
Assessing software design skills and their
relation with reasoning skills

Dave R. Stikkolorum1, Claire E. Stevenson2, and Michel R.V. Chaudron3

1Leiden Institute of Advanced Computer Science, 2Department of Psychology
Leiden University, The Netherlands

3Joint Department of Computer Science and Engineering, Chalmers University of
Technology and Gothenborg University, Sweden

1drstikko@liacs.nl, 2cstevenson@fsw.leidenuniv.nl, 3chaudron@chalmers.se

Abstract. Lecturers see students struggle learning software design. In
order to create educational interventions it is needed to know which (ab-
stract) reasoning skills are related to students’ software design perfor-
mance. We introduce an online software design skills test for measuring
students’ software design skills. Two student groups of two different Eu-
ropean universities participated in an experiment in where we were able
to relate students’ visual and verbal reasoning skills to students’ software
design skills and measured learning improvement. In the future proper
interventions can be chosen while using the test as a diagnostic tool.

Keywords: reasoning, software design, assessing, education, UML

1 Introduction

Lecturers from all over the world see students struggle with the subject of soft-
ware design. Not only syntactic errors are made when using modeling languages
like UML, but also semantic or organization (design) errors. Kramer argues that
the key lies in students’ abstract reasoning[7]. The objective of our research is to
discover which reasoning skills are related to the design skills of software engi-
neering students. We focus on two types of abstract reasoning: visual and verbal
reasoning. In our study the main question is: ‘Which type of knowledge and/or
reasoning skills are related to students’ software design skills?’ This leads to
the following underlying questions: RQ1 - Can verbal or visual reasoning ability
predict ones software design skills? RQ2 - Do language skills influence software
design skills? RQ3 - Does prior domain knowledge (UML) influence software de-
sign skills and learning? Answering these questions can help lecturers to create
educational interventions. In order to measure students’ software design skills we
developed a test. As far as we know there is no standard measurement instru-
ment of software design skills. In this paper we analyze two groups of students at
two different universities. They participated in a series of tests addressing soft-
ware design, modeling, reasoning and language skills. In section 2 we describe
related work. In section 3 we describe our method. The results are presented in
section 4 and discussed in section 5. We conclude and propose future work in
section 6.



2 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

2 Related work

Several researchers have discussed the importance of subjects that should be
included in the curricula of university software engineering programs [5] [6].
Especially inclusion of mathematics is subject of discussion. Lethbridge found
that software professionals remembered little mathematics from their study pro-
grams[8]. Some use this research to state that curricula emphasise mathematics
too much while others, like Henderson use this as an argument to claim not to
trust professionals’ opinions[4], because there is too little research on the effect
of mathematics on software engineering skills. In our study we aim to identify
what general reasoning skills (not only mathematical) are related to performance
on software design. Bennedsen and Caspersen studied abstraction as indicator
for students’ learning performance on software engineering [1]. They were not
able to find evidence for this relationship. Roberts [12] found positive correla-
tion between abstraction ability and course grades, but observed a small number
of students (N=15). We targeted a larger group of students, included language
knowledge and used our test as main indicator of students’ design ability.

3 Method

In this section we explain the research method employed to develop our instru-
ment for measuring software design skills. We wanted the measure to show an
increased score after students had followed a course on software design. There-
fore, we asked students to perform the test at the start (pretest) of a course and
at the end (posttest) of a course. We found subjects for our test through two dif-
ferent courses on software design taught at two different universities in Northern
Europe. We presented our design skills test as additional learning material.

In this section we describe our hypotheses. We address the participants and
discuss the different types of test instruments that we used.

3.1 Hypotheses

In all hypotheses we focus on the effect of the independent variables on the
level of design skills (dependent variable), shown in table 1. The level of design
skills is measured at two points in time: with a pretest and with a posttest.
The hypotheses we want to examine are: H1 - UML domain knowledge will
not influence students’ design skills. H2 - Visual reasoning is related to design
skills test performance. H3 - Verbal reasoning is related to design skills test
performance. H4 - Knowledge of the English Language (language of our design
skills test) is related to test performance.

