of these setups of a prover with some interface mode as atest configuration.
For convenience we also refer to running the Praxis prover asa test configuration.

16 Experimental Results

In this section we report our observations of the coverage obtained with each test configura-
tion and of the distribution of prover run-times on the different problems. Our VCT tool can
work through all the VCs for all the program units of a case study in a single run, and output
a comma-separated-value record of data concerning each goal. This made it straightforward
to produce the various statistics listed in this section.

In Section 17 we give an analysis of these observations, and show examples of VCs that
illustrate differences between solvers. Section 17 also includes remarks on soundness and
robustness issues encountered in the experiments.

Table 3 Coverage of VC goals (%)

Prover CVC3 Yices CVC3 Yices Z3 Simplify Praxis
Interface API API SMT-L IB SMT-L IB SMT-L IB file
Autopilot 96.2 95.5 96.2 91.7 98.5 96.2 97.0
Simulator 94.6 94.0 94.5 93.6 95.5 93.2 95.5
Tokeneer 96.6 97.0 95.3 95.7 97.0 86.4 95.0

The coverage obtained with each test configuration is summarised in Table 3. The table
shows the percentage of VC goals from each case study that areclaimed true with each
configuration.

Some of the Simplify runs halted on Simplify failing an internal runtime assertion check.
This happened on 2.3% of the Simulator goals, and 0.5% of the Tokeneer goals.

Table 4 Average run time per goal (msec)

Prover CVC3 Yices CVC3 Yices Z3 Simplify Praxis
Interface API API SMT-L IB SMT-L IB SMT-L IB file
Autopilot 111 (100) 18 (7) 91 (73) 32 (15) 42 (25) 34 (17) 16
Simulator 190 (173) 25 (8) 171 (146) 51 (26) 74 (50) 69 (44) 33
Tokeneer 358 (322) 53 (18) 251 (206) 85 (40) 83 (38) 415 (370) 50



38

Table 4 shows the total run time for each test configuration oneach case study. The
unparenthesised times are normalised by being divided by the number of goals in each case.
The parenthesised numbers are normalised estimates of the time spent in the actual prover
code rather than the VCT tool’s code. In the case of Yices with the API interface, it is
estimated that, if there had been support to enforce a 1 second timeout, the Tokeneer times
would have been 7sec shorter and there would have been no change to the Autopilot and
Simulator times.

Table 5 Run time distribution for Tokeneer case study goals (sec)

Prover CVC3 Yices CVC3 Yices Z3 Simplify
Interface API API SMT-L IB SMT-L IB SMT-L IB file
30% 0.11 0.02 0.04 0.03 0.02 0.05
50% 0.25 0.03 0.06 0.03 0.03 0.28
70% 0.48 0.04 019 0.04 0.04 0.58
90% 0.66 0.05 0.71 0.05 0.06 1.01
95% 0.73 0.06 1.00 0.06 0.07 1.10
98% 0.81 0.07 >20.00 0.11 0.10 >20
99% 5.49 0.16 >20.00 4.05 >20.00 >20

Table 6 Run time distribution for Tokeneer case study goals (sec) (only proven goals)

Prover CVC3 Yices CVC3 Yices Z3 Simplify
Interface API API SMT-L IB SMT-L IB SMT-L IB file
30% 0.11 0.02 0.04 0.02 0.02 0.04
50% 0.25 0.03 0.05 0.03 0.03 0.29
70% 0.47 0.04 0.15 0.04 0.04 0.56
90% 0.65 0.05 0.62 0.05 0.05 0.98
95% 0.70 0.05 0.79 0.05 0.07 1.04
98% 0.76 0.07 0.99 0.06 0.08 1.13
99% 0.78 0.08 1.13 0.07 0.09 1.42
100% 0.85 0.27 12.34 0.26 0.82 12.65

The average run times for the provers are often heavily skewed by long run times for
relatively few of the goals, especially as it is common for provers to time out rather than
terminate on goals they cannot prove. To give an indication of how run times on goals are
distributed, we sorted the run times in each case, and show inTable 5 these goal run times at
a few percentiles. For example, the 50% line in the table gives the median run times. We ran
the tests for this data with a timeout of 20sec rather 1sec to improve the quality of the data
on slower goals. It is also interesting to look at the distribution of run-times for just the goals
that each prover is able to prove. This makes it easy to see howtimeout thresholds affect the
coverage. This data is shown in Table 6. The entry for some test configuration on the 50%
row shows that 50% of the final coverage for a 20sec timeout with that configuration was
obtained with run-times of the indicated value or less.

Numbers are not given for the Praxis’s prover in these tables, as its log files do not
provide a breakdown of its run time on individual goals.
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17 Discussion of Results

17.1 Coverage

We discuss in this section the coverage results summarised in Table 3 in the previous section,
considering each case study in turn.

Autopilot

The goals in this case study are all thought to be true, and, indeed, with a timeout of of 10
seconds rather than 1 second, Z3 reports them all to be true.

The goals that failed to be proved under one or more test configuration all involved
bounding properties of arithmetic formulas that included integer division or the modulo
operator. For example, the goal

H1: j >= 0 .

H2: j <= 100 .

H3: k > 0 .
H4: j <= k .

H5: m <= 45 .

H6: m > 0 .

->

C1: (m * j) div k <= 45 .

was not provable in any of the test configurations, though a goal with the same hypotheses
and the similar conclusion

C1: (m * j) div k >= -45 .

was proved with the Praxis and Z3 configurations. These and other goals presented in this
section are all abstracted and simplified to show the essential structure: common subexpres-
sions are abstracted to variables, irrelevant hypotheses and conclusions are removed, and
constants with literal values are often substituted out.

A slightly harder example of a bounds theorem that cannot be solved just by considering
how the bounds on each argument to the division operator affect the bounds of its value is:

H1: f > 0 .
H2: f <= 100 .

H3: v >= 0 .

H4: v <= 100 .

->

C1: (100 * f) div (f + v) <= 100 .

This was proved in the Z3 configuration and also in the CVC3-API configuration if we
raised the timeout to 20sec.

The coverage with Yices/API was lower because Yices/API rejected most hypotheses
and conclusions with non-linear multiplication, whereas non-linear multiplication was ac-
cepted in all other configurations except YicesSMT-L IB. Usefully, Yices via its API accepted
non-linear multiplication within universally quantified hypotheses, and permitted linear in-
stantiations of these hypotheses. For example, in proving

H1: f >= -1000 .
H2: f <= 1000 .

H3: t >= -1000 .

H4: t <= 1000 .

->

C1: (t - f) div 12 >= -180 .
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for the case whent − f is non negative, Yices can instantiate the hypothesis

∀x,y : Int. 0≤ x ∧ 0 < y ⇒ x−y < y× (x div y)

to derive the new linear hypothesis that

t − f −12< 12× ((t − f )div12)

from which the conclusion

(t − f )div12≥−180

follows. Unfortunately, should Yices find a non-linear instantiation, it currently immediately
terminates rather than ignoring the instantiation.

One reason for the lower coverage with Yices/SMT-L IB is that then, with linearity re-
quired everywhere, the non-linear multiplication in quantified hypothesis such as above is
abstracted to an uninterpreted function. This makes such a hypothesis much less useful.

CVC3, Z3 and Simplify all accept non-linear multiplications everywhere in their input
formulas.

Simulator

While the VC goals here were richer than with the Autopilot case study in that they also
involved array and record expressions, the goals on which provers gave different results
again all involved arithmetic beyond linear arithmetic. For example, Z3 and the Praxis prover
both proved the goal

H1: s >= 0 .

H2: s <= 971 .

->
C1: 43 + s * (37 + s * (19 + s)) >= 0 .

C2: 43 + s * (37 + s * (19 + s)) <= 214783647 .

and the goal

H1: m = 971 .
H2: k0 = 0 .

H3: k1 = 2^32 - 1 .

->

C1: e1 mod m * (e2 mod m) mod m >= k0 .
C2: e1 mod m * (e2 mod m) mod m <= k1 .

The rounding of the coverage figures for Z3 and the Praxis prover hides the fact that the
Praxis prover discharages 1 more goal. This in essence is:

H1: p >= 1 .

H2: p <= 1000 .

H3: d >= 0

H4: d <= 92
H5: r >= 0 .

H6: r <= 100 .

->

C1: (942 + d * (d * d) div 2000) * r div 100 * p div 2 >= -1000000 .

C2: (942 + d * (d * d) div 2000) * r div 100 * p div 2 <= 1000000 .
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To read the conclusions, note that* and integer divisiondiv have the same precedence and
are left associative. The conclusions follow by interval arithmetic and bounding properties
of div: one can compute that the left-hand-side expression in the conclusion is in the range
0 . . . 665672.

The remaining 3% of unproved goals are all false as far as we can tell. The author of the
Simulator case study code had neither the time nor the need toensure that all goals for all
sub-programs were true.

Coverage is obviously sensitive to how timeout values are set: increase the timeout value
and often coverage increases too. However, there usually isa timeout value beyond which
no further coverage is obtained. For example, with Z3 there is no increase in coverage with
a timeout of 20sec rather than 1sec, and both CVC3/API and CVC3/SMT-L IBconverge on
proving the same 94.6% of goals at a 20sec timeout.