3.2 Participants and Data Collection

The students that participated in the test were 2nd year BSc. students from
two universities in Europe. A group from Chalmers University in Gothenburg -



Assessing software design skills and their relation with reasoning skills 3

Hypothesis Construct Description Type of variable

1 UML Knowledge UML syntax knowledge Independent
2 Visual Reasoning Raven figure series Independent
3 Verbal Reasoning Verbal analogies Independent
4 Knowledge of English C-Test for languages Independent
all Design Skills Pretest Software Design Skills Dependent
all Design Skills Posttest Software Design Skills Dependent

Table 1. Measured Constructs

Sweden and a group from Utrecht University in Utrecht - The Netherlands. Both
groups had no or very little experience with software design. The initial number
of students(N) was 243, however not all students participated on all tests during
their course. For some parts of the analysis we had to use a smaller number of
students.

All data was collected with on-line multiple choice tests1. This was convenient
for assessing a larger group of participants. We used an open-source questionnaire
tool called LimeSurvey2.

PREqTEST
Cdesignqskills)

POSTqTEST
Cdesignqskills)

REASONINGqTEST

time

UMLqKnowledge
TEST
Personaliaq
questions

-Visualq
-Verbalq
LanguageqTEST

SOFTWAREqDESIGNqCOURSE

Fig. 1. Test construction in time dimension

3.3 Designed Procedure

In figure 1 the organization of the test is shown in the dimension of time. The
whole experiment consists of 6 test parts: design skills pre- and posttest, UML
Knowledge, Reasoning, Language and one part that is about personal informa-
tion. The experimental procedure was as follows: 1) In the first week students
were administered the software design pretest, the UML prior knowledge test
and answered general questions about age, background and experience. 2) In
the next weeks they followed the software design course at their university and

1 A demo will be made available at: http://umltest.liacs.nl
2 http://www.limesurvey.org



4 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

were asked to complete the verbal and visual reasoning tests. Also their level of
English was tested in these weeks. 3) At the end of the course the students made
a software design skills posttest.

Pre and Post software design skills tests The pre- and posttest both con-
sisted of 20 similar multiple choice items targeting software design principles
such as mentioned in [11] and [9] with a time limit of 40 minutes. In some ques-
tions the student is asked to compare different designs for the same system. An
example question is shown in figure 2. In other questions only one design was

Which one is a better design, considering assignment of responsibility?

Please choose only one of the following:

Design A, because the system is too small to split up in different classes with different responsibilities.

Design B, because operations that are part of the same task are combined to a responsibility.

Design C, because every operation is a responsibility.

Design D, because it is necessary to reduce the amount of operations in a class, not the responsibility.

Fig. 2. example question design skills test

presented and students had to answer questions about this design. The designs
were presented to the students in the Unified Modeling Language (UML3). The
UML is the most popular modeling lanuage at the moment of writing. We choose
a very small subset of the UML for the reason that we only see the UML as a
vehicle for designing software systems. Lecturers and Phd students discussed
about the possible answers. Only the questions where they agreed on the an-
swers were elected. The cognitive difficulty levels we used are up to level two of
Bloom’s taxonomy of educational objectives [14].

UML prior Knowledge A set of 22 items about UML syntax knowledge was
administered after the pretest to be able to study the relationship between prior
UML knowledge and design skills afterwards. There was a 20 minutes time limit.

3 http://www.uml.org



Assessing software design skills and their relation with reasoning skills 5

Language and Reasoning tests We identified three possible types of knowl-
edge and/or skills that could be related to software design skills: Language knowl-
edge, Verbal Reasoning and Visual Reasoning. In order to study the relationship
between the performance on the design skills test we asked the subjects to make
a test that measures these skills. For the Language knowledge we used the auto-
mated C-test for languages of Leuven University4. For Verbal Reasoning we used
a verbal analogies test5, for visual reasoning we used a test based on Raven’s
progressive matrices [10]. The time limit was 60 minutes.

Personalia A couple of questions were asked after the first test about prior
design experience, education and other pre-knowledge.

4 Results

In this section we describe the results of the individual test instruments. The
analysis of this data will be discussed in section 5. We show psychometric prop-
erties, descriptive statistics, investigate correlations and compare the universi-
ties performance. The student groups from the universities are anonymized and
shown as ‘A’ and ‘B’ or we consider the groups as a total.

4.1 Psychometric Properties

We used classical test theory to determine reliability of our instruments. Cron-
bach’s α coefficient of internal consistency was .44 for the pretest, .58 for both the
posttest and UML knowledge test. The α is somewhat low because of measuring
different knowledge constructs. The item difficulty (i.e., proportion correct) was
lower for the pretest (M=.59, SD=.17, range=.21-.82) than the posttest (M=.68,
SD=.17, range=.25-.89). For the UML knowledge test the students solved on av-
erage 41% of the items correctly (M=.41, SD=.25, range=.09-.90).