Tokeneer

The best coverage was obtained with the Yices/API and Z3 configurations. They succeeded
in proving all 94.1% of goals originally proven by the Praxisprover, all 2.3% of goals that
were originally proven by the interactive Checker tool, as well as 0.6% of the 3.6% proven
by manual review. We have inspected the goals unproven by Yices/API and Z3, and in every
case it seems there are missing hypotheses, making these goals as stated false. Many of the
goals are missing hypotheses characterising specificationfunctions.

Praxis’s automatic prover was able to use the rules originally introduced for the inter-
active prover to increase its coverage by 0.9%. All these goals it newly proved were goals
originally proved using the interactive prover.

The goals that Yices and Z3 prove and Praxis’s automatic prover misses appear to mostly
involve straightforward linear arithmetic and Boolean reasoning. The issue here is that
Praxis’s prover does not implement decision procedures forlinear arithmetic and Boolean
reasoning, rather it uses a set of finely-tuned heuristic procedures.
One slightly more interesting example of such a goal is

H2 p < (f - 1) div 100 + 1

H3 1 <= f
->

C1: f - (p - 1) * 100 >= 101

The drop in Simplify’s coverage compared to that of Z3 is due to a combination of a low
timeout, Simplify halting on assertion failure, and the incompleteness introduced by making
large constants symbolic. With a timeout of 20sec rather than 1sec, Simplify’s coverage
increased from 86.4% to 94%. See Section 17.3 for more discussion of the latter 2 issues.

17.2 Run times

Average run times are shown in Table 4 and the distribution ofruntimes for the Tokeneer
case study is shown in Tables 5 and 6. We make here some generalremarks on these results.

It is important not to read too much into the numbers. SMT solvers have many op-
tions for selecting alternative heuristics, problem transformations and resource limits, all of
which can significantly affect performance. The numbers here are for the default settings of
the solvers, which in some cases (e.g. Z3) involve the solverautomatically choosing some
parameter settings based on the input problem. We have not attempted to tune option set-
tings for the SPARK VCs. In very preliminary investigations, we have found it easy to get
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factor of two changes in run times. Also, we have made no attempt so far to optimise our
tool to reduce the often significant contribution it makes tothe overall run times.

Looking at the run-time distributions, CVC3/API is an order of magnitude slower than
Yices/API, Yices/SMT-L IB or Z3at most percentiles.

The CVC3/SMT-L IB configuration is significantly faster than the CVC3/API configura-
tion at lower percentiles, but slower at the highest. This isno doubt at least partly due to
the different nature of the translations in the two cases. For example, with the API transla-
tion, CVC3 can bring to bear specialised handling for the different types in goals. With the
SMT-L IB translation, there are many more quantified axioms introduced to characterise the
different types, and CVC3 has to fall back on its default heuristics for instantiating these
axioms. This might account for the better performance at high percentiles with the API
translation.

Yices/API and Yices/SMT-L IB run time distributions are similar, except at the highest
run times, maybe again because, with the API, each type can begiven individualised treat-
ment.

The performance of Simplify is impressive, especially given its age (the version used
dates from 2002) and that it does not employ the core SAT algorithms used in the SMT

solvers. Part of this performance edge must be due to the use of fixed-precision integer
arithmetic rather than some multi-precision arithmetic package such asgmpwhich is used
by Yices and CVC3. We are not sure of why there is a slip in the comparative speed of
Simplify on the Tokeneer case study. Perhaps it is related tothe higher number of explicit
assertions in the Tokeneer code that then results in more complex VCs.

Also too, we observe that Praxis’s prover has run times comparable to the best observed
with any of the other configurations.

We have carried some preliminary experiments to see what effects the translation options
have on SMT-L IB and Simplify run times. So far we see at best relatively smallchanges in
the overall run times. For example, if we use the constructor-select rather than the update-
select axiomatisation of records, Z3 runs about 10% faster,but there is little change Yices’s
run time.
17.3 Soundness

The use of fixed-precision 32-bit arithmetic by Simplify with little or no overflow checking
is rather alarming from a soundness point of view. For example, Simplify will claim

(IMPLIES

(EQ x 2000000000)

(EQ (+ x x) (- 294967296)))

to be valid.
As mentioned earlier, when Simplify was used with ESC/Java, an attempt was made to

soften the impact of this soundness problem by replacing allinteger constants with magni-
tude above a threshold by symbolic constants. When we tried this approach with a threshold
of 100,000, the value suggested in the ESC/Java paper [29], several examples of false goal
slices from the Simulator example were asserted to be valid by Simplify. One such slice in
essence was

H1: lo >= 0 .

H2: lo <= 65535 .
H3: hi >= 0 .

H4: hi <= 65535 .

H5: 100000 < k200000

->

C1: lo + hi * 65536 <= k200000 .
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wherek200000 is the symbolic constant replacing the integer200000. These particular goals
became unproven with a slightly lower threshold of 50,000.

One indicator of when overflow is happening is when Simplify aborts because of the
failure of a run-time assertion left enabled in its code. Allthe reported errors in the Simplify
runs are due to failure of an assertion checking that an integer input to a function is positive.
We guess this is due to silent arithmetic overflow. Of course,arithmetic overflow can easily
result in a positive integer, so this check only catches someoverflows.

We investigated how low a threshold was needed for eliminating the errors with the
Simulator VCs and found all errors did not go away until we reduced the threshold to 500.

To get a handle on the impact of using a threshold on provability, we reran the Yices/API
test on the Simulator example using various thresholds. With 100,000 the fraction of goals
proven by Yices dropped to 90.8%, with 500 to 90.4% and with 20to 89.6%. Since Yices
rejects any additional hypotheses or conclusions which aremade non-linear by the introduc-
tion of symbolic versions of integer constants, these results indicate that under 2% of the
Simulator goal slices involve linear arithmetic problems with multiplication by constants
greater than 20.

17.4 Robustness

Over the course of developing our prover interface tool, we have worked with several ver-
sions of different provers, and have found some versions prone to generating segmentation
faults or running into failed assertions. This was particularly a problem when interfacing to
the prover through its API, because every fault would bring down our iteration through the
goals of a case study. We resorted to a tedious process of recording goals to be excluded
from runs in a special file, with a new entry manually added to this file after each observed
crash. Fortunately prover developers are generally responsive to bug reports.

One incentive for running provers in a subprocess is that thecalling program is insulated
from crashes of the subprocess.

18 Current and future work

One aim of this work is to get the SPARK user community engaged with the latest state-of-
the-art provers for their VCs. To this end, we publically released our tool in 2010 under a
GPL licence12. Also in 2010, Praxis integrated an experimental release ofour tool into their
SPARK toolset and have distributed it to all their customers. A GPLversion of this toolset is
now available13.

Another aim is to provide VC challenge problems to the automated reasoning research
community. We provided the Tokeneer VCs in the SMT-L IB format to the 2009 SMT com-
petition, and hope that members of the SPARK user community will in future use our tool to
generate further benchmarks.

Next steps in the development of our VCT tool include:

– Extending coverage of the FDL VC language, especially including support for the reals
which are currently used for modeling floating-point numbers. Many SPARK users make
much use of floating-point arithmetic.

12 Visit http://homepages.inf.ed.ac.uk/pbj/spark/victor.html
13 Visit https://libre.adacore.com/libre/tools/spark-gpl-edition/
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– Adding support for the SMT-L IB 2.0 format introduced in 201014. This promises to
simplify providing support for the reals.

– Improving interfaces for interactive theorem provers. Forexample, we already have 2
versions of a preliminary interface to the Isabelle theoremprover [36].

– Exploring how to provide proof explanations that are comprehensible by software engi-
neers and that could be used in proof review processes.

– Figuring out how best to present VC counterexamples to SPARK users.
– Adding an alternate front-end preprocessor for VC Units in amore vanilla standardised

syntax, so the VCT tool could easily be used with VCs generated from other languages.

We are also working in several directions to improve automation options. These in-
clude building translations to the input languages of popular interactive theorem provers,
and exploring integrating a variety of existing techniquesfor proving problems involving
non-linear arithmetic [38]. Some of this work is in conjunction with the Z3 development
team who have made significant improvements to Z3’s non-linear capabilities [34].

19 Conclusions

We have demonstrated that state-of-the-art SMT solvers such as Yices, Z3 and CVC3 are well
able to discharge verification conditions arising from SPARK programs. These solvers are
able to prove nearly the same VCs as Praxis’s prover. Out of the nearly 4000 VCs considered,
we found 42 proved by solvers and not Praxis’s prover: these highlighted incompletenesses
in the heuristic proof strategy employed by Praxis’s prover. Many involved simple linear
arithmetic and propositional reasoning, We also found one VC discharged by Praxis’s prover
and not any SMT solver involving non-linear interval arithmetic calculations. We observed
average run-times for the fastest of the solvers of roughly 1−2× that of Praxis’s prover.

In this article we have described the architecture of our VCT tool for translating VCs into
input formats of SMT solvers and for driving those solvers. The translation involves a num-
ber of steps such as eliminating array and record types, undertaking data type refinements,
and separating formulas and terms. There are a number of options, subtleties and interac-
tions of these steps. We have given a detailed presentation of these steps as a guide to others
who wish to implement similar translations, and to encourage discussion of improvements
to such translations.

Acknowledgements:Thanks to Angela Wallenburg at Altran Praxis and the anonymous re-
viewers of this article for their helpful and constructive comments.
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