4.2 Descriptive Statistics

Table 2 shows the number (N) of students that participated per test, Minimum
(Min) and Maximum (Max), Mean (M), standard deviation (SD), the Skewness
(Skew) and Kurtosis (Kurt). We excluded students’ responses if they responded
to only less than 50 percent of the questions on a test.

4.3 Correlations between instruments and linear regression

Figure 3 shows the Pearson correlations that were found between the individual
tests. A correlation coefficient of .10 is seen as a weak relationship, .30 as mod-
erate, and 0.5 as a strong relationship [2]. Figure 3 show a significant (p < .01 )

4 http://www.arts.kuleuven.be/ctest/english
5 http://www.fibonicci.com/verbal-reasoning/analogies-test



6 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

Construct N Min Max M SD Skew Kurt

Design Skills Pre 243 3 19 11.73 2.75 -.31 -.03
UML Knowledge 217 2 19 9.11 3.12 -.09 -.21
Visual Reasoning 177 0 18 13.27 2.80 -1.41 4.24
Verbal Reasoning 173 0 15 9.05 3.06 -.55 -.12
English language 155 0 38 25.31 8.08 -1.31 1.86
Design Skills Post 171 5 19 13.41 3.00 -.44 -.15

Table 2. Descriptive Statistics Test Instruments

moderate relationship (r = .377) between visual reasoning and the design skills
posttest. This also counts for verbal reasoning and the posttest (r = .380, p <
.01). The visual and verbal reasoning tests do not have this relationship with the
design skills pretest. The English language test does not seem to correlate with
other tests. There is a moderate to strong relationship between the verbal and
visual reasoning tests. Also the design skills pre- and posttest have a moderate
strong (r = .434, p < .01) correlation. We found a moderate correlation between
posttest and the exam of university A (r = .317) and a strong correlation be-
tween posttest and the exam of university B (r = .536) both at significant level
of .01.

UMLC
Knowledge

VisualC
Reasoning

VerbalC
Reasoning

EnglishC
Language

DesignCSkillsC
Post

ExamCA ExamCB

PearsonCCorrelation (f7644 (fc544 (9854 (99 (vcv44 (9v (cf744

Sig)C1f-tailed8 (55 (55 (5f (f9 (55 (9f (55

N f97 96f 958 9v9 959 9cc 85

PearsonCCorrelation (59 (59 (5f (59 (5c (c7c44

Sig)C1f-tailed8 (f9 (89 (85 (c9 (75 (55

N 9v5 9vf 9c5 9v5 9ff 68

PearsonCCorrelation (v9544 (9f (c7744 (9f (c994

Sig)C1f-tailed8 (55 (9c (55 (f6 (59

N 97c 955 9cv 87 69

PearsonCCorrelation (c5c44 (c8544 (98 (cc744

Sig)C1f-tailed8 (55 (55 (95 (59

N 955 9c9 86 65

PearsonCCorrelation (9864 (5c (56

Sig)C1f-tailed8 (55 (8f (67

N 996 85 55

PearsonCCorrelation (c9744 (5c644

Sig)C1f-tailed8 (59 (55

N 7v 75

EnglishClanguage

DesignCSkillsCPost

44)CCorrelationCisCsignificantCatCtheC5)59ClevelC1f-tailed8)

4)CCorrelationCisCsignificantCatCtheC5)55ClevelC1f-tailed8)

CorrelationsCbetweenCtestCinstruments

DesignCSkillsCPre

UMLCKnowlegde

VisualCReasoningC

VerbalCReasoning

Fig. 3. Correlations between the individual test instruments

A series of linear regression models were used to investigate which factors
(pretest, verbal reasoning, visual reasoning, UML knowledge or English language
proficiency) best predicted the student’s posttest performance. The best fitting
parsimonious model explained 34% of variance (F(3, 121)=122.36, p<.001) and
is represented by posttest = βpre • pretest + βvis • visual reasoning + βverb



Assessing software design skills and their relation with reasoning skills 7

• verbal reasoning. With βpre=.40, tpre = 5.27, ppre < .001 ; βvis=.14, tvis =
1.63, pvis = .11 and βverb=.25, tverb = 2.99, pverb < .01

4.4 Comparison between universities

We compared the performance of all instruments between university A and B.
We found significant differences between universities the UML Knowledge test
and the C test. University A performed better on the C test (MA = 27.06, SDA

= 8.2 , MB = 24.11, SDB = 7.9, p = .03). University B performs better on the
UML knowledge test (MA = 8.3, SDA = 3.03, MB = 9.8, SDB = 3.04, p = 0.00).

5 Discussion

The correlation coefficients show that both verbal and visual reasoning explain
almost 40 percent of the performance on student’s design skills posttest. This
is in contrast with the correlation of these skills with design skills pretest.
This indicates abstract reasoning contributes to improvement of software design
skills(H2,3). We did not use a control group. One could argue improvement of
skills is due retesting and not due learning. The correlation between the posttest
and the exam scores provides evidence the we measure learning improvement.
We measured the reasoning abilities of students with tests that measure general
abilities and considered not trainable. With this insight we maybe have to focus
on the matter how problems are presented or lectured for those that do not have
this natural ‘talent’ for abstract reasoning. The fact that both the UML knowl-
edge and language test had no correlation with the design skills pretest and
posttest(H1,4) indicates that we indeed succeeded in questioning design con-
cepts and not about UML problems. Also the fact that university B performed
better on the UML knowledge test while both universities not performed sig-
nificantly different on the design skills pretest provides further support. The
students achieved higher scores on the design skills posttest than on the design
skills pretest. This indicates that they learned during the course.

6 Conclusions and Future Work

In this paper we presented our findings of an on-line test for measuring software
design skills and abstract reasoning skills of students. We showed the relationship
between abstract reasoning and the ability of solving software design problems.
Although abstract reasoning on its own can not be trained, educational inter-
vention in the future can be explored with the focus on how we teach and not
per se what we teach. We believe approaches where experienced based or game
based learning is used can help. We already gained positive feedback on a pilot
of our motivational game ‘The Art of Software Design’6[3][13]. We plan to ex-
tend the game with the findings of this experiment. In the future, indicated by

6 http://aosd.host22.com



8 Dave R. Stikkolorum, Claire E. Stevenson, Michel R.V. Chaudron

our regression model, lecturers can use our test to diagnose students and choose
appropriate interventions when educating software design students.

Acknowledgments

We would like to thank the students and lecturers from Gothenburg University
and Utrecht University for their participation in this study.

References

1. Jens Bennedssen and Michael E. Caspersen. Abstraction ability as an indicator of
success for learning computing science? In Proceedings of the Fourth international
Workshop on Computing Education Research, ICER ’08, pages 15–26, New York,
NY, USA, 2008. ACM.

2. J. Cohen. Statistical power analysis for the behavioral sciences. Erlbaum, 1988.
3. Oswald de Bruin. The art of software design, creating an educational game teaching

software design, 2012.
4. Peter B. Henderson. Mathematical reasoning in software engineering education.

Commun. ACM, 46(9):45–50, September 2003.
5. Peter B. Henderson. Math counts: Mathematical reasoning in computing educa-

tion. ACM Inroads, 1(3):22–23, September 2011.
6. Peter B. Henderson. Mathematical reasoning in computing education ii. ACM

Inroads, 2(1):23–24, February 2011.
7. Jeff Kramer. Is abstraction the key to computing? Communications of the ACM,

50(4):36–42, April 2007.
8. T.C. Lethbridge. What knowledge is important to a software professional? Com-

puter, 33(5):44–50, 2000.
9. RC Martin. Design principles and design patterns. Object Mentor, (c):1–34, 2000.

10. John Raven. The raven’s progressive matrices: change and stability over culture
and time. Cognitive psychology, 41(1):1–48, 2000.

11. Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1st edition, 1996.

12. Patricia Roberts. Abstract thinking: a predictor of modelling ability? 2009.
13. Dave R. Stikkolorum, Michel R.V. Chaudron, and Oswald de Bruin. The art of

software design, a video game for learning software design principles. In Gamifi-
cation Contest MODELS Innsbruck, 2012.

14. Lorin W Anderson, David R Krathwohl, Peter W Airasian, Kathleen A Cruik-
shank, Richard E Mayer, Paul R Pintrich, James Raths, and Merlin C Wittrock.
A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Tax-
onomy of Educational Objectives, Abridged Edition. Allyn & Bacon, 2000.